organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(3-eth­­oxy-2-hy­dr­oxy­benzyl­­idene)benzohydrazide monohydrate

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: cooperationwell@126.com

(Received 31 December 2010; accepted 10 January 2011; online 15 January 2011)

In the title compound, C16H15ClN2O3·H2O, the water mol­ecule is linked to the Schiff base mol­ecule via an O—H⋯O hydrogen bond. In the Schiff base mol­ecule, an intramolecular O—H⋯N hydrogen bond occurs and the dihedral angle between the two benzene rings is 20.5 (5)°. In the crystal, the Schiff base and water mol­ecules are linked by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming layers in the ab plane.

Related literature

For Schiff base compounds, see: Bessy et al. (2006[Bessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201-208.]); Podyachev et al. (2007[Podyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250-261.]); Raj & Kurup (2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]); Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Bacchi et al. (2006[Bacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275-2280.]); Dinda et al. (2002[Dinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434-4439.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The title compound was prepared by the method described in Zhu (2010[Zhu, H.-Y. (2010). Acta Cryst. E66, o2562.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN2O3·H2O

  • Mr = 336.77

  • Orthorhombic, P 21 21 21

  • a = 4.631 (2) Å

  • b = 13.558 (3) Å

  • c = 25.478 (3) Å

  • V = 1599.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.23 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.950

  • 8650 measured reflections

  • 3460 independent reflections

  • 1391 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.158

  • S = 1.00

  • 3460 reflections

  • 219 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1399 Friedel pairs

  • Flack parameter: 0.25 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.95 2.645 (5) 142
N2—H2⋯O4i 0.90 (1) 2.03 (1) 2.932 (5) 175 (5)
O4—H4A⋯O3 0.84 (3) 1.89 (2) 2.717 (5) 167 (5)
O4—H4B⋯O2ii 0.85 (4) 2.16 (2) 2.945 (5) 154 (4)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the last few years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Bessy et al., 2006; Podyachev et al., 2007; Raj & Kurup, 2007; Pouralimardan et al., 2007; Bacchi et al., 2006; Dinda et al., 2002). As a continuation of the work, in the present paper, the title new Schiff base compound, Fig. 1, is reported.

The compound contains a Schiff base molecule and a water molecule of crystallization. The water molecule is linked to the Schiff base molecule via intermolecular O—H···O hydrogen bonds (Table 1). In the Schiff base molecule, there is an O—H···N hydrogen bond, which contributes to the planarity of the molecule. The dihedral angle between the two benzene rings is 20.5 (5)°. All the bond lengths are within normal values (Allen et al., 1987). The molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) to form two-dimensional layers along the ab plane (Fig. 2).

Related literature top

For Schiff base compounds, see: Bessy et al. (2006); Podyachev et al. (2007); Raj & Kurup (2007); Pouralimardan et al. (2007); Bacchi et al. (2006); Dinda et al. (2002). For the reference bond lengths, see: Allen et al. (1987). For the preparation of the title compound, see: Zhu (2010).

Experimental top

The compound was prepared and crystallized according to the literature method (Zhu, 2010). 3-Ethoxy-2-hydroxybenzaldehyde (0.166 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml 95% ethanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for a week, yielding colorless block-shaped crystals, which were collected by filtration and washed with ethanol.

Refinement top

The amino and water H atoms were located from a difference Fourier map and refined isotropically, with the N—H, O—H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C8 and O2).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
3-Chloro-N'-(3-ethoxy-2-hydroxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C16H15ClN2O3·H2ODx = 1.398 Mg m3
Mr = 336.77Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 705 reflections
a = 4.631 (2) Åθ = 2.6–24.5°
b = 13.558 (3) ŵ = 0.26 mm1
c = 25.478 (3) ÅT = 298 K
V = 1599.7 (8) Å3Block, colorless
Z = 40.23 × 0.22 × 0.20 mm
F(000) = 704
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3460 independent reflections
Radiation source: fine-focus sealed tube1391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 55
Tmin = 0.943, Tmax = 0.950k = 1217
8650 measured reflectionsl = 3229
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0181P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
3460 reflectionsΔρmax = 0.20 e Å3
219 parametersΔρmin = 0.18 e Å3
4 restraintsAbsolute structure: Flack (1983), 1399 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.25 (16)
Crystal data top
C16H15ClN2O3·H2OV = 1599.7 (8) Å3
Mr = 336.77Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.631 (2) ŵ = 0.26 mm1
b = 13.558 (3) ÅT = 298 K
c = 25.478 (3) Å0.23 × 0.22 × 0.20 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1391 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.950Rint = 0.085
8650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.158Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.18 e Å3
3460 reflectionsAbsolute structure: Flack (1983), 1399 Friedel pairs
219 parametersAbsolute structure parameter: 0.25 (16)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1754 (4)0.65889 (10)0.04444 (6)0.1007 (7)
N10.7745 (10)0.8171 (3)0.26638 (17)0.0663 (13)
N20.5846 (11)0.8403 (3)0.22645 (18)0.0638 (13)
O11.3750 (8)0.6775 (2)0.41318 (14)0.0680 (10)
O21.0189 (9)0.6980 (2)0.33554 (13)0.0656 (10)
H2A0.89350.71280.31420.098*
O30.4905 (10)0.6809 (3)0.20923 (14)0.0907 (13)
O40.4271 (12)0.5540 (2)0.29094 (15)0.0892 (14)
C11.1199 (12)0.8733 (4)0.3283 (2)0.0550 (14)
C21.1601 (12)0.7804 (4)0.3510 (2)0.0541 (13)
C31.3572 (13)0.7715 (4)0.3925 (2)0.0560 (14)
C41.5152 (12)0.8508 (4)0.4093 (2)0.0636 (14)
H41.65230.84300.43570.076*
C51.4701 (14)0.9427 (4)0.3869 (2)0.0714 (17)
H51.57330.99700.39890.086*
C61.2753 (14)0.9537 (4)0.3474 (2)0.0704 (17)
H61.24521.01580.33290.085*
C71.5824 (12)0.6631 (4)0.4544 (2)0.0704 (16)
H7A1.55120.71050.48230.084*
H7B1.77670.67170.44090.084*
C81.5442 (15)0.5608 (3)0.4746 (2)0.0836 (19)
H8A1.35030.55270.48730.125*
H8B1.67770.54930.50280.125*
H8C1.58010.51440.44690.125*
C90.9160 (13)0.8890 (4)0.2864 (2)0.0655 (17)
H90.88650.95250.27370.079*
C100.4512 (14)0.7692 (4)0.1998 (2)0.0634 (16)
C110.2476 (12)0.7998 (4)0.1579 (2)0.0538 (13)
C120.1420 (14)0.7273 (4)0.1251 (2)0.0660 (16)
H120.19920.66220.12970.079*
C130.0471 (14)0.7514 (4)0.0857 (2)0.0619 (16)
C140.1410 (12)0.8456 (4)0.0778 (2)0.0639 (15)
H140.27180.86020.05120.077*
C150.0362 (13)0.9190 (4)0.1104 (2)0.0612 (15)
H150.09540.98390.10550.073*
C160.1542 (13)0.8968 (3)0.1499 (2)0.0568 (14)
H160.22220.94680.17160.068*
H20.569 (12)0.9055 (11)0.2203 (18)0.080*
H4A0.437 (12)0.586 (3)0.2626 (9)0.080*
H4B0.334 (10)0.589 (3)0.3130 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1293 (16)0.0775 (10)0.0952 (12)0.0177 (11)0.0022 (11)0.0238 (9)
N10.062 (3)0.088 (3)0.049 (3)0.024 (3)0.009 (3)0.009 (3)
N20.065 (4)0.066 (3)0.060 (3)0.015 (3)0.004 (3)0.008 (3)
O10.066 (3)0.062 (2)0.076 (2)0.006 (2)0.018 (2)0.0077 (19)
O20.059 (3)0.063 (2)0.074 (3)0.001 (2)0.017 (2)0.0018 (19)
O30.124 (4)0.061 (2)0.086 (3)0.020 (3)0.003 (3)0.018 (2)
O40.138 (4)0.055 (2)0.075 (3)0.009 (3)0.017 (3)0.004 (2)
C10.040 (3)0.061 (3)0.064 (4)0.011 (3)0.012 (3)0.006 (3)
C20.041 (3)0.063 (3)0.058 (3)0.002 (3)0.008 (3)0.005 (3)
C30.054 (4)0.051 (3)0.063 (4)0.001 (3)0.001 (3)0.004 (3)
C40.055 (4)0.076 (4)0.060 (3)0.006 (4)0.007 (3)0.007 (3)
C50.068 (5)0.057 (4)0.089 (5)0.003 (3)0.017 (4)0.011 (3)
C60.071 (5)0.058 (3)0.083 (5)0.010 (4)0.021 (4)0.006 (3)
C70.063 (4)0.079 (4)0.069 (4)0.001 (3)0.022 (4)0.003 (3)
C80.095 (5)0.069 (4)0.087 (4)0.007 (4)0.028 (4)0.011 (3)
C90.056 (5)0.076 (4)0.064 (4)0.016 (3)0.012 (3)0.010 (3)
C100.071 (5)0.060 (4)0.060 (4)0.007 (4)0.015 (3)0.007 (3)
C110.058 (4)0.051 (3)0.053 (3)0.001 (3)0.008 (3)0.002 (3)
C120.073 (4)0.056 (3)0.069 (4)0.012 (4)0.013 (4)0.005 (3)
C130.070 (4)0.052 (3)0.063 (4)0.013 (3)0.008 (4)0.008 (3)
C140.064 (4)0.065 (3)0.063 (4)0.006 (4)0.001 (3)0.003 (3)
C150.066 (4)0.051 (3)0.067 (4)0.000 (3)0.008 (4)0.003 (3)
C160.066 (4)0.049 (3)0.055 (3)0.002 (3)0.007 (3)0.005 (3)
Geometric parameters (Å, º) top
Cl1—C131.741 (5)C5—H50.9300
N1—C91.281 (6)C6—H60.9300
N1—N21.381 (6)C7—C81.491 (6)
N2—C101.331 (6)C7—H7A0.9700
N2—H20.901 (10)C7—H7B0.9700
O1—C31.381 (5)C8—H8A0.9600
O1—C71.436 (5)C8—H8B0.9600
O2—C21.354 (5)C8—H8C0.9600
O2—H2A0.8200C9—H90.9300
O3—C101.234 (5)C10—C111.485 (7)
O4—H4A0.84 (3)C11—C121.379 (6)
O4—H4B0.85 (4)C11—C161.399 (6)
C1—C61.394 (7)C12—C131.371 (7)
C1—C21.399 (6)C12—H120.9300
C1—C91.440 (7)C13—C141.365 (6)
C2—C31.402 (7)C14—C151.384 (6)
C3—C41.369 (6)C14—H140.9300
C4—C51.386 (7)C15—C161.370 (7)
C4—H40.9300C15—H150.9300
C5—C61.360 (7)C16—H160.9300
C9—N1—N2116.5 (5)C7—C8—H8A109.5
C10—N2—N1120.4 (4)C7—C8—H8B109.5
C10—N2—H2126 (3)H8A—C8—H8B109.5
N1—N2—H2114 (4)C7—C8—H8C109.5
C3—O1—C7116.4 (4)H8A—C8—H8C109.5
C2—O2—H2A109.5H8B—C8—H8C109.5
H4A—O4—H4B108 (2)N1—C9—C1121.2 (5)
C6—C1—C2119.3 (5)N1—C9—H9119.4
C6—C1—C9118.8 (5)C1—C9—H9119.4
C2—C1—C9121.8 (5)O3—C10—N2122.4 (6)
O2—C2—C1123.9 (5)O3—C10—C11120.3 (6)
O2—C2—C3117.6 (5)N2—C10—C11117.3 (5)
C1—C2—C3118.5 (5)C12—C11—C16118.1 (5)
C4—C3—O1125.0 (5)C12—C11—C10117.5 (5)
C4—C3—C2121.1 (5)C16—C11—C10124.4 (5)
O1—C3—C2113.9 (5)C13—C12—C11120.0 (5)
C3—C4—C5119.8 (5)C13—C12—H12120.0
C3—C4—H4120.1C11—C12—H12120.0
C5—C4—H4120.1C14—C13—C12122.3 (5)
C6—C5—C4120.2 (6)C14—C13—Cl1118.4 (5)
C6—C5—H5119.9C12—C13—Cl1119.3 (4)
C4—C5—H5119.9C13—C14—C15118.2 (5)
C5—C6—C1121.1 (5)C13—C14—H14120.9
C5—C6—H6119.5C15—C14—H14120.9
C1—C6—H6119.5C16—C15—C14120.6 (5)
O1—C7—C8107.5 (4)C16—C15—H15119.7
O1—C7—H7A110.2C14—C15—H15119.7
C8—C7—H7A110.2C15—C16—C11120.8 (5)
O1—C7—H7B110.2C15—C16—H16119.6
C8—C7—H7B110.2C11—C16—H16119.6
H7A—C7—H7B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.952.645 (6)142
N2—H2···O4i0.90 (1)2.03 (1)2.932 (5)175 (5)
O4—H4A···O30.84 (3)1.89 (2)2.717 (5)167 (5)
O4—H4B···O2ii0.85 (4)2.16 (2)2.945 (5)154 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15ClN2O3·H2O
Mr336.77
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.631 (2), 13.558 (3), 25.478 (3)
V3)1599.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.23 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.943, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
8650, 3460, 1391
Rint0.085
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.158, 1.00
No. of reflections3460
No. of parameters219
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.18
Absolute structureFlack (1983), 1399 Friedel pairs
Absolute structure parameter0.25 (16)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.952.645 (6)142
N2—H2···O4i0.901 (10)2.034 (13)2.932 (5)175 (5)
O4—H4A···O30.84 (3)1.886 (16)2.717 (5)167 (5)
O4—H4B···O2ii0.85 (4)2.16 (2)2.945 (5)154 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275–2280.  CrossRef CAS Google Scholar
First citationBessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201–208.  CAS Google Scholar
First citationBruker (2005). SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434–4439.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPodyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250–261.  CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-Y. (2010). Acta Cryst. E66, o2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds