organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic modification of propane-1,3-diyl bis­­(pyridine-3-carboxyl­ate)

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain, and dInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 17 December 2010; accepted 26 December 2010; online 8 January 2011)

In the title compound, C15H14N2O4, (I), the mol­ecule lies on a twofold rotation axis which passes through the central C atom of the aliphatic chain, giving one half-mol­ecule per asymmetric unit. The structure is a monoclinic polymorph of the triclinic structure previously reported [Brito, Vallejos, Bolte & López-Rodríguez (2010). Acta Cryst. E66, o792], (II). The most obvious difference between them is the O/C/C/C—O/C/C/C torsion angle [58.2 (7)° in (I) and 173.4 (3)/70.2 (3)° in (II) for GG and TG conformations, respectively]. Another important difference is observed in the dihedral angle between the planes of the aromatic rings [86.49 (7)° for (I) and 76.4 (3)° for (II)]. The crystal structure features a weak ππ inter­action [centroid–centroid distance = 4.1397 (10)Å]; this latter kind of inter­action is not evident in the triclinic polymorph.

Related literature

For conformation definitions, see: Carlucci et al. (2002[Carlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121-129.]). For the structure of the triclinic polymorph, see: Brito et al. (2010a[Brito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010a). Acta Cryst. E66, o792.]). For the synthesis and structural characterization of coordination polymers, see: Brito et al. (2010b[Brito, I., Vallejos, J., Mundaca, A., Cárdenas, A., Albanez, J., Vargas, D. & López-Rodríguez, M. (2010b). Mol. Cryst. Liq. Cryst. 521, 158-167.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O4

  • Mr = 286.28

  • Monoclinic, C 2/c

  • a = 24.414 (3) Å

  • b = 4.8328 (4) Å

  • c = 11.5667 (14) Å

  • β = 100.671 (10)°

  • V = 1341.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.35 × 0.33 × 0.13 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 3193 measured reflections

  • 1249 independent reflections

  • 939 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 0.92

  • 1249 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This paper forms part of our continuing study of the synthesis and structural characterization of coordination polymers (Brito et al., 2010b). We are particularly interested in the utility of the title compound of as a flexible ligand, and its binding modes, for the fabrication of different coordination polymers topologies. We report here the structure of a new polymorph of propane-1,3-diyl bis(pyridine-3-carboxylate) isolated during attempts to synthetize coordination polymers with silver trifluoromethanesulfonate of the ligand (Fig. 1, Table 1). In the title compound, (I) the molecule lies on a twofold rotation axis which passes through the central C atom of the aliphatic chain, giving one half-molecule per asymmetric unit. The structure is a monoclinic polymorph of the triclinic structure previously reported [Brito et al. (2010a). Acta Cryst. E66, o792], (II). There is excellent agreement between the geometric parameters of (I) and (II). The propanedyl group can adopt four possible conformations: trans-trans (TT), trans-gauche (TG), gauche-gauche (GG) and gauche-gauche' (GG') (Carlucci et al., 2002).The most obvious difference between them is the O/C/C/C—O/C/C/C torsion angle [58.2 (7)° in (I) and 173.4 (3)/70.2 (3)° in (II) for GG and TG conformations, respectively]. Another difference between them is the angle between the planes of aromatic rings [86.49 (7)° for (I) and 76.4 (3)° for triclinic modification]. The crystal structure of the title compound has one intramolecular C—O··· H and one weak ππ interaction (4.1397 (10)Å Cg1— Cg1(i), symmetry code (i) =3/2 - x, 1/2 - y 1 - z; Cg1= N13/C12/C11/C16/C15/C14), whereas this last kind of interaction is not evident in the triclinic polymorph.The triclinic modification is less compact, as noted from the lower density (1.395 Mg m-3 compared with 1.418 Mg m-3 for the monoclinic form).

Related literature top

For conformation definitions, see: Carlucci et al. (2002). For the structure of the polymorph, see: Brito et al. (2010a). For the synthesis and structural characterization of coordination polymers, see: Brito et al. (2010b).

Experimental top

All reactions were carried out under an atmosphere of purified nitrogen. Solvents were dried and distilled prior to use. 5,5'-dinitro-2,2'-dithiodipyridine and silver trifluoromethanesulfonate were purchased from Aldrich. The title compound was obtained as colourless block crystals, in an attempt to prepare coordination polymers with silver trifluoromethanesulfonate and the ligand (II). The compound (I) was obtained by a mixture of (II) (1 mmol, 27.3 mg) and silver trifluoromethanesulfonate (1 mmol, 25.6 mg) in CH3CN (5 ml). The title compound was filtered off and washed with CH3CN. FT–IR (KBr pellet, cm-1): ν (w, C—H) 3086, ν(s, N=O of NO2 asymmetric) 1581, ν (v.s. of NO2 symmetric) 1352, ν(w, C—H disubstitution 1,4) 1962, ν(s, C—H disubstitution 1,4) 852, ν (w, C—N) 1101, ν(s, C=C) 1603, ν (w, C—H) 1010, (s, C=N) 1510, ν (w, C—S) 740, ν(w S—S) 552.

Refinement top

All H atoms could be located by difference Fourier synthesis but were ultimately placed in calculated positions using a riding model with C— H = 0.95 - 1.00 Å and with fixed individual displacement parameters [Uiso(H) = 1.2 Ueq(C)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level. [symmetry code: A = 1 - x,y,1/2 - z]
propane-1,3-diyl bis(pyridine-3-carboxylate) top
Crystal data top
C15H14N2O4F(000) = 600
Mr = 286.28Dx = 1.418 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2928 reflections
a = 24.414 (3) Åθ = 3.4–25.9°
b = 4.8328 (4) ŵ = 0.11 mm1
c = 11.5667 (14) ÅT = 173 K
β = 100.671 (10)°Block, colourless
V = 1341.1 (3) Å30.35 × 0.33 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
939 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.6°, θmin = 3.4°
ω scansh = 2929
3193 measured reflectionsk = 55
1249 independent reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.001
1249 reflectionsΔρmax = 0.17 e Å3
97 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (13)
Crystal data top
C15H14N2O4V = 1341.1 (3) Å3
Mr = 286.28Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.414 (3) ŵ = 0.11 mm1
b = 4.8328 (4) ÅT = 173 K
c = 11.5667 (14) Å0.35 × 0.33 × 0.13 mm
β = 100.671 (10)°
Data collection top
Stoe IPDS II two-circle
diffractometer
939 reflections with I > 2σ(I)
3193 measured reflectionsRint = 0.037
1249 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 0.92Δρmax = 0.17 e Å3
1249 reflectionsΔρmin = 0.14 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57094 (4)0.5968 (2)0.53846 (8)0.0343 (3)
C10.58554 (6)0.5710 (3)0.44442 (11)0.0250 (3)
O20.56326 (4)0.7135 (2)0.34794 (7)0.0273 (3)
C30.51676 (6)0.8926 (3)0.36128 (11)0.0272 (3)
H3A0.52801.01840.42910.033*
H3B0.48490.77950.37590.033*
C40.50001.0583 (4)0.25000.0266 (5)
H4A0.46791.18040.25990.032*
C110.62930 (6)0.3744 (3)0.42290 (11)0.0254 (3)
C120.65354 (6)0.2013 (3)0.51425 (12)0.0299 (4)
H120.64150.21800.58750.036*
N130.69262 (5)0.0130 (3)0.50556 (10)0.0342 (3)
C140.70870 (6)0.0051 (3)0.40112 (12)0.0324 (4)
H140.73680.13600.39300.039*
C150.68699 (6)0.1548 (3)0.30476 (12)0.0317 (4)
H150.69980.13270.23250.038*
C160.64628 (6)0.3481 (3)0.31495 (11)0.0290 (3)
H160.63030.46010.24990.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0395 (6)0.0414 (6)0.0238 (5)0.0043 (5)0.0102 (4)0.0026 (4)
C10.0281 (8)0.0259 (7)0.0199 (6)0.0060 (6)0.0013 (6)0.0007 (5)
O20.0313 (6)0.0290 (5)0.0220 (5)0.0045 (4)0.0062 (4)0.0017 (4)
C30.0274 (8)0.0293 (8)0.0260 (7)0.0015 (6)0.0080 (6)0.0020 (6)
C40.0259 (11)0.0260 (11)0.0281 (9)0.0000.0057 (8)0.000
C110.0268 (7)0.0248 (7)0.0238 (6)0.0053 (6)0.0030 (6)0.0014 (5)
C120.0355 (9)0.0308 (8)0.0232 (6)0.0007 (7)0.0049 (6)0.0009 (6)
N130.0378 (8)0.0339 (7)0.0303 (6)0.0037 (6)0.0045 (5)0.0008 (5)
C140.0306 (9)0.0315 (8)0.0354 (8)0.0008 (6)0.0067 (6)0.0042 (6)
C150.0335 (8)0.0346 (8)0.0282 (7)0.0043 (7)0.0091 (6)0.0037 (6)
C160.0321 (8)0.0312 (8)0.0231 (7)0.0052 (6)0.0037 (6)0.0009 (6)
Geometric parameters (Å, º) top
O1—C11.2122 (14)C11—C161.3925 (16)
C1—O21.3381 (16)C12—N131.3355 (19)
C1—C111.4849 (19)C12—H120.9500
O2—C31.4585 (16)N13—C141.3405 (17)
C3—C41.5069 (17)C14—C151.379 (2)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.385 (2)
C4—C3i1.5069 (17)C15—H150.9500
C4—H4A1.0042C16—H160.9500
C11—C121.391 (2)
O1—C1—O2123.62 (13)C16—C11—C1123.47 (12)
O1—C1—C11123.82 (12)N13—C12—C11124.20 (12)
O2—C1—C11112.54 (10)N13—C12—H12117.9
C1—O2—C3114.92 (9)C11—C12—H12117.9
O2—C3—C4108.59 (9)C12—N13—C14116.40 (13)
O2—C3—H3A110.0N13—C14—C15123.98 (14)
C4—C3—H3A110.0N13—C14—H14118.0
O2—C3—H3B110.0C15—C14—H14118.0
C4—C3—H3B110.0C14—C15—C16118.94 (12)
H3A—C3—H3B108.4C14—C15—H15120.5
C3i—C4—C3115.77 (17)C16—C15—H15120.5
C3i—C4—H4A108.4C15—C16—C11118.38 (13)
C3—C4—H4A108.0C15—C16—H16120.8
C12—C11—C16118.09 (13)C11—C16—H16120.8
C12—C11—C1118.41 (11)
O1—C1—O2—C33.94 (19)C16—C11—C12—N130.8 (2)
C11—C1—O2—C3174.99 (11)C1—C11—C12—N13178.94 (14)
C1—O2—C3—C4174.58 (12)C11—C12—N13—C140.1 (2)
O2—C3—C4—C3i58.11 (8)C12—N13—C14—C150.7 (2)
O1—C1—C11—C122.7 (2)N13—C14—C15—C160.4 (2)
O2—C1—C11—C12176.23 (13)C14—C15—C16—C110.5 (2)
O1—C1—C11—C16179.25 (13)C12—C11—C16—C151.1 (2)
O2—C1—C11—C161.83 (19)C1—C11—C16—C15179.13 (13)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.512.8298 (18)100

Experimental details

Crystal data
Chemical formulaC15H14N2O4
Mr286.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)24.414 (3), 4.8328 (4), 11.5667 (14)
β (°) 100.671 (10)
V3)1341.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.33 × 0.13
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3193, 1249, 939
Rint0.037
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 0.92
No. of reflections1249
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.952.512.8298 (18)100
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. JV thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationBrito, I., Vallejos, J., Bolte, M. & López-Rodríguez, M. (2010a). Acta Cryst. E66, o792.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Mundaca, A., Cárdenas, A., Albanez, J., Vargas, D. & López-Rodríguez, M. (2010b). Mol. Cryst. Liq. Cryst. 521, 158–167.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Rizzato, S. (2002). CrystEngComm, 22, 121–129.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds