organic compounds
3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bInstitute of Chemistry, V.N. Karazin National University, Svobody 4, 61077 Kharkiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl
In the title compound, C16H12O4, the benzene ring is twisted at an angle of 12.3 (1)° relative to the 4H-chromene skeleton, and an intramolecular O—H⋯O hydrogen bond occurs. The methoxy group is almost coplanar with the benzene ring [1.5 (1)°]. In the crystal, inversely oriented molecules are arranged in double (A, A′) columns, along the b axis, and are linked by a network of intermolecular O—H⋯O hydrogen bonds (between A and A′) and C—H⋯π contacts (within A or A′). The 4H-chromene cores are parallel within A or A′, but make a dihedral angle of 88.6 (1)° between A and A′.
Related literature
For general features of flavonols (derivatives of 3-hydroxy-2-phenyl-4H-chromen-4-one), see: Demchenko (2009); Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003); Wera et al. (2011). For intermolecular interactions, see: Aakeröy et al. (1992); Takahashi et al. (2001). For the synthesis, see: Sobottka et al. (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681100167X/om2398sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681100167X/om2398Isup2.hkl
The title compound was synthesized as a result of the oxidative heterocyclization of 1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one, synthesized first by the condensation of 1-(2-hydroxyphenyl)ethanone with 4-methoxybenzaldehyde in ethanol/50% aqueous NaOH (1/1 v/v), in alkaline ethanol/H2O2 (Sobottka et al., 2000). The filtered product was purified chromatographically (Silica Gel, chloroform/ethanol, 20/1 v/v) and colorless crystals suitable for X-ray investigations were grown from chloroform (m.p. = 510 – 511 K).
H atoms of C–H bonds were positioned geometrically, with C–H = 0.93Å and 0.96Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C) where x = 1.2 for the aromatic H and 1.5 for methyl H atoms. H atoms involved in O–H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C16H12O4 | F(000) = 560 |
Mr = 268.26 | Dx = 1.452 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ybc | Cell parameters from 2209 reflections |
a = 11.2400 (5) Å | θ = 4.0–68.3° |
b = 4.9860 (2) Å | µ = 0.87 mm−1 |
c = 21.9907 (9) Å | T = 295 K |
β = 95.116 (4)° | Needle, colorless |
V = 1227.51 (9) Å3 | 0.4 × 0.05 × 0.05 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2209 independent reflections |
Radiation source: Ultra (Cu) X-ray Source' | 1691 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 68.3°, θmin = 4.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −5→5 |
Tmin = 0.723, Tmax = 0.888 | l = −25→26 |
7763 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.056P)2 + 0.2165P] where P = (Fo2 + 2Fc2)/3 |
2209 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C16H12O4 | V = 1227.51 (9) Å3 |
Mr = 268.26 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 11.2400 (5) Å | µ = 0.87 mm−1 |
b = 4.9860 (2) Å | T = 295 K |
c = 21.9907 (9) Å | 0.4 × 0.05 × 0.05 mm |
β = 95.116 (4)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2209 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 1691 reflections with I > 2σ(I) |
Tmin = 0.723, Tmax = 0.888 | Rint = 0.031 |
7763 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.14 e Å−3 |
2209 reflections | Δρmin = −0.19 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.31792 (10) | 0.8649 (2) | 0.40435 (5) | 0.0418 (3) | |
C2 | 0.22283 (14) | 0.6906 (3) | 0.40261 (7) | 0.0360 (4) | |
C3 | 0.14034 (15) | 0.6880 (3) | 0.35333 (7) | 0.0382 (4) | |
C4 | 0.15007 (15) | 0.8610 (3) | 0.30130 (7) | 0.0387 (4) | |
C5 | 0.27235 (18) | 1.2220 (4) | 0.25831 (8) | 0.0481 (5) | |
H5 | 0.2193 | 1.2302 | 0.2234 | 0.058* | |
C6 | 0.37020 (19) | 1.3850 (4) | 0.26374 (9) | 0.0526 (5) | |
H6 | 0.3833 | 1.5046 | 0.2326 | 0.063* | |
C7 | 0.45087 (18) | 1.3732 (4) | 0.31592 (9) | 0.0510 (5) | |
H7 | 0.5176 | 1.4843 | 0.3191 | 0.061* | |
C8 | 0.43220 (16) | 1.1982 (4) | 0.36261 (8) | 0.0459 (4) | |
H8 | 0.4857 | 1.1900 | 0.3973 | 0.055* | |
C9 | 0.25145 (15) | 1.0416 (3) | 0.30532 (7) | 0.0385 (4) | |
C10 | 0.33197 (15) | 1.0345 (3) | 0.35681 (7) | 0.0391 (4) | |
O11 | 0.04691 (11) | 0.5154 (3) | 0.35012 (5) | 0.0495 (3) | |
H11 | 0.012 (2) | 0.521 (5) | 0.3111 (11) | 0.074* | |
O12 | 0.07565 (12) | 0.8432 (3) | 0.25643 (5) | 0.0523 (4) | |
C13 | 0.22946 (15) | 0.5200 (3) | 0.45717 (7) | 0.0366 (4) | |
C14 | 0.33350 (16) | 0.5131 (4) | 0.49652 (8) | 0.0458 (4) | |
H14 | 0.3973 | 0.6231 | 0.4888 | 0.055* | |
C15 | 0.34395 (16) | 0.3468 (4) | 0.54671 (8) | 0.0485 (5) | |
H15 | 0.4151 | 0.3426 | 0.5718 | 0.058* | |
C16 | 0.24935 (16) | 0.1858 (4) | 0.56016 (7) | 0.0411 (4) | |
C17 | 0.14504 (16) | 0.1926 (4) | 0.52235 (8) | 0.0494 (5) | |
H17 | 0.0806 | 0.0867 | 0.5311 | 0.059* | |
C18 | 0.13582 (16) | 0.3565 (4) | 0.47141 (8) | 0.0479 (5) | |
H18 | 0.0651 | 0.3573 | 0.4460 | 0.057* | |
O19 | 0.26808 (12) | 0.0309 (3) | 0.61117 (5) | 0.0532 (4) | |
C20 | 0.17391 (19) | −0.1423 (4) | 0.62537 (9) | 0.0568 (5) | |
H20A | 0.1990 | −0.2448 | 0.6612 | 0.085* | |
H20B | 0.1541 | −0.2616 | 0.5917 | 0.085* | |
H20C | 0.1051 | −0.0374 | 0.6328 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0424 (6) | 0.0461 (7) | 0.0357 (6) | −0.0079 (5) | −0.0038 (5) | 0.0054 (5) |
C2 | 0.0354 (8) | 0.0395 (9) | 0.0327 (8) | −0.0025 (7) | 0.0005 (6) | −0.0004 (7) |
C3 | 0.0389 (9) | 0.0418 (9) | 0.0333 (8) | −0.0001 (7) | −0.0004 (7) | −0.0013 (7) |
C4 | 0.0432 (9) | 0.0391 (9) | 0.0332 (8) | 0.0070 (7) | −0.0005 (7) | −0.0010 (7) |
C5 | 0.0617 (12) | 0.0450 (10) | 0.0375 (9) | 0.0048 (9) | 0.0042 (8) | 0.0035 (7) |
C6 | 0.0662 (12) | 0.0469 (11) | 0.0465 (10) | 0.0011 (9) | 0.0142 (9) | 0.0090 (8) |
C7 | 0.0536 (11) | 0.0467 (10) | 0.0542 (11) | −0.0053 (9) | 0.0139 (9) | 0.0017 (8) |
C8 | 0.0460 (10) | 0.0448 (10) | 0.0467 (10) | −0.0030 (8) | 0.0037 (8) | 0.0009 (8) |
C9 | 0.0449 (9) | 0.0361 (9) | 0.0347 (8) | 0.0063 (7) | 0.0046 (7) | −0.0004 (7) |
C10 | 0.0456 (9) | 0.0370 (9) | 0.0352 (8) | 0.0015 (7) | 0.0059 (7) | 0.0020 (7) |
O11 | 0.0479 (7) | 0.0638 (8) | 0.0342 (6) | −0.0158 (6) | −0.0108 (5) | 0.0056 (6) |
O12 | 0.0593 (8) | 0.0566 (8) | 0.0376 (7) | 0.0003 (6) | −0.0140 (6) | 0.0054 (6) |
C13 | 0.0378 (8) | 0.0407 (9) | 0.0307 (8) | −0.0016 (7) | 0.0001 (6) | −0.0009 (7) |
C14 | 0.0400 (9) | 0.0572 (11) | 0.0391 (9) | −0.0129 (8) | −0.0032 (7) | 0.0069 (8) |
C15 | 0.0401 (9) | 0.0629 (12) | 0.0401 (9) | −0.0094 (9) | −0.0101 (7) | 0.0102 (8) |
C16 | 0.0475 (10) | 0.0455 (9) | 0.0296 (8) | −0.0040 (8) | −0.0013 (7) | 0.0019 (7) |
C17 | 0.0444 (10) | 0.0587 (11) | 0.0438 (10) | −0.0160 (9) | −0.0037 (8) | 0.0076 (8) |
C18 | 0.0387 (9) | 0.0626 (12) | 0.0401 (9) | −0.0094 (9) | −0.0093 (7) | 0.0091 (8) |
O19 | 0.0547 (8) | 0.0630 (8) | 0.0397 (7) | −0.0141 (6) | −0.0076 (6) | 0.0156 (6) |
C20 | 0.0661 (13) | 0.0593 (12) | 0.0447 (10) | −0.0167 (10) | 0.0025 (9) | 0.0116 (9) |
O1—C10 | 1.3645 (19) | C9—C10 | 1.386 (2) |
O1—C2 | 1.3755 (19) | O11—H11 | 0.91 (3) |
C2—C3 | 1.362 (2) | C13—C18 | 1.389 (2) |
C2—C13 | 1.467 (2) | C13—C14 | 1.392 (2) |
C3—O11 | 1.355 (2) | C14—C15 | 1.377 (2) |
C3—C4 | 1.445 (2) | C14—H14 | 0.9300 |
C4—O12 | 1.238 (2) | C15—C16 | 1.385 (2) |
C4—C9 | 1.449 (2) | C15—H15 | 0.9300 |
C5—C6 | 1.364 (3) | C16—O19 | 1.363 (2) |
C5—C9 | 1.406 (2) | C16—C17 | 1.376 (2) |
C5—H5 | 0.9300 | C17—C18 | 1.383 (2) |
C6—C7 | 1.399 (3) | C17—H17 | 0.9300 |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
C7—C8 | 1.378 (3) | O19—C20 | 1.422 (2) |
C7—H7 | 0.9300 | C20—H20A | 0.9600 |
C8—C10 | 1.388 (2) | C20—H20B | 0.9600 |
C8—H8 | 0.9300 | C20—H20C | 0.9600 |
C10—O1—C2 | 120.85 (13) | C9—C10—C8 | 121.70 (16) |
C3—C2—O1 | 120.02 (14) | C3—O11—H11 | 107.3 (15) |
C3—C2—C13 | 128.80 (15) | C18—C13—C14 | 117.19 (15) |
O1—C2—C13 | 111.15 (13) | C18—C13—C2 | 122.71 (14) |
O11—C3—C2 | 121.13 (15) | C14—C13—C2 | 120.09 (15) |
O11—C3—C4 | 116.80 (14) | C15—C14—C13 | 121.33 (16) |
C2—C3—C4 | 122.03 (15) | C15—C14—H14 | 119.3 |
O12—C4—C3 | 119.67 (16) | C13—C14—H14 | 119.3 |
O12—C4—C9 | 124.37 (15) | C14—C15—C16 | 120.53 (16) |
C3—C4—C9 | 115.93 (14) | C14—C15—H15 | 119.7 |
C6—C5—C9 | 120.20 (17) | C16—C15—H15 | 119.7 |
C6—C5—H5 | 119.9 | O19—C16—C17 | 124.91 (16) |
C9—C5—H5 | 119.9 | O19—C16—C15 | 116.04 (15) |
C5—C6—C7 | 120.35 (17) | C17—C16—C15 | 119.04 (16) |
C5—C6—H6 | 119.8 | C16—C17—C18 | 120.16 (17) |
C7—C6—H6 | 119.8 | C16—C17—H17 | 119.9 |
C8—C7—C6 | 120.48 (18) | C18—C17—H17 | 119.9 |
C8—C7—H7 | 119.8 | C17—C18—C13 | 121.73 (16) |
C6—C7—H7 | 119.8 | C17—C18—H18 | 119.1 |
C7—C8—C10 | 118.72 (18) | C13—C18—H18 | 119.1 |
C7—C8—H8 | 120.6 | C16—O19—C20 | 117.48 (14) |
C10—C8—H8 | 120.6 | O19—C20—H20A | 109.5 |
C10—C9—C5 | 118.54 (16) | O19—C20—H20B | 109.5 |
C10—C9—C4 | 119.12 (15) | H20A—C20—H20B | 109.5 |
C5—C9—C4 | 122.33 (16) | O19—C20—H20C | 109.5 |
O1—C10—C9 | 122.03 (15) | H20A—C20—H20C | 109.5 |
O1—C10—C8 | 116.27 (15) | H20B—C20—H20C | 109.5 |
C10—O1—C2—C3 | −0.8 (2) | C4—C9—C10—O1 | −0.9 (2) |
C10—O1—C2—C13 | 177.25 (14) | C5—C9—C10—C8 | −0.6 (3) |
O1—C2—C3—O11 | 178.96 (15) | C4—C9—C10—C8 | 178.47 (16) |
C13—C2—C3—O11 | 1.3 (3) | C7—C8—C10—O1 | 179.94 (15) |
O1—C2—C3—C4 | 1.2 (2) | C7—C8—C10—C9 | 0.5 (3) |
C13—C2—C3—C4 | −176.51 (16) | C3—C2—C13—C18 | −12.4 (3) |
O11—C3—C4—O12 | −1.0 (2) | O1—C2—C13—C18 | 169.72 (15) |
C2—C3—C4—O12 | 176.88 (16) | C3—C2—C13—C14 | 166.24 (18) |
O11—C3—C4—C9 | −179.22 (14) | O1—C2—C13—C14 | −11.6 (2) |
C2—C3—C4—C9 | −1.4 (2) | C18—C13—C14—C15 | 1.4 (3) |
C9—C5—C6—C7 | 0.3 (3) | C2—C13—C14—C15 | −177.35 (17) |
C5—C6—C7—C8 | −0.4 (3) | C13—C14—C15—C16 | −1.6 (3) |
C6—C7—C8—C10 | 0.0 (3) | C14—C15—C16—O19 | −179.23 (17) |
C6—C5—C9—C10 | 0.1 (3) | C14—C15—C16—C17 | 0.6 (3) |
C6—C5—C9—C4 | −178.88 (16) | O19—C16—C17—C18 | −179.65 (17) |
O12—C4—C9—C10 | −176.95 (16) | C15—C16—C17—C18 | 0.6 (3) |
C3—C4—C9—C10 | 1.2 (2) | C16—C17—C18—C13 | −0.7 (3) |
O12—C4—C9—C5 | 2.0 (3) | C14—C13—C18—C17 | −0.2 (3) |
C3—C4—C9—C5 | −179.82 (16) | C2—C13—C18—C17 | 178.47 (17) |
C2—O1—C10—C9 | 0.7 (2) | C17—C16—O19—C20 | 1.9 (3) |
C2—O1—C10—C8 | −178.72 (14) | C15—C16—O19—C20 | −178.31 (16) |
C5—C9—C10—O1 | −179.96 (15) |
Cg1 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O12 | 0.91 (3) | 2.17 (3) | 2.672 (2) | 114 (2) |
O11—H11···O12i | 0.91 (3) | 1.92 (3) | 2.748 (2) | 149 (2) |
C20—H20B···Cg1ii | 0.96 | 2.87 | 3.710 (2) | 147 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C16H12O4 |
Mr | 268.26 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.2400 (5), 4.9860 (2), 21.9907 (9) |
β (°) | 95.116 (4) |
V (Å3) | 1227.51 (9) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.4 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.723, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7763, 2209, 1691 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.112, 1.04 |
No. of reflections | 2209 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.19 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O12 | 0.91 (3) | 2.17 (3) | 2.672 (2) | 114 (2) |
O11—H11···O12i | 0.91 (3) | 1.92 (3) | 2.748 (2) | 149 (2) |
C20—H20B···Cg1ii | 0.96 | 2.87 | 3.710 (2) | 147 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, y−1, z. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS/8220–4–0087–11).
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Demchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV. Google Scholar
Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792. CrossRef Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205–210. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wera, M., Pivovarenko, V. G. & Błażejowski, J. (2011). Acta Cryst. E67, o264–o265. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
3-Hydroxy-2-phenyl-4H-chromen-4-one (flavonol) and its derivatives exhibit dual fluorescence in liquids arising from Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). Both ESIPT and the fluorescence of flavonols depend substantially on the structure of the compounds (the angle between 4H-chromene and benzene moieties (Klymchenko et al., 2003)) and the properties of the medium, which makes them convenient analytical probes in chemistry, biochemistry, biology and medicine (Demchenko, 2009). Here we present the crystal structure of a flavonol derivative – 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one – a potential fluorescence sensor.
In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4H-chromen-4-one moiety are similar to those in 2-phenyl-4H-chromen-4-one (flavone) (Waller et al., 2003) and 3-hydroxy-2-phenyl-4H-chromen-4-one (flavonol) (Etter et al., 1986). With respective average deviations from planarity of 0.0070 (2)° and 0.0055 (2)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 12.3 (1)° (in the case of flavonol this angle is equal to 5.5 (1)° (Etter et al., 1986), while 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one – 20.7 (1)° (Wera et al., 2011)). The methoxy group remains almost in the plane of the benzene ring: it is twisted relative to the benzene ring by an angle of only 1.5 (1)°.
In the crystal structure, the inversely oriented molecules are arranged in double (A,A') columns, along the b axis, and linked by a network of intermolecular O–H···O (Aakeröy et al., 1992) hydrogen bonds (between A and A') and C–H···π (Takahashi et al., 2001) contacts (within A or A') (Table 1, Figs. 2 and 3). The 4H-chromene cores are parallel within A or A', but lie at an angle of 88.6 (1)° between A and A'. The crystal lattice is stabilized by dispersive interactions between inversely oriented columns. The intramolecular O11–H11···O12 hydrogen bond (Table 1, Figs. 1–3) is believed to be involved in the ESIPT phenomenon, characteristic of flavonols (Sengupta & Kasha, 1979).