organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-(4-meth­­oxy­phen­yl)-4H-chromen-4-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 5 January 2011; accepted 11 January 2011; online 22 January 2011)

In the title compound, C16H12O4, the benzene ring is twisted at an angle of 12.3 (1)° relative to the 4H-chromene skeleton, and an intramolecular O—H⋯O hydrogen bond occurs. The meth­oxy group is almost coplanar with the benzene ring [1.5 (1)°]. In the crystal, inversely oriented mol­ecules are arranged in double (A, A′) columns, along the b axis, and are linked by a network of inter­molecular O—H⋯O hydrogen bonds (between A and A′) and C—H⋯π contacts (within A or A′). The 4H-chromene cores are parallel within A or A′, but make a dihedral angle of 88.6 (1)° between A and A′.

Related literature

For general features of flavonols (derivatives of 3-hy­droxy-2-phenyl-4H-chromen-4-one), see: Demchenko (2009[Demchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV.]); Klymchenko et al. (2003[Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787-792.]); Sengupta & Kasha (1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]). For related structures, see: Etter et al. (1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]); Waller et al. (2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]); Wera et al. (2011[Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264-o265.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sobottka et al. (2000[Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205-210.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12O4

  • Mr = 268.26

  • Monoclinic, P 21 /c

  • a = 11.2400 (5) Å

  • b = 4.9860 (2) Å

  • c = 21.9907 (9) Å

  • β = 95.116 (4)°

  • V = 1227.51 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.87 mm−1

  • T = 295 K

  • 0.4 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.723, Tmax = 0.888

  • 7763 measured reflections

  • 2209 independent reflections

  • 1691 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.04

  • 2209 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O12 0.91 (3) 2.17 (3) 2.672 (2) 114 (2)
O11—H11⋯O12i 0.91 (3) 1.92 (3) 2.748 (2) 149 (2)
C20—H20BCg1ii 0.96 2.87 3.710 (2) 147
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquids arising from Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). Both ESIPT and the fluorescence of flavonols depend substantially on the structure of the compounds (the angle between 4H-chromene and benzene moieties (Klymchenko et al., 2003)) and the properties of the medium, which makes them convenient analytical probes in chemistry, biochemistry, biology and medicine (Demchenko, 2009). Here we present the crystal structure of a flavonol derivative – 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one – a potential fluorescence sensor.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4H-chromen-4-one moiety are similar to those in 2-phenyl-4H-chromen-4-one (flavone) (Waller et al., 2003) and 3-hydroxy-2-phenyl-4H-chromen-4-one (flavonol) (Etter et al., 1986). With respective average deviations from planarity of 0.0070 (2)° and 0.0055 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.3 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986), while 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one – 20.7 (1)° (Wera et al., 2011)). The methoxy group remains almost in the plane of the benzene ring: it is twisted relative to the benzene ring by an angle of only 1.5 (1)°.

In the crystal structure, the inversely oriented molecules are arranged in double (A,A') columns, along the b axis, and linked by a network of intermolecular O–H···O (Aakeröy et al., 1992) hydrogen bonds (between A and A') and C–H···π (Takahashi et al., 2001) contacts (within A or A') (Table 1, Figs. 2 and 3). The 4H-chromene cores are parallel within A or A', but lie at an angle of 88.6 (1)° between A and A'. The crystal lattice is stabilized by dispersive interactions between inversely oriented columns. The intramolecular O11–H11···O12 hydrogen bond (Table 1, Figs. 1–3) is believed to be involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).

Related literature top

For general features of flavonols (derivatives of 3-hydroxy-2-phenyl-4H-chromen-4-one), see: Demchenko (2009); Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003); Wera et al. (2011). For intermolecular interactions, see: Aakeröy et al. (1992); Takahashi et al. (2001). For the synthesis, see: Sobottka et al. (2000).

Experimental top

The title compound was synthesized as a result of the oxidative heterocyclization of 1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one, synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-methoxybenzaldehyde in ethanol/50% aqueous NaOH (1/1 v/v), in alkaline ethanol/H2O2 (Sobottka et al., 2000). The filtered product was purified chromatographically (Silica Gel, chloroform/ethanol, 20/1 v/v) and colorless crystals suitable for X-ray investigations were grown from chloroform (m.p. = 510 – 511 K).

Refinement top

H atoms of C–H bonds were positioned geometrically, with C–H = 0.93Å and 0.96Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C) where x = 1.2 for the aromatic H and 1.5 for methyl H atoms. H atoms involved in O–H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H···O hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The O–H···O hydrogen bonds are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) x, y – 1, z.]
[Figure 3] Fig. 3. Columns in the crystal structure, viewed along the b axis. The O–H···O interactions are represented by dashed lines, the C–H···π contacts by dotted lines. H atoms not involved in interactions have been omitted. A and A' indicate the double columns.
3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one top
Crystal data top
C16H12O4F(000) = 560
Mr = 268.26Dx = 1.452 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 2209 reflections
a = 11.2400 (5) Åθ = 4.0–68.3°
b = 4.9860 (2) ŵ = 0.87 mm1
c = 21.9907 (9) ÅT = 295 K
β = 95.116 (4)°Needle, colorless
V = 1227.51 (9) Å30.4 × 0.05 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2209 independent reflections
Radiation source: Ultra (Cu) X-ray Source'1691 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4002 pixels mm-1θmax = 68.3°, θmin = 4.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 55
Tmin = 0.723, Tmax = 0.888l = 2526
7763 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2165P]
where P = (Fo2 + 2Fc2)/3
2209 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H12O4V = 1227.51 (9) Å3
Mr = 268.26Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2400 (5) ŵ = 0.87 mm1
b = 4.9860 (2) ÅT = 295 K
c = 21.9907 (9) Å0.4 × 0.05 × 0.05 mm
β = 95.116 (4)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2209 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1691 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.888Rint = 0.031
7763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.14 e Å3
2209 reflectionsΔρmin = 0.19 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31792 (10)0.8649 (2)0.40435 (5)0.0418 (3)
C20.22283 (14)0.6906 (3)0.40261 (7)0.0360 (4)
C30.14034 (15)0.6880 (3)0.35333 (7)0.0382 (4)
C40.15007 (15)0.8610 (3)0.30130 (7)0.0387 (4)
C50.27235 (18)1.2220 (4)0.25831 (8)0.0481 (5)
H50.21931.23020.22340.058*
C60.37020 (19)1.3850 (4)0.26374 (9)0.0526 (5)
H60.38331.50460.23260.063*
C70.45087 (18)1.3732 (4)0.31592 (9)0.0510 (5)
H70.51761.48430.31910.061*
C80.43220 (16)1.1982 (4)0.36261 (8)0.0459 (4)
H80.48571.19000.39730.055*
C90.25145 (15)1.0416 (3)0.30532 (7)0.0385 (4)
C100.33197 (15)1.0345 (3)0.35681 (7)0.0391 (4)
O110.04691 (11)0.5154 (3)0.35012 (5)0.0495 (3)
H110.012 (2)0.521 (5)0.3111 (11)0.074*
O120.07565 (12)0.8432 (3)0.25643 (5)0.0523 (4)
C130.22946 (15)0.5200 (3)0.45717 (7)0.0366 (4)
C140.33350 (16)0.5131 (4)0.49652 (8)0.0458 (4)
H140.39730.62310.48880.055*
C150.34395 (16)0.3468 (4)0.54671 (8)0.0485 (5)
H150.41510.34260.57180.058*
C160.24935 (16)0.1858 (4)0.56016 (7)0.0411 (4)
C170.14504 (16)0.1926 (4)0.52235 (8)0.0494 (5)
H170.08060.08670.53110.059*
C180.13582 (16)0.3565 (4)0.47141 (8)0.0479 (5)
H180.06510.35730.44600.057*
O190.26808 (12)0.0309 (3)0.61117 (5)0.0532 (4)
C200.17391 (19)0.1423 (4)0.62537 (9)0.0568 (5)
H20A0.19900.24480.66120.085*
H20B0.15410.26160.59170.085*
H20C0.10510.03740.63280.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0424 (6)0.0461 (7)0.0357 (6)0.0079 (5)0.0038 (5)0.0054 (5)
C20.0354 (8)0.0395 (9)0.0327 (8)0.0025 (7)0.0005 (6)0.0004 (7)
C30.0389 (9)0.0418 (9)0.0333 (8)0.0001 (7)0.0004 (7)0.0013 (7)
C40.0432 (9)0.0391 (9)0.0332 (8)0.0070 (7)0.0005 (7)0.0010 (7)
C50.0617 (12)0.0450 (10)0.0375 (9)0.0048 (9)0.0042 (8)0.0035 (7)
C60.0662 (12)0.0469 (11)0.0465 (10)0.0011 (9)0.0142 (9)0.0090 (8)
C70.0536 (11)0.0467 (10)0.0542 (11)0.0053 (9)0.0139 (9)0.0017 (8)
C80.0460 (10)0.0448 (10)0.0467 (10)0.0030 (8)0.0037 (8)0.0009 (8)
C90.0449 (9)0.0361 (9)0.0347 (8)0.0063 (7)0.0046 (7)0.0004 (7)
C100.0456 (9)0.0370 (9)0.0352 (8)0.0015 (7)0.0059 (7)0.0020 (7)
O110.0479 (7)0.0638 (8)0.0342 (6)0.0158 (6)0.0108 (5)0.0056 (6)
O120.0593 (8)0.0566 (8)0.0376 (7)0.0003 (6)0.0140 (6)0.0054 (6)
C130.0378 (8)0.0407 (9)0.0307 (8)0.0016 (7)0.0001 (6)0.0009 (7)
C140.0400 (9)0.0572 (11)0.0391 (9)0.0129 (8)0.0032 (7)0.0069 (8)
C150.0401 (9)0.0629 (12)0.0401 (9)0.0094 (9)0.0101 (7)0.0102 (8)
C160.0475 (10)0.0455 (9)0.0296 (8)0.0040 (8)0.0013 (7)0.0019 (7)
C170.0444 (10)0.0587 (11)0.0438 (10)0.0160 (9)0.0037 (8)0.0076 (8)
C180.0387 (9)0.0626 (12)0.0401 (9)0.0094 (9)0.0093 (7)0.0091 (8)
O190.0547 (8)0.0630 (8)0.0397 (7)0.0141 (6)0.0076 (6)0.0156 (6)
C200.0661 (13)0.0593 (12)0.0447 (10)0.0167 (10)0.0025 (9)0.0116 (9)
Geometric parameters (Å, º) top
O1—C101.3645 (19)C9—C101.386 (2)
O1—C21.3755 (19)O11—H110.91 (3)
C2—C31.362 (2)C13—C181.389 (2)
C2—C131.467 (2)C13—C141.392 (2)
C3—O111.355 (2)C14—C151.377 (2)
C3—C41.445 (2)C14—H140.9300
C4—O121.238 (2)C15—C161.385 (2)
C4—C91.449 (2)C15—H150.9300
C5—C61.364 (3)C16—O191.363 (2)
C5—C91.406 (2)C16—C171.376 (2)
C5—H50.9300C17—C181.383 (2)
C6—C71.399 (3)C17—H170.9300
C6—H60.9300C18—H180.9300
C7—C81.378 (3)O19—C201.422 (2)
C7—H70.9300C20—H20A0.9600
C8—C101.388 (2)C20—H20B0.9600
C8—H80.9300C20—H20C0.9600
C10—O1—C2120.85 (13)C9—C10—C8121.70 (16)
C3—C2—O1120.02 (14)C3—O11—H11107.3 (15)
C3—C2—C13128.80 (15)C18—C13—C14117.19 (15)
O1—C2—C13111.15 (13)C18—C13—C2122.71 (14)
O11—C3—C2121.13 (15)C14—C13—C2120.09 (15)
O11—C3—C4116.80 (14)C15—C14—C13121.33 (16)
C2—C3—C4122.03 (15)C15—C14—H14119.3
O12—C4—C3119.67 (16)C13—C14—H14119.3
O12—C4—C9124.37 (15)C14—C15—C16120.53 (16)
C3—C4—C9115.93 (14)C14—C15—H15119.7
C6—C5—C9120.20 (17)C16—C15—H15119.7
C6—C5—H5119.9O19—C16—C17124.91 (16)
C9—C5—H5119.9O19—C16—C15116.04 (15)
C5—C6—C7120.35 (17)C17—C16—C15119.04 (16)
C5—C6—H6119.8C16—C17—C18120.16 (17)
C7—C6—H6119.8C16—C17—H17119.9
C8—C7—C6120.48 (18)C18—C17—H17119.9
C8—C7—H7119.8C17—C18—C13121.73 (16)
C6—C7—H7119.8C17—C18—H18119.1
C7—C8—C10118.72 (18)C13—C18—H18119.1
C7—C8—H8120.6C16—O19—C20117.48 (14)
C10—C8—H8120.6O19—C20—H20A109.5
C10—C9—C5118.54 (16)O19—C20—H20B109.5
C10—C9—C4119.12 (15)H20A—C20—H20B109.5
C5—C9—C4122.33 (16)O19—C20—H20C109.5
O1—C10—C9122.03 (15)H20A—C20—H20C109.5
O1—C10—C8116.27 (15)H20B—C20—H20C109.5
C10—O1—C2—C30.8 (2)C4—C9—C10—O10.9 (2)
C10—O1—C2—C13177.25 (14)C5—C9—C10—C80.6 (3)
O1—C2—C3—O11178.96 (15)C4—C9—C10—C8178.47 (16)
C13—C2—C3—O111.3 (3)C7—C8—C10—O1179.94 (15)
O1—C2—C3—C41.2 (2)C7—C8—C10—C90.5 (3)
C13—C2—C3—C4176.51 (16)C3—C2—C13—C1812.4 (3)
O11—C3—C4—O121.0 (2)O1—C2—C13—C18169.72 (15)
C2—C3—C4—O12176.88 (16)C3—C2—C13—C14166.24 (18)
O11—C3—C4—C9179.22 (14)O1—C2—C13—C1411.6 (2)
C2—C3—C4—C91.4 (2)C18—C13—C14—C151.4 (3)
C9—C5—C6—C70.3 (3)C2—C13—C14—C15177.35 (17)
C5—C6—C7—C80.4 (3)C13—C14—C15—C161.6 (3)
C6—C7—C8—C100.0 (3)C14—C15—C16—O19179.23 (17)
C6—C5—C9—C100.1 (3)C14—C15—C16—C170.6 (3)
C6—C5—C9—C4178.88 (16)O19—C16—C17—C18179.65 (17)
O12—C4—C9—C10176.95 (16)C15—C16—C17—C180.6 (3)
C3—C4—C9—C101.2 (2)C16—C17—C18—C130.7 (3)
O12—C4—C9—C52.0 (3)C14—C13—C18—C170.2 (3)
C3—C4—C9—C5179.82 (16)C2—C13—C18—C17178.47 (17)
C2—O1—C10—C90.7 (2)C17—C16—O19—C201.9 (3)
C2—O1—C10—C8178.72 (14)C15—C16—O19—C20178.31 (16)
C5—C9—C10—O1179.96 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O11—H11···O120.91 (3)2.17 (3)2.672 (2)114 (2)
O11—H11···O12i0.91 (3)1.92 (3)2.748 (2)149 (2)
C20—H20B···Cg1ii0.962.873.710 (2)147
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H12O4
Mr268.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.2400 (5), 4.9860 (2), 21.9907 (9)
β (°) 95.116 (4)
V3)1227.51 (9)
Z4
Radiation typeCu Kα
µ (mm1)0.87
Crystal size (mm)0.4 × 0.05 × 0.05
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.723, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
7763, 2209, 1691
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.04
No. of reflections2209
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O11—H11···O120.91 (3)2.17 (3)2.672 (2)114 (2)
O11—H11···O12i0.91 (3)1.92 (3)2.748 (2)149 (2)
C20—H20B···Cg1ii0.962.873.710 (2)147
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–11).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationDemchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV.  Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792.  CrossRef Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205–210.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds