metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-thio­cyanato-κ2N:S;κ2S:N-bis­­({2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}(thio­cyanato-κN)cadmium)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 14 January 2011; accepted 18 January 2011; online 22 January 2011)

In the title complex, [Cd2(NCS)4(C13H19N3O)2], the two CdII ions are bridged by a pair of thio­cyanate N:S-bridging ligands around an inversion center. One terminal thio­cyanate N atom and one N,N′,N′′-tridentate Schiff base ligand complete a distorted CdN5S octa­hedral geometry about each CdII atom. In the crystal, the Schiff base aromatic rings of adjacent mol­ecules are arranged above each other into infinite chains along the a axis with alternate centroid–centroid separations of 3.5299 (13) and 3.7857 (13) Å.

Related literature

For the structure of the Cu(II) complex with the same Schiff base and thio­cyanate, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m58.]). For the structures of similar cadmium complexes, see: Banerjee et al. (2005[Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]); You et al. (2006[You, Z.-L., Jiao, Q.-Z., Niu, S.-Y. & Chi, J.-Y. (2006). Z. Anorg. Allg. Chem. 632, 2486-2490.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(NCS)4(C13H19N3O)2]

  • Mr = 923.74

  • Monoclinic, P 21 /c

  • a = 7.2934 (2) Å

  • b = 26.4035 (5) Å

  • c = 10.0111 (3) Å

  • β = 107.853 (3)°

  • V = 1835.02 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 100 K

  • 0.38 × 0.23 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.907

  • 15344 measured reflections

  • 4008 independent reflections

  • 3638 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.047

  • S = 1.10

  • 4008 reflections

  • 218 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is a mixed-ligand cadmium(II) complex with thiocyanate and the Schiff base 2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine. Unlike the mononuclear square-pyramidal structure of the analogous copper(II) complex (Suleiman Gwaram et al., 2011), the present structure represents a dinuclear metal complex with a distorted octahedral geometry around the cadmium atoms. Each two CdII centers are linked by a pair of thiocyanate N:S bridges around an inversion center to form an eight-membered Cd2(µ2-NCS)2 ring. The resulting ring has a chair conformation, the displacement of Cd1 out of the (NCS)2 plane being 0.635 (2) Å. Within this double bridged dimer, the Cd···Cd distance [5.9380 (3) Å] is similar to those observed in the related complexes (Banerjee et al., 2005; You et al., 2006). The distorted octahedral geometry about the metal cadmium is completed by one terminal thiocyanate N atom and one N,N',N"-tridentate Schiff base ligand. In the crystal, the molecules are connected into infinite chains along the a axis via π-π interactions formed by the Schiff base aromatic ring and its symmetry related counterparts at (-x + 1, -y, -z and –x + 2, -y, -z) with centroid separations of 3.5299 (13) Å and 3.7857 (13) Å respectively.

Related literature top

For the structure of the Cu(II) complex with the same Schiff base and thiocyanate, see: Suleiman Gwaram et al. (2011). For the structures of similar cadmium complexes, see: Banerjee et al. (2005); You et al. (2006).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of cadmium(II) acetate dihydrate (0.44 g, 1.65 mmol) and sodium thiocyanate (0.268 g, 3.30 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a week.

Refinement top

Hydrogen atoms were placed at calculated positions (C—H 0.95–0.99 Å) and were treated as riding on their parent atoms, with Uiso(H) set to 1.2–1.5 times Ueq(C). Additional rigid-bond type restraints (DELU in SHELXL97) were placed on the displacement parameters of S1 and C15; S2 and C14.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms have been omitted for clarity. The unlabelled atoms are generated by the symmetry operation (–x + 2, –y, –z + 1).
Di-µ-thiocyanato-κ2N:S;κ2S:N- bis({2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}(thiocyanato-κN)cadmium) top
Crystal data top
[Cd2(NCS)4(C13H19N3O)2]F(000) = 928
Mr = 923.74Dx = 1.672 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7745 reflections
a = 7.2934 (2) Åθ = 2.3–30.5°
b = 26.4035 (5) ŵ = 1.43 mm1
c = 10.0111 (3) ÅT = 100 K
β = 107.853 (3)°Plate, colourless
V = 1835.02 (9) Å30.38 × 0.23 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Radiation source: fine-focus sealed tube3638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.613, Tmax = 0.907k = 3333
15344 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0141P)2 + 1.4854P]
where P = (Fo2 + 2Fc2)/3
4008 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cd2(NCS)4(C13H19N3O)2]V = 1835.02 (9) Å3
Mr = 923.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.2934 (2) ŵ = 1.43 mm1
b = 26.4035 (5) ÅT = 100 K
c = 10.0111 (3) Å0.38 × 0.23 × 0.07 mm
β = 107.853 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3638 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.907Rint = 0.026
15344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
4008 reflectionsΔρmin = 0.45 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.88459 (2)0.089861 (5)0.314896 (15)0.01292 (5)
S10.67607 (7)0.05268 (2)0.46956 (6)0.01758 (11)
S20.45365 (9)0.20002 (2)0.00994 (6)0.02685 (13)
O11.0113 (3)0.19368 (6)0.65208 (18)0.0309 (4)
N10.7974 (2)0.02944 (6)0.12874 (18)0.0153 (4)
N20.9534 (2)0.11963 (7)0.11679 (18)0.0166 (4)
N31.0711 (3)0.16656 (7)0.38989 (19)0.0166 (4)
N40.6008 (3)0.13692 (7)0.2228 (2)0.0214 (4)
N51.1395 (3)0.03924 (7)0.42969 (19)0.0194 (4)
C10.7455 (3)0.01826 (8)0.1403 (2)0.0181 (4)
H10.74350.03000.22960.022*
C20.6942 (3)0.05172 (9)0.0281 (2)0.0217 (5)
H20.65930.08570.04020.026*
C30.6952 (3)0.03430 (9)0.1020 (2)0.0226 (5)
H30.65960.05610.18120.027*
C40.7486 (3)0.01527 (9)0.1153 (2)0.0203 (5)
H40.74950.02790.20400.024*
C50.8011 (3)0.04641 (8)0.0022 (2)0.0163 (4)
C60.8705 (3)0.09967 (8)0.0016 (2)0.0183 (4)
C70.8396 (4)0.12483 (10)0.1409 (2)0.0303 (6)
H7A0.91150.15670.12770.045*
H7B0.70200.13170.18400.045*
H7C0.88490.10250.20230.045*
C81.0294 (3)0.17102 (8)0.1330 (2)0.0212 (5)
H8A0.92250.19570.11630.025*
H8B1.09910.17750.06400.025*
C91.1654 (3)0.17704 (8)0.2811 (2)0.0203 (5)
H9A1.27570.15370.29430.024*
H9B1.21650.21200.29320.024*
C101.2234 (3)0.16048 (9)0.5272 (2)0.0228 (5)
H10A1.30570.19110.54750.027*
H10B1.30560.13110.52300.027*
C111.1333 (4)0.15259 (9)0.6422 (2)0.0285 (5)
H11A1.05710.12090.62410.034*
H11B1.23640.14880.73280.034*
C120.8634 (4)0.19928 (9)0.5217 (3)0.0266 (5)
H12A0.77760.22760.52870.032*
H12B0.78520.16800.50090.032*
C130.9472 (3)0.20975 (8)0.4035 (2)0.0207 (5)
H13A0.84180.21440.31450.025*
H13B1.02430.24130.42330.025*
C140.5395 (3)0.16332 (8)0.1265 (2)0.0164 (4)
C150.7869 (3)0.00104 (8)0.5288 (2)0.0142 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01395 (7)0.01189 (8)0.01358 (8)0.00068 (6)0.00518 (5)0.00135 (6)
S10.0165 (2)0.0166 (3)0.0221 (3)0.0035 (2)0.0095 (2)0.0053 (2)
S20.0255 (3)0.0263 (3)0.0251 (3)0.0015 (2)0.0024 (2)0.0085 (2)
O10.0435 (11)0.0281 (9)0.0257 (9)0.0086 (8)0.0172 (8)0.0098 (7)
N10.0132 (8)0.0162 (9)0.0167 (9)0.0012 (7)0.0048 (7)0.0004 (7)
N20.0159 (9)0.0168 (9)0.0191 (9)0.0013 (7)0.0085 (7)0.0014 (7)
N30.0178 (9)0.0150 (9)0.0192 (9)0.0010 (7)0.0088 (7)0.0012 (7)
N40.0170 (9)0.0219 (10)0.0260 (10)0.0029 (8)0.0074 (8)0.0023 (8)
N50.0156 (9)0.0207 (10)0.0229 (10)0.0002 (8)0.0072 (8)0.0036 (8)
C10.0144 (10)0.0195 (11)0.0204 (11)0.0000 (8)0.0054 (9)0.0001 (9)
C20.0157 (10)0.0200 (12)0.0277 (12)0.0003 (9)0.0044 (9)0.0036 (9)
C30.0156 (10)0.0259 (12)0.0231 (12)0.0032 (9)0.0014 (9)0.0089 (9)
C40.0168 (10)0.0269 (12)0.0165 (11)0.0041 (9)0.0044 (9)0.0009 (9)
C50.0127 (9)0.0198 (11)0.0169 (10)0.0034 (8)0.0053 (8)0.0003 (8)
C60.0196 (10)0.0200 (12)0.0182 (11)0.0057 (9)0.0102 (9)0.0027 (8)
C70.0436 (15)0.0288 (13)0.0213 (12)0.0030 (11)0.0140 (11)0.0061 (10)
C80.0271 (12)0.0170 (11)0.0243 (12)0.0023 (9)0.0150 (10)0.0032 (9)
C90.0198 (11)0.0184 (11)0.0268 (12)0.0040 (9)0.0133 (10)0.0006 (9)
C100.0233 (11)0.0201 (12)0.0222 (12)0.0053 (9)0.0030 (9)0.0018 (9)
C110.0356 (14)0.0290 (13)0.0191 (12)0.0071 (11)0.0054 (10)0.0028 (10)
C120.0320 (13)0.0189 (12)0.0359 (14)0.0058 (10)0.0207 (11)0.0097 (10)
C130.0252 (12)0.0117 (10)0.0279 (12)0.0011 (9)0.0122 (10)0.0026 (9)
C140.0122 (9)0.0157 (10)0.0214 (10)0.0007 (8)0.0053 (8)0.0012 (7)
C150.0115 (9)0.0174 (9)0.0150 (10)0.0011 (7)0.0060 (8)0.0015 (8)
Geometric parameters (Å, º) top
Cd1—N52.2922 (18)C3—H30.9500
Cd1—N22.3267 (17)C4—C51.389 (3)
Cd1—N42.3469 (18)C4—H40.9500
Cd1—N12.3866 (17)C5—C61.499 (3)
Cd1—N32.4269 (17)C6—C71.498 (3)
Cd1—S12.6679 (5)C7—H7A0.9800
S1—C151.650 (2)C7—H7B0.9800
S2—C141.635 (2)C7—H7C0.9800
O1—C121.423 (3)C8—C91.518 (3)
O1—C111.426 (3)C8—H8A0.9900
N1—C11.330 (3)C8—H8B0.9900
N1—C51.352 (3)C9—H9A0.9900
N2—C61.268 (3)C9—H9B0.9900
N2—C81.456 (3)C10—C111.505 (3)
N3—C91.482 (3)C10—H10A0.9900
N3—C101.487 (3)C10—H10B0.9900
N3—C131.487 (3)C11—H11A0.9900
N4—C141.162 (3)C11—H11B0.9900
N5—C15i1.158 (3)C12—C131.514 (3)
C1—C21.388 (3)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C31.383 (3)C13—H13A0.9900
C2—H20.9500C13—H13B0.9900
C3—C41.384 (3)C15—N5i1.158 (3)
N5—Cd1—N2105.70 (6)N2—C6—C5115.71 (19)
N5—Cd1—N4171.05 (6)C7—C6—C5118.9 (2)
N2—Cd1—N483.16 (6)C6—C7—H7A109.5
N5—Cd1—N189.01 (6)C6—C7—H7B109.5
N2—Cd1—N168.63 (6)H7A—C7—H7B109.5
N4—Cd1—N193.18 (6)C6—C7—H7C109.5
N5—Cd1—N392.28 (6)H7A—C7—H7C109.5
N2—Cd1—N374.62 (6)H7B—C7—H7C109.5
N4—Cd1—N391.32 (6)N2—C8—C9108.61 (18)
N1—Cd1—N3142.12 (6)N2—C8—H8A110.0
N5—Cd1—S190.78 (5)C9—C8—H8A110.0
N2—Cd1—S1158.33 (4)N2—C8—H8B110.0
N4—Cd1—S180.32 (5)C9—C8—H8B110.0
N1—Cd1—S198.30 (4)H8A—C8—H8B108.3
N3—Cd1—S1119.52 (4)N3—C9—C8112.74 (18)
C15—S1—Cd1102.77 (7)N3—C9—H9A109.0
C12—O1—C11109.23 (17)C8—C9—H9A109.0
C1—N1—C5118.92 (18)N3—C9—H9B109.0
C1—N1—Cd1125.41 (14)C8—C9—H9B109.0
C5—N1—Cd1115.67 (13)H9A—C9—H9B107.8
C6—N2—C8123.20 (19)N3—C10—C11110.18 (19)
C6—N2—Cd1119.39 (14)N3—C10—H10A109.6
C8—N2—Cd1113.20 (13)C11—C10—H10A109.6
C9—N3—C10108.44 (17)N3—C10—H10B109.6
C9—N3—C13110.88 (17)C11—C10—H10B109.6
C10—N3—C13107.49 (17)H10A—C10—H10B108.1
C9—N3—Cd1105.72 (12)O1—C11—C10112.1 (2)
C10—N3—Cd1112.63 (13)O1—C11—H11A109.2
C13—N3—Cd1111.67 (13)C10—C11—H11A109.2
C14—N4—Cd1135.42 (16)O1—C11—H11B109.2
C15i—N5—Cd1154.57 (17)C10—C11—H11B109.2
N1—C1—C2123.1 (2)H11A—C11—H11B107.9
N1—C1—H1118.5O1—C12—C13111.19 (19)
C2—C1—H1118.5O1—C12—H12A109.4
C3—C2—C1118.2 (2)C13—C12—H12A109.4
C3—C2—H2120.9O1—C12—H12B109.4
C1—C2—H2120.9C13—C12—H12B109.4
C2—C3—C4119.2 (2)H12A—C12—H12B108.0
C2—C3—H3120.4N3—C13—C12109.51 (18)
C4—C3—H3120.4N3—C13—H13A109.8
C3—C4—C5119.4 (2)C12—C13—H13A109.8
C3—C4—H4120.3N3—C13—H13B109.8
C5—C4—H4120.3C12—C13—H13B109.8
N1—C5—C4121.2 (2)H13A—C13—H13B108.2
N1—C5—C6116.03 (18)N4—C14—S2179.4 (2)
C4—C5—C6122.76 (19)N5i—C15—S1178.34 (19)
N2—C6—C7125.3 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(NCS)4(C13H19N3O)2]
Mr923.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.2934 (2), 26.4035 (5), 10.0111 (3)
β (°) 107.853 (3)
V3)1835.02 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.38 × 0.23 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
15344, 4008, 3638
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.047, 1.10
No. of reflections4008
No. of parameters218
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBanerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m58.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z.-L., Jiao, Q.-Z., Niu, S.-Y. & Chi, J.-Y. (2006). Z. Anorg. Allg. Chem. 632, 2486–2490.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds