metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-1,2-Bis(di­phenyl­phosphan­yl)-1,2-di­ethyl­hydrazine-κ2P:P′]bis­­[chlorido­gold(I)] tetra­hydro­furan disolvate

aProject AuTEK, Mintek, Private Bag X3015, Randburg 2125, South Africa, and bMolecular Science Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: erikk@mintek.co.za

(Received 8 December 2010; accepted 4 January 2011; online 12 January 2011)

The title compound, [Au2Cl2(C28H30N2P2)]·2C4H8O, was synthesized from a bidentate phosphine ligand complexed to two linear gold(I) chloride moieties. The Au(I) atom is in an almost linear coordination with a P—Au—Cl angle of 179.22 (4)°. The complex molecules reside on a twofold rotation axis.

Related literature

For the structure of the parent ligand, see: Kriel et al. (2010a[Kriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.]). For the synthesis of the parent ligand and related structures utilizing alternative metals, see; Reddy et al. (1994[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355-1357.], 1995[Reddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483-5488.]); Slawin et al. (2002[Slawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513-519.]); Kriel et al. (2010b[Kriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.], 2011[Kriel, F. H., Fernandes, M. A. & Coates, J. (2011). Acta Cryst. E67, m42.]). For Au⋯Au inter­actions, see: Holleman & Wiberg (2001[Holleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry p. 1248. San Diego: Academic Press. ]).

[Scheme 1]

Experimental

Crystal data
  • [Au2Cl2(C28H30N2P2)]·2C4H8O

  • Mr = 1065.52

  • Orthorhombic, P c c n

  • a = 12.3275 (18) Å

  • b = 17.200 (3) Å

  • c = 18.173 (3) Å

  • V = 3853.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.86 mm−1

  • T = 173 K

  • 0.48 × 0.23 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: integration (SADABS; Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.116, Tmax = 0.406

  • 23024 measured reflections

  • 4199 independent reflections

  • 3256 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.052

  • S = 1.06

  • 4199 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008)[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Gold(I) forms an almost linear complex with a P—Au—Cl angles of 179.22 (4) °. The Au—Au distance of the complex is 3.131 (5) Å and is intramolecular. This is well within the range of aurophilic interactions as discribed by Holleman et al. as being normally between 2.7 Å and 3.4 Å. Other bond lengths are within expected ranges.

The molecule readilly crystalizes out of tetrahydrofuran (THF) and also includes this solvent in the crystal lattice. The molecule exhibits columns of head-to-tail complexes forming channels filled with THF. Intermolecular short contacts of 2.822 Å and 2.835 Å are displayed between Cl and H(1a) and Cl and H(14), respectively (Figure 2). The Cl—H(1a) interaction can be seen on the head-to-tail arranged complexes in a column between chlorines and adjacent hydrogen atoms situated on the ethyl substituted hydrazine bridge. The Cl—H(14) interaction occurs between chlorines and H atoms situated on a phenyl ring in close proximity. Hydrogen bonding distances between the THF O(1) atom and H(1 b) and H(22) are observed to be 2.553 Å and 2.698 Å, respectively.

Related literature top

For the structure of the parent ligand, see: Kriel et al. (2010a). For the synthesis of the parent ligand and related structures utilizing alternative metals, see; Reddy et al. (1994, 1995); Slawin et al. (2002); Kriel et al. (2010b, 2011). For Au···Au interactions, see: Holleman et al. (2001).

Experimental top

Tetrahydrothiophenegold(I) chloride [(THT)AuCl] was suspended in THF. 0.5 equivalents of the ligand bis(diphenylphosphino)-1,2-diethylhydrazine dissolved in dichloromethane (DCM) was added to the stirred suspension. The suspension turned yellow and became clear and after a short time micro crystals started to form. Crystals of the molecule was obtained by halting stirring as soon as the reaction turned clear, crystals big enough for single-crystal X-Ray analysis formed overnight.

Refinement top

The H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (Ar—H) or 0.96 (CH3) Å, and with Ueq = 1.2 (Ar—H) or 1.5 (CH3) Ueq(C).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure drawn with displacement ellipsoids at the 50% probability level. Hydrogen atoms and solvent THF have been omitted for clarity.
[Figure 2] Fig. 2. Packing of the title compound showing short contacts.
[µ-1,2-Bis(diphenylphosphanyl)-1,2-diethylhydrazine- κ2P:P']bis[chloridogold(I)] tetrahydrofuran disolvate top
Crystal data top
[Au2Cl2(C28H30N2P2)]·2C4H8OF(000) = 2056
Mr = 1065.52Dx = 1.837 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 8545 reflections
a = 12.3275 (18) Åθ = 6.1–55.9°
b = 17.200 (3) ŵ = 7.86 mm1
c = 18.173 (3) ÅT = 173 K
V = 3853.4 (10) Å3Prismic, colourless
Z = 40.48 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4199 independent reflections
Radiation source: fine-focus sealed tube3256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: integration
(SADABS; Bruker, 1999)
h = 1115
Tmin = 0.116, Tmax = 0.406k = 2121
23024 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0196P)2 + 3.5032P]
where P = (Fo2 + 2Fc2)/3
4199 reflections(Δ/σ)max = 0.002
209 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Au2Cl2(C28H30N2P2)]·2C4H8OV = 3853.4 (10) Å3
Mr = 1065.52Z = 4
Orthorhombic, PccnMo Kα radiation
a = 12.3275 (18) ŵ = 7.86 mm1
b = 17.200 (3) ÅT = 173 K
c = 18.173 (3) Å0.48 × 0.23 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4199 independent reflections
Absorption correction: integration
(SADABS; Bruker, 1999)
3256 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.406Rint = 0.045
23024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
4199 reflectionsΔρmin = 1.22 e Å3
209 parameters
Special details top

Experimental. Reaction: bis(diphenylphosphino)-1,2-diethylhydrazine: 155 mg (0.34 mmol), (THT)AuCl: 200 mg (0.68 mmol), tetrahydrofuran: 2 ml, dichloromethane: 5 ml, Yield: 86%. Colourless to grey crystals. 1H NMR: (d-DMSO, 300 MHz) δH 7.90 (dq, Arom, J (1H-31P) = 28.9, J (1H-1H) = 7.1 Hz), 7.71 (d, Arom, J = 7.0 Hz), 7.60 (d, Arom, J = 7.1 Hz), 7.55 (d, Arom, J (1H-1H) = 7.0 Hz), 3.33 (bs, CH2CH3), 0.43 (t, CH2CH3, 3J (1H-1H) = 6.6 Hz). 13C NMR:(d-DMSO, 75 MHz) δC 132.3 (bs, Arom), 130.6 (m, Arom), 129.0 (s, Arom), 128.0 (bs, Arom), 43.6 (bs, CH2CH3), 14.1 (d, CH2CH3, 3J (13C-31P) = 16.1 Hz). 31P NMR:(d-DMSO, 121 MHz) δP 87.7. MS: 920 (2%, M), 885 (14%, M - Cl). EA: Calc: (Au2Cl2P2N2C28H30) C 36.50%, H 3.28%, N 3.04%, Found: C 35.42%, H 3.44%, N 2.64%. MP: 202 - 204 °C.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.816153 (12)0.172310 (9)1.064560 (8)0.02482 (5)
Cl0.73414 (9)0.12548 (7)1.16939 (5)0.0353 (3)
N0.8044 (2)0.26317 (18)0.90903 (17)0.0226 (7)
P0.89483 (8)0.21634 (6)0.96202 (6)0.0226 (2)
C10.8360 (3)0.3202 (2)0.8518 (2)0.0300 (10)
H1A0.79180.31090.80710.036*
H1B0.91300.31170.83860.036*
C20.8210 (4)0.4044 (2)0.8762 (3)0.0413 (11)
H2A0.74580.41250.89170.062*
H2B0.83790.43920.83500.062*
H2C0.86990.41550.91740.062*
C110.9634 (3)0.1431 (2)0.9067 (2)0.0244 (9)
C120.9538 (3)0.1404 (3)0.8308 (2)0.0347 (10)
H120.90890.17680.80600.042*
C131.0099 (4)0.0845 (3)0.7910 (3)0.0428 (12)
H131.00270.08260.73900.051*
C141.0760 (4)0.0317 (3)0.8262 (3)0.0398 (11)
H141.11550.00550.79840.048*
C151.0848 (4)0.0329 (3)0.9009 (3)0.0393 (11)
H151.12970.00410.92500.047*
C161.0283 (3)0.0879 (2)0.9421 (2)0.0301 (9)
H161.03390.08800.99420.036*
C210.9994 (3)0.2878 (2)0.9796 (2)0.0267 (9)
C221.0943 (3)0.2924 (3)0.9375 (3)0.0402 (11)
H221.10690.25610.89910.048*
C231.1695 (4)0.3501 (3)0.9521 (3)0.0532 (15)
H231.23360.35340.92320.064*
C241.1521 (4)0.4029 (3)1.0083 (3)0.0515 (14)
H241.20430.44231.01780.062*
C251.0602 (4)0.3988 (3)1.0502 (3)0.0471 (13)
H251.04820.43531.08850.057*
C260.9856 (4)0.3416 (3)1.0367 (3)0.0390 (11)
H260.92280.33821.06680.047*
O10.0875 (5)0.3175 (4)0.7631 (3)0.139 (3)
C310.1485 (8)0.3817 (6)0.7578 (4)0.134 (4)
H31A0.21490.37550.78790.161*
H31B0.10760.42690.77710.161*
C320.1791 (6)0.3963 (4)0.6793 (4)0.093 (2)
H32A0.15660.44880.66320.111*
H32B0.25820.39040.67180.111*
C330.1174 (7)0.3346 (4)0.6396 (4)0.099 (3)
H33A0.06100.35820.60780.119*
H33B0.16670.30330.60840.119*
C340.0669 (6)0.2854 (5)0.6968 (4)0.095 (2)
H34A0.01240.28210.68870.114*
H34B0.09730.23210.69470.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02502 (8)0.02674 (8)0.02271 (8)0.00606 (7)0.00177 (7)0.00268 (7)
Cl0.0369 (6)0.0436 (6)0.0253 (5)0.0084 (5)0.0066 (5)0.0081 (5)
N0.0158 (16)0.0250 (17)0.0270 (16)0.0007 (14)0.0011 (13)0.0051 (14)
P0.0190 (5)0.0254 (5)0.0234 (5)0.0038 (4)0.0002 (4)0.0010 (4)
C10.026 (2)0.034 (2)0.031 (2)0.0036 (19)0.0055 (17)0.0080 (19)
C20.046 (3)0.031 (2)0.046 (3)0.002 (2)0.002 (2)0.011 (2)
C110.018 (2)0.024 (2)0.030 (2)0.0037 (16)0.0022 (17)0.0007 (17)
C120.032 (2)0.040 (2)0.032 (2)0.009 (2)0.001 (2)0.003 (2)
C130.050 (3)0.047 (3)0.032 (3)0.012 (2)0.009 (2)0.010 (2)
C140.040 (3)0.038 (3)0.041 (3)0.014 (2)0.006 (2)0.009 (2)
C150.032 (3)0.035 (3)0.051 (3)0.010 (2)0.003 (2)0.000 (2)
C160.028 (2)0.030 (2)0.032 (2)0.0044 (18)0.0014 (19)0.0013 (19)
C210.021 (2)0.030 (2)0.029 (2)0.0029 (18)0.0009 (17)0.0011 (19)
C220.029 (2)0.047 (3)0.044 (3)0.003 (2)0.005 (2)0.011 (2)
C230.028 (3)0.070 (4)0.062 (4)0.016 (2)0.009 (2)0.013 (3)
C240.039 (3)0.056 (3)0.059 (3)0.023 (3)0.002 (2)0.009 (3)
C250.042 (3)0.048 (3)0.051 (3)0.007 (2)0.004 (2)0.019 (2)
C260.030 (2)0.047 (3)0.040 (3)0.006 (2)0.009 (2)0.001 (2)
O10.142 (5)0.228 (7)0.048 (3)0.110 (5)0.010 (3)0.001 (4)
C310.184 (10)0.148 (9)0.071 (6)0.072 (8)0.018 (6)0.011 (6)
C320.090 (5)0.092 (5)0.096 (6)0.025 (4)0.018 (5)0.016 (5)
C330.122 (6)0.125 (7)0.050 (4)0.060 (5)0.016 (4)0.019 (4)
C340.095 (5)0.131 (6)0.059 (4)0.035 (5)0.005 (4)0.020 (4)
Geometric parameters (Å, º) top
Au—P2.2331 (11)C21—C221.399 (6)
Au—Cl2.3021 (10)C21—C261.400 (6)
Au—Aui3.1310 (5)C22—C231.383 (6)
N—Ni1.416 (6)C22—H220.9500
N—C11.481 (5)C23—C241.385 (7)
N—P1.679 (3)C23—H230.9500
P—C211.810 (4)C24—C251.367 (6)
P—C111.820 (4)C24—H240.9500
C1—C21.526 (6)C25—C261.369 (6)
C1—H1A0.9900C25—H250.9500
C1—H1B0.9900C26—H260.9500
C2—H2A0.9800O1—C311.340 (9)
C2—H2B0.9800O1—C341.349 (8)
C2—H2C0.9800C31—C321.497 (9)
C11—C121.386 (6)C31—H31A0.9900
C11—C161.397 (5)C31—H31B0.9900
C12—C131.388 (6)C32—C331.491 (9)
C12—H120.9500C32—H32A0.9900
C13—C141.377 (6)C32—H32B0.9900
C13—H130.9500C33—C341.479 (8)
C14—C151.361 (6)C33—H33A0.9900
C14—H140.9500C33—H33B0.9900
C15—C161.394 (6)C34—H34A0.9900
C15—H150.9500C34—H34B0.9900
C16—H160.9500
P—Au—Cl179.22 (4)C22—C21—P122.5 (3)
P—Au—Aui86.37 (3)C26—C21—P119.5 (3)
Cl—Au—Aui94.01 (3)C23—C22—C21119.7 (4)
Ni—N—C1117.4 (3)C23—C22—H22120.1
Ni—N—P118.4 (3)C21—C22—H22120.1
C1—N—P123.1 (2)C22—C23—C24120.6 (5)
N—P—C21104.37 (17)C22—C23—H23119.7
N—P—C11108.89 (18)C24—C23—H23119.7
C21—P—C11103.71 (18)C25—C24—C23120.3 (5)
N—P—Au110.68 (11)C25—C24—H24119.8
C21—P—Au113.12 (13)C23—C24—H24119.8
C11—P—Au115.30 (14)C24—C25—C26119.6 (5)
N—C1—C2113.1 (3)C24—C25—H25120.2
N—C1—H1A109.0C26—C25—H25120.2
C2—C1—H1A109.0C25—C26—C21121.7 (4)
N—C1—H1B109.0C25—C26—H26119.1
C2—C1—H1B109.0C21—C26—H26119.1
H1A—C1—H1B107.8C31—O1—C34112.3 (6)
C1—C2—H2A109.5O1—C31—C32110.3 (7)
C1—C2—H2B109.5O1—C31—H31A109.6
H2A—C2—H2B109.5C32—C31—H31A109.6
C1—C2—H2C109.5O1—C31—H31B109.6
H2A—C2—H2C109.5C32—C31—H31B109.6
H2B—C2—H2C109.5H31A—C31—H31B108.1
C12—C11—C16118.9 (4)C33—C32—C31102.4 (6)
C12—C11—P122.2 (3)C33—C32—H32A111.3
C16—C11—P118.8 (3)C31—C32—H32A111.3
C11—C12—C13120.0 (4)C33—C32—H32B111.3
C11—C12—H12120.0C31—C32—H32B111.3
C13—C12—H12120.0H32A—C32—H32B109.2
C14—C13—C12120.6 (4)C34—C33—C32106.3 (6)
C14—C13—H13119.7C34—C33—H33A110.5
C12—C13—H13119.7C32—C33—H33A110.5
C15—C14—C13120.0 (4)C34—C33—H33B110.5
C15—C14—H14120.0C32—C33—H33B110.5
C13—C14—H14120.0H33A—C33—H33B108.7
C14—C15—C16120.4 (4)O1—C34—C33108.3 (6)
C14—C15—H15119.8O1—C34—H34A110.0
C16—C15—H15119.8C33—C34—H34A110.0
C15—C16—C11120.0 (4)O1—C34—H34B110.0
C15—C16—H16120.0C33—C34—H34B110.0
C11—C16—H16120.0H34A—C34—H34B108.4
C22—C21—C26118.0 (4)
Ni—N—P—C21155.3 (2)C14—C15—C16—C110.9 (7)
C1—N—P—C2137.0 (3)C12—C11—C16—C151.9 (6)
Ni—N—P—C1194.4 (3)P—C11—C16—C15177.7 (3)
C1—N—P—C1173.3 (3)N—P—C21—C2295.7 (4)
Ni—N—P—Au33.3 (3)C11—P—C21—C2218.3 (4)
C1—N—P—Au159.0 (3)Au—P—C21—C22144.0 (3)
Aui—Au—P—N38.27 (13)N—P—C21—C2683.6 (4)
Aui—Au—P—C2178.44 (14)C11—P—C21—C26162.4 (3)
Aui—Au—P—C11162.41 (14)Au—P—C21—C2636.8 (4)
Ni—N—C1—C290.6 (4)C26—C21—C22—C231.4 (7)
P—N—C1—C2101.6 (4)P—C21—C22—C23177.8 (4)
N—P—C11—C1211.5 (4)C21—C22—C23—C240.5 (8)
C21—P—C11—C1299.2 (4)C22—C23—C24—C250.0 (9)
Au—P—C11—C12136.5 (3)C23—C24—C25—C260.5 (8)
N—P—C11—C16168.9 (3)C24—C25—C26—C211.6 (8)
C21—P—C11—C1680.4 (3)C22—C21—C26—C252.0 (7)
Au—P—C11—C1643.8 (4)P—C21—C26—C25177.3 (4)
C16—C11—C12—C131.2 (6)C34—O1—C31—C322.4 (12)
P—C11—C12—C13178.4 (3)O1—C31—C32—C335.2 (11)
C11—C12—C13—C140.6 (7)C31—C32—C33—C345.8 (9)
C12—C13—C14—C151.6 (7)C31—O1—C34—C331.6 (11)
C13—C14—C15—C160.8 (7)C32—C33—C34—O14.9 (10)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Au2Cl2(C28H30N2P2)]·2C4H8O
Mr1065.52
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)173
a, b, c (Å)12.3275 (18), 17.200 (3), 18.173 (3)
V3)3853.4 (10)
Z4
Radiation typeMo Kα
µ (mm1)7.86
Crystal size (mm)0.48 × 0.23 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionIntegration
(SADABS; Bruker, 1999)
Tmin, Tmax0.116, 0.406
No. of measured, independent and
observed [I > 2σ(I)] reflections
23024, 4199, 3256
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 1.06
No. of reflections4199
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 1.22

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors would like to thank Project AuTEK (Mintek and Harmony) and the University of the Witwatersrand for financial support.

References

First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolleman, A. F. & Wiberg, E. (2001). Inorganic Chemistry p. 1248. San Diego: Academic Press.  Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Caddy, J. (2010a). Acta Cryst. E66, o1270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2010b). Acta Cryst. E66, m710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKriel, F. H., Fernandes, M. A. & Coates, J. (2011). Acta Cryst. E67, m42.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1994). Chem. Ber. 127, 355–1357.  Google Scholar
First citationReddy, V. S., Katti, K. V. & Barnes, C. L. (1995). Inorg. Chem. 34, 5483–5488.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlawin, A. M. Z., Wainwright, M. & Woollins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 513–519.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds