organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(4-di­ethyl­amino-2-hy­dr­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: cooperationwell@126.com

(Received 31 December 2010; accepted 10 January 2011; online 15 January 2011)

The asymmetric unit of the title Schiff base compound, C18H20ClN3O2, contains two independent mol­ecules. An O—H⋯N hydrogen bond contributes to the planarity of each mol­ecule: the dihedral angles between the two benzene rings are 12.8 (3) and 27.2 (3)° in the two mol­ecules. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For Schiff base compounds, see: Bessy et al. (2006[Bessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201-208.]); Podyachev et al. (2007[Podyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250-261.]); Raj & Kurup (2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]); Pouralimardan et al. (2007[Pouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599-1608.]); Bacchi et al. (2006[Bacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275-2280.]); Dinda et al. (2002[Dinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434-4439.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the preparation of the title compound, see: Zhu (2010[Zhu, H.-Y. (2010). Acta Cryst. E66, o2562.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20ClN3O2

  • Mr = 345.82

  • Triclinic, [P \overline 1]

  • a = 10.087 (4) Å

  • b = 12.939 (5) Å

  • c = 14.780 (5) Å

  • α = 78.408 (4)°

  • β = 80.726 (4)°

  • γ = 70.632 (4)°

  • V = 1773.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.22 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.955

  • 11600 measured reflections

  • 7423 independent reflections

  • 2683 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.193

  • S = 0.91

  • 7423 reflections

  • 445 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.602 (4) 146
O3—H3⋯N4 0.82 1.91 2.625 (4) 145
N2—H2⋯O4i 0.90 (6) 2.22 (6) 3.109 (4) 168 (7)
N5—H5⋯O2 0.90 (5) 2.00 (4) 2.899 (4) 176 (7)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Bessy et al., 2006; Podyachev et al., 2007; Raj & Kurup, 2007; Pouralimardan et al., 2007; Bacchi et al., 2006; Dinda et al., 2002). As a continuation of the work, in the present paper, the title new Schiff base compound, Fig. 1, is reported.

The asymmetric unit of the compound contains two independent Schiff base molecules. In each Schiff base molecule, there is an O—H···N hydrogen bond, which contributes to the planarity of the molecule. The dihedral angles between the two benzene rings in both molecules are 12.8 (3) and 27.2 (3)°, respectively. All the bond lengths are within normal values (Allen et al., 1987). The molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains along the a axis (Fig. 2).

Related literature top

For Schiff base compounds, see: Bessy et al. (2006); Podyachev et al. (2007); Raj & Kurup (2007); Pouralimardan et al. (2007); Bacchi et al. (2006); Dinda et al. (2002). For the reference bond lengths, see: Allen et al. (1987). For the preparation of the title compound, see: Zhu (2010).

Experimental top

The compound was prepared and crystallized according to the literature method (Zhu, 2010). 4-Diethylamino-2-hydroxybenzaldehyde (0.193 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slowly evaporate in air for a few days, yielding colorless block-shaped crystals, which were collected by filtration and washed with methanol.

Refinement top

The amino H atoms were located from a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.97 Å, and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines.
3-Chloro-N'-(4-diethylamino-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C18H20ClN3O2Z = 4
Mr = 345.82F(000) = 728
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.087 (4) ÅCell parameters from 1270 reflections
b = 12.939 (5) Åθ = 2.3–24.5°
c = 14.780 (5) ŵ = 0.23 mm1
α = 78.408 (4)°T = 298 K
β = 80.726 (4)°Block, colorless
γ = 70.632 (4)°0.22 × 0.20 × 0.20 mm
V = 1773.3 (11) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7423 independent reflections
Radiation source: fine-focus sealed tube2683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.951, Tmax = 0.955k = 1116
11600 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0717P)2]
where P = (Fo2 + 2Fc2)/3
7423 reflections(Δ/σ)max < 0.001
445 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H20ClN3O2γ = 70.632 (4)°
Mr = 345.82V = 1773.3 (11) Å3
Triclinic, P1Z = 4
a = 10.087 (4) ÅMo Kα radiation
b = 12.939 (5) ŵ = 0.23 mm1
c = 14.780 (5) ÅT = 298 K
α = 78.408 (4)°0.22 × 0.20 × 0.20 mm
β = 80.726 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7423 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2683 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.955Rint = 0.057
11600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0752 restraints
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.29 e Å3
7423 reflectionsΔρmin = 0.21 e Å3
445 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62387 (13)0.14819 (9)1.18480 (9)0.0869 (5)
Cl20.89678 (13)0.12147 (10)1.28108 (9)0.0957 (5)
N10.1455 (3)0.3794 (3)0.9448 (2)0.0572 (9)
N20.1671 (3)0.2739 (3)0.9968 (2)0.0575 (9)
N30.1066 (5)0.8362 (3)0.6765 (3)0.0984 (15)
N40.7011 (3)0.3310 (3)0.8824 (2)0.0587 (9)
N50.6729 (3)0.2805 (3)0.9726 (2)0.0592 (9)
N60.6481 (5)0.6139 (3)0.4730 (3)0.1039 (15)
O10.2103 (3)0.5586 (2)0.8699 (2)0.0746 (9)
H10.22220.49630.90030.112*
O20.3907 (3)0.2608 (2)1.01641 (19)0.0677 (8)
O30.8587 (3)0.3508 (3)0.7241 (2)0.0956 (11)
H30.84300.32980.77980.143*
O40.9075 (3)0.1993 (2)0.98704 (19)0.0733 (9)
C10.0103 (4)0.5309 (3)0.8558 (3)0.0551 (11)
C20.0842 (4)0.5933 (3)0.8338 (3)0.0588 (11)
C30.0517 (5)0.6930 (3)0.7750 (3)0.0712 (13)
H3A0.11640.73240.76100.085*
C40.0760 (5)0.7363 (3)0.7358 (3)0.0714 (13)
C50.1713 (5)0.6755 (4)0.7610 (3)0.0754 (14)
H5A0.25870.70290.73760.090*
C60.1383 (4)0.5774 (3)0.8191 (3)0.0684 (13)
H60.20490.53960.83490.082*
C70.0252 (4)0.4233 (3)0.9121 (3)0.0582 (11)
H70.04040.38460.92530.070*
C80.2939 (5)0.2209 (3)1.0290 (3)0.0543 (11)
C90.3083 (4)0.1059 (3)1.0819 (3)0.0524 (11)
C100.4398 (4)0.0413 (3)1.1071 (2)0.0535 (11)
H100.51570.06941.09260.064*
C110.4587 (4)0.0652 (3)1.1538 (3)0.0563 (11)
C120.3502 (5)0.1082 (4)1.1782 (3)0.0751 (14)
H120.36390.17921.21180.090*
C130.2205 (5)0.0448 (4)1.1524 (4)0.110 (2)
H130.14570.07411.16660.132*
C140.1978 (5)0.0628 (4)1.1053 (4)0.0885 (16)
H140.10800.10561.08950.106*
C150.2541 (6)0.8936 (4)0.6502 (4)0.1111 (19)
H15A0.32110.87250.69930.133*
H15B0.27390.97330.64300.133*
C160.2698 (8)0.8644 (6)0.5664 (4)0.160 (3)
H16A0.19320.87310.52090.240*
H16B0.35770.91180.54430.240*
H16C0.26920.78860.57710.240*
C170.0019 (7)0.8907 (5)0.6400 (5)0.129 (3)
H17A0.04940.88990.69040.155*
H17B0.04950.96760.61630.155*
C180.1017 (8)0.8402 (6)0.5645 (5)0.171 (4)
H18A0.15090.76440.58740.256*
H18B0.16830.88070.54440.256*
H18C0.05250.84310.51310.256*
C190.6100 (4)0.4504 (3)0.7475 (3)0.0512 (10)
C200.7394 (5)0.4277 (3)0.6918 (3)0.0661 (13)
C210.7527 (5)0.4808 (4)0.6025 (3)0.0784 (15)
H210.84050.46420.56780.094*
C220.6361 (5)0.5596 (4)0.5625 (3)0.0722 (13)
C230.5055 (5)0.5822 (3)0.6168 (3)0.0681 (13)
H230.42560.63360.59220.082*
C240.4960 (4)0.5285 (3)0.7059 (3)0.0606 (11)
H240.40830.54510.74070.073*
C250.5939 (4)0.3970 (3)0.8421 (3)0.0548 (11)
H250.50430.41070.87450.066*
C260.7832 (5)0.2151 (3)1.0193 (3)0.0576 (11)
C270.7429 (4)0.1648 (3)1.1153 (3)0.0531 (11)
C280.8251 (4)0.0584 (3)1.1485 (3)0.0595 (12)
H280.90040.01961.11070.071*
C290.7937 (5)0.0109 (4)1.2382 (3)0.0661 (13)
C300.6833 (5)0.0675 (4)1.2948 (3)0.0780 (14)
H300.66310.03451.35510.094*
C310.6028 (5)0.1733 (4)1.2619 (3)0.0724 (13)
H310.52840.21201.30040.087*
C320.6316 (5)0.2225 (3)1.1718 (3)0.0621 (12)
H320.57650.29381.14960.074*
C330.5259 (6)0.6822 (4)0.4238 (3)0.108 (2)
H33A0.54830.67730.35810.130*
H33B0.44710.65370.44660.130*
C340.4860 (7)0.7949 (5)0.4356 (4)0.134 (2)
H34A0.45980.80050.50030.201*
H34B0.40710.83730.40120.201*
H34C0.56390.82340.41340.201*
C350.8030 (8)0.6106 (5)0.4205 (4)0.124 (2)
H35A0.79980.67880.37780.149*
H35B0.87060.59810.46440.149*
C360.8349 (10)0.5222 (7)0.3741 (5)0.195 (4)
H36A0.85970.45430.41720.292*
H36B0.91310.52360.32770.292*
H36C0.75440.52690.34480.292*
H20.092 (5)0.249 (6)1.003 (5)0.234*
H50.584 (3)0.277 (6)0.988 (5)0.234*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0701 (8)0.0716 (8)0.1025 (10)0.0038 (6)0.0293 (7)0.0090 (7)
Cl20.0751 (9)0.0812 (9)0.1098 (10)0.0245 (7)0.0273 (7)0.0472 (7)
N10.051 (2)0.055 (2)0.061 (2)0.0210 (17)0.0106 (17)0.0139 (17)
N20.049 (2)0.052 (2)0.063 (2)0.0155 (17)0.0095 (18)0.0138 (17)
N30.092 (3)0.074 (3)0.128 (4)0.039 (3)0.058 (3)0.046 (3)
N40.055 (2)0.059 (2)0.058 (2)0.0243 (18)0.0094 (18)0.0131 (18)
N50.057 (2)0.063 (2)0.053 (2)0.0246 (19)0.0149 (18)0.0184 (18)
N60.098 (4)0.102 (3)0.066 (3)0.002 (3)0.006 (3)0.031 (2)
O10.0512 (18)0.083 (2)0.087 (2)0.0310 (17)0.0220 (16)0.0219 (17)
O20.0512 (18)0.0688 (19)0.083 (2)0.0303 (16)0.0139 (15)0.0136 (16)
O30.064 (2)0.097 (2)0.077 (2)0.0121 (18)0.0031 (17)0.024 (2)
O40.0496 (19)0.085 (2)0.076 (2)0.0279 (17)0.0101 (16)0.0232 (16)
C10.046 (2)0.051 (2)0.066 (3)0.019 (2)0.013 (2)0.010 (2)
C20.049 (3)0.060 (3)0.065 (3)0.020 (2)0.018 (2)0.009 (2)
C30.069 (3)0.060 (3)0.087 (3)0.037 (2)0.027 (3)0.026 (2)
C40.072 (3)0.055 (3)0.084 (3)0.025 (3)0.028 (3)0.021 (2)
C50.059 (3)0.070 (3)0.096 (4)0.029 (3)0.034 (3)0.027 (3)
C60.053 (3)0.067 (3)0.086 (3)0.028 (2)0.021 (2)0.016 (2)
C70.047 (3)0.055 (3)0.072 (3)0.024 (2)0.008 (2)0.008 (2)
C80.049 (3)0.054 (3)0.055 (3)0.016 (2)0.005 (2)0.002 (2)
C90.045 (2)0.054 (3)0.054 (3)0.014 (2)0.010 (2)0.002 (2)
C100.055 (3)0.054 (3)0.053 (2)0.020 (2)0.011 (2)0.003 (2)
C110.060 (3)0.050 (3)0.057 (3)0.009 (2)0.018 (2)0.008 (2)
C120.074 (3)0.053 (3)0.096 (4)0.022 (3)0.026 (3)0.012 (2)
C130.076 (4)0.075 (4)0.177 (6)0.042 (3)0.041 (4)0.041 (4)
C140.055 (3)0.067 (3)0.135 (4)0.028 (3)0.030 (3)0.034 (3)
C150.128 (5)0.089 (4)0.117 (5)0.042 (4)0.036 (4)0.014 (4)
C160.228 (8)0.231 (8)0.073 (4)0.150 (7)0.048 (5)0.019 (5)
C170.133 (6)0.091 (4)0.178 (7)0.076 (5)0.086 (5)0.072 (5)
C180.136 (7)0.190 (8)0.161 (7)0.075 (6)0.026 (6)0.079 (6)
C190.051 (3)0.045 (2)0.049 (2)0.011 (2)0.008 (2)0.0059 (19)
C200.058 (3)0.060 (3)0.060 (3)0.004 (2)0.003 (2)0.007 (2)
C210.066 (3)0.080 (3)0.057 (3)0.001 (3)0.010 (2)0.009 (3)
C220.084 (4)0.064 (3)0.054 (3)0.013 (3)0.007 (3)0.007 (2)
C230.067 (3)0.061 (3)0.058 (3)0.004 (2)0.015 (2)0.011 (2)
C240.055 (3)0.058 (3)0.058 (3)0.009 (2)0.007 (2)0.002 (2)
C250.054 (3)0.054 (2)0.054 (3)0.019 (2)0.008 (2)0.002 (2)
C260.051 (3)0.054 (3)0.067 (3)0.026 (2)0.014 (2)0.017 (2)
C270.047 (3)0.054 (3)0.060 (3)0.026 (2)0.015 (2)0.012 (2)
C280.044 (2)0.063 (3)0.067 (3)0.022 (2)0.012 (2)0.014 (2)
C290.050 (3)0.064 (3)0.076 (3)0.024 (2)0.022 (2)0.030 (3)
C300.074 (4)0.090 (4)0.070 (3)0.040 (3)0.018 (3)0.023 (3)
C310.072 (3)0.080 (3)0.060 (3)0.021 (3)0.004 (3)0.006 (3)
C320.061 (3)0.058 (3)0.066 (3)0.022 (2)0.019 (2)0.008 (2)
C330.149 (6)0.082 (4)0.069 (4)0.018 (4)0.005 (4)0.012 (3)
C340.179 (7)0.096 (5)0.110 (5)0.024 (5)0.008 (4)0.019 (4)
C350.191 (8)0.102 (5)0.078 (4)0.049 (5)0.032 (5)0.011 (4)
C360.303 (12)0.218 (9)0.105 (6)0.123 (9)0.037 (6)0.035 (6)
Geometric parameters (Å, º) top
Cl1—C111.732 (4)C15—H15A0.9700
Cl2—C291.736 (4)C15—H15B0.9700
N1—C71.285 (4)C16—H16A0.9600
N1—N21.392 (4)C16—H16B0.9600
N2—C81.347 (5)C16—H16C0.9600
N2—H20.90 (6)C17—C181.493 (9)
N3—C41.380 (5)C17—H17A0.9700
N3—C171.435 (6)C17—H17B0.9700
N3—C151.500 (6)C18—H18A0.9600
N4—C251.283 (4)C18—H18B0.9600
N4—N51.392 (4)C18—H18C0.9600
N5—C261.349 (5)C19—C241.389 (5)
N5—H50.90 (5)C19—C201.401 (5)
N6—C221.375 (5)C19—C251.438 (5)
N6—C331.462 (6)C20—C211.369 (5)
N6—C351.620 (7)C21—C221.399 (5)
O1—C21.360 (4)C21—H210.9300
O1—H10.8200C22—C231.401 (6)
O2—C81.222 (4)C23—C241.365 (5)
O3—C201.366 (4)C23—H230.9300
O3—H30.8200C24—H240.9300
O4—C261.232 (4)C25—H250.9300
C1—C61.379 (5)C26—C271.490 (5)
C1—C21.404 (5)C27—C321.382 (5)
C1—C71.435 (5)C27—C281.387 (5)
C2—C31.374 (5)C28—C291.380 (5)
C3—C41.393 (5)C28—H280.9300
C3—H3A0.9300C29—C301.371 (6)
C4—C51.395 (5)C30—C311.376 (6)
C5—C61.354 (5)C30—H300.9300
C5—H5A0.9300C31—C321.385 (5)
C6—H60.9300C31—H310.9300
C7—H70.9300C32—H320.9300
C8—C91.507 (5)C33—C341.418 (6)
C9—C141.372 (5)C33—H33A0.9700
C9—C101.377 (5)C33—H33B0.9700
C10—C111.377 (5)C34—H34A0.9600
C10—H100.9300C34—H34B0.9600
C11—C121.354 (5)C34—H34C0.9600
C12—C131.361 (6)C35—C361.372 (8)
C12—H120.9300C35—H35A0.9700
C13—C141.388 (5)C35—H35B0.9700
C13—H130.9300C36—H36A0.9600
C14—H140.9300C36—H36B0.9600
C15—C161.411 (7)C36—H36C0.9600
C7—N1—N2115.4 (3)C18—C17—H17B108.6
C8—N2—N1118.4 (3)H17A—C17—H17B107.6
C8—N2—H2128 (5)C17—C18—H18A109.5
N1—N2—H2114 (5)C17—C18—H18B109.5
C4—N3—C17122.1 (4)H18A—C18—H18B109.5
C4—N3—C15120.2 (4)C17—C18—H18C109.5
C17—N3—C15117.6 (4)H18A—C18—H18C109.5
C25—N4—N5116.2 (3)H18B—C18—H18C109.5
C26—N5—N4118.1 (3)C24—C19—C20115.9 (4)
C26—N5—H5123 (5)C24—C19—C25121.2 (4)
N4—N5—H5116 (5)C20—C19—C25122.9 (4)
C22—N6—C33123.0 (5)O3—C20—C21116.7 (4)
C22—N6—C35119.7 (4)O3—C20—C19121.5 (4)
C33—N6—C35117.2 (4)C21—C20—C19121.9 (4)
C2—O1—H1109.5C20—C21—C22121.0 (4)
C20—O3—H3109.5C20—C21—H21119.5
C6—C1—C2116.6 (3)C22—C21—H21119.5
C6—C1—C7121.5 (4)N6—C22—C21121.6 (5)
C2—C1—C7121.8 (3)N6—C22—C23120.5 (4)
O1—C2—C3117.3 (4)C21—C22—C23117.9 (4)
O1—C2—C1121.8 (3)C24—C23—C22119.7 (4)
C3—C2—C1120.9 (4)C24—C23—H23120.2
C2—C3—C4121.5 (4)C22—C23—H23120.2
C2—C3—H3A119.3C23—C24—C19123.6 (4)
C4—C3—H3A119.3C23—C24—H24118.2
N3—C4—C3120.7 (4)C19—C24—H24118.2
N3—C4—C5122.2 (4)N4—C25—C19121.0 (4)
C3—C4—C5117.1 (4)N4—C25—H25119.5
C6—C5—C4121.0 (4)C19—C25—H25119.5
C6—C5—H5A119.5O4—C26—N5123.6 (4)
C4—C5—H5A119.5O4—C26—C27122.1 (4)
C5—C6—C1122.8 (4)N5—C26—C27114.4 (4)
C5—C6—H6118.6C32—C27—C28120.2 (4)
C1—C6—H6118.6C32—C27—C26122.0 (4)
N1—C7—C1121.4 (4)C28—C27—C26117.8 (4)
N1—C7—H7119.3C29—C28—C27119.2 (4)
C1—C7—H7119.3C29—C28—H28120.4
O2—C8—N2123.8 (4)C27—C28—H28120.4
O2—C8—C9121.9 (4)C30—C29—C28121.0 (4)
N2—C8—C9114.3 (4)C30—C29—Cl2119.3 (4)
C14—C9—C10118.9 (4)C28—C29—Cl2119.7 (4)
C14—C9—C8123.4 (4)C29—C30—C31119.7 (4)
C10—C9—C8117.8 (4)C29—C30—H30120.2
C11—C10—C9119.8 (4)C31—C30—H30120.2
C11—C10—H10120.1C30—C31—C32120.5 (4)
C9—C10—H10120.1C30—C31—H31119.8
C12—C11—C10121.8 (4)C32—C31—H31119.8
C12—C11—Cl1117.7 (3)C27—C32—C31119.5 (4)
C10—C11—Cl1120.4 (4)C27—C32—H32120.3
C11—C12—C13118.3 (4)C31—C32—H32120.3
C11—C12—H12120.8C34—C33—N6111.9 (5)
C13—C12—H12120.8C34—C33—H33A109.2
C12—C13—C14121.3 (4)N6—C33—H33A109.2
C12—C13—H13119.4C34—C33—H33B109.2
C14—C13—H13119.4N6—C33—H33B109.2
C9—C14—C13119.8 (4)H33A—C33—H33B107.9
C9—C14—H14120.1C33—C34—H34A109.5
C13—C14—H14120.1C33—C34—H34B109.5
C16—C15—N3110.3 (6)H34A—C34—H34B109.5
C16—C15—H15A109.6C33—C34—H34C109.5
N3—C15—H15A109.6H34A—C34—H34C109.5
C16—C15—H15B109.6H34B—C34—H34C109.5
N3—C15—H15B109.6C36—C35—N6101.9 (6)
H15A—C15—H15B108.1C36—C35—H35A111.4
C15—C16—H16A109.5N6—C35—H35A111.4
C15—C16—H16B109.5C36—C35—H35B111.4
H16A—C16—H16B109.5N6—C35—H35B111.4
C15—C16—H16C109.5H35A—C35—H35B109.2
H16A—C16—H16C109.5C35—C36—H36A109.5
H16B—C16—H16C109.5C35—C36—H36B109.5
N3—C17—C18114.6 (6)H36A—C36—H36B109.5
N3—C17—H17A108.6C35—C36—H36C109.5
C18—C17—H17A108.6H36A—C36—H36C109.5
N3—C17—H17B108.6H36B—C36—H36C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.602 (4)146
O3—H3···N40.821.912.625 (4)145
N2—H2···O4i0.90 (6)2.22 (6)3.109 (4)168 (7)
N5—H5···O20.90 (5)2.00 (4)2.899 (4)176 (7)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20ClN3O2
Mr345.82
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.087 (4), 12.939 (5), 14.780 (5)
α, β, γ (°)78.408 (4), 80.726 (4), 70.632 (4)
V3)1773.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
11600, 7423, 2683
Rint0.057
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.193, 0.91
No. of reflections7423
No. of parameters445
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.602 (4)146
O3—H3···N40.821.912.625 (4)145
N2—H2···O4i0.90 (6)2.22 (6)3.109 (4)168 (7)
N5—H5···O20.90 (5)2.00 (4)2.899 (4)176 (7)
Symmetry code: (i) x1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBacchi, A., Carcelli, M., Pelizzi, G., Solinas, C. & Sorace, L. (2006). Inorg. Chim. Acta, 359, 2275–2280.  CrossRef CAS Google Scholar
First citationBessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201–208.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDinda, R., Sengupta, P., Ghosh, S., Mayer-Figge, H. & Sheldrick, W. S. (2002). J. Chem. Soc. Dalton Trans. pp. 4434–4439.  Web of Science CSD CrossRef Google Scholar
First citationPodyachev, S. N., Litvinov, I. A., Shagidullin, R. R., Buzykin, B. I., Bauer, I., Osyanina, D. V., Avvakumova, L. V., Sudakova, S. N., Habicher, W. D. & Konovalov, A. I. (2007). Spectrochim. Acta Part A, 66, 250–261.  CSD CrossRef CAS Google Scholar
First citationPouralimardan, O., Chamayou, A.-C., Janiak, C. & Hosseini-Monfared, H. (2007). Inorg. Chim. Acta, 360, 1599–1608.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-Y. (2010). Acta Cryst. E66, o2562.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds