organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-5-{[(4-nitro­phen­yl)amino]­methyl­­idene}-1,3-dioxane-4,6-dione

aDepartment of Pharmaceutical and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: luo_youfu@foxmail.com

(Received 10 December 2010; accepted 8 January 2011; online 15 January 2011)

In the title compound, C13H12N2O6, the dihedral angle between the benzene ring and the amino­methyl­ene unit is 5.42 (16)°, while the angle between the amino­methyl­ene unit and the dioxane ring is 3.06 (43)°. The dioxane ring shows a half-boat conformation, in which the C atom between the dioxane ring O atoms is 0.464 (10) Å out of the plane. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, a three-dimensional framework is built up via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the synthesis and biological activity of related compounds, see: Cassis et al. (1985[Cassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125-133.]); Griera et al. (1997[Griera, R., Armengol, M., Reyes, A., Alvarez, M., Palomer, A., Cabre, F., Pascual, J., Garcia, M. L. & Mauleon, D. (1997). Eur. J. Med. Chem. 32, 547-570.]); Darque et al. (2009[Darque, A., Dumetre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C. & Azas, N. (2009). Bioorg. Med. Chem. Lett. 19, 5962-5964.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N2O6

  • Mr = 292.25

  • Monoclinic, P 21 /c

  • a = 12.2822 (8) Å

  • b = 12.2762 (7) Å

  • c = 9.2760 (6) Å

  • β = 106.636 (7)°

  • V = 1340.08 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.933, Tmax = 1.0

  • 6063 measured reflections

  • 2741 independent reflections

  • 1432 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.00

  • 2741 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.65 3.411 (3) 148
N2—H2⋯O4 0.86 2.15 2.771 (2) 129
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov, 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341. ]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The 4(1H)quinolone are of great importance owing to their wide biological properties (Griera et al., 1997; Darque et al., 2009). 2,2-Dimethyl-5-{[(4-nitrophenyl)amino]methylene}-1,3-dioxane-4,6-dione is the key intermediate which can be used to synthesize the 4(1H)quinolone derivatives by thermolysis (Cassis et al., 1985). The title compound is approximately planar, the dihedral angle between the benzene ring and the aminomethylene unit is 5.42 (16), while the angle between the aminomethylene unit and the dioxane ring is 3.06 (43)°. Besides, The dioxane ring shows a half-boat conformation, in which the C atom between the dioxane ring O atoms is 0.4639 (99) A ° out of the plane.The intramolecular N—H···O hydrogen bond which involving the NH H atom and the adjacent dioxane carbonyl O atom can stabilize the planar conformation of the molecule, and the three-dimensional framework is built via intermolecular N—H···O hydrogen bond and weak ππ stacking interactions with a centroid–centroid distance of 5.1837 (14) Å.

Related literature top

For the synthesis and biological activity of related compounds, see: Cassis et al. (1985); Griera et al. (1997); Darque et al. (2009).

Experimental top

A solution of 2,2–dimethyl–1,3–dioxane–4,6–dione (1.44 g, 10 mmol) and triethoxymethane (1.78 g, 12 mmol) was heated to reflux for 2.5 h, then the 4-nitroaniline(1.38 g, 10 mmol) was added into the above solution. The mixture was heated under reflux for another 7 h. The precipitate that formed was filtered off and recrystallized from ethanol, giving the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethanol.

Refinement top

The H atom of N2 was located in a difference map and refined isotropically. The reminaing H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov, 2009); software used to prepare material for publication: OLEX2 (Dolomanov, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines.
2,2-Dimethyl-5-{[(4-nitrophenyl)amino]methylidene}-1,3-dioxane-4,6-dione top
Crystal data top
C13H12N2O6F(000) = 608
Mr = 292.25Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 1825 reflections
a = 12.2822 (8) Åθ = 3.0–29.1°
b = 12.2762 (7) ŵ = 0.12 mm1
c = 9.2760 (6) ÅT = 293 K
β = 106.636 (7)°Block, colorless
V = 1340.08 (15) Å30.22 × 0.15 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2741 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1514
Tmin = 0.933, Tmax = 1.0l = 1111
6063 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0459P)2]
where P = (Fo2 + 2Fc2)/3
2741 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H12N2O6V = 1340.08 (15) Å3
Mr = 292.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.2822 (8) ŵ = 0.12 mm1
b = 12.2762 (7) ÅT = 293 K
c = 9.2760 (6) Å0.22 × 0.15 × 0.10 mm
β = 106.636 (7)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2741 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1432 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 1.0Rint = 0.031
6063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2741 reflectionsΔρmin = 0.15 e Å3
192 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69558 (14)0.20994 (13)0.55007 (17)0.0590 (5)
O20.68603 (13)0.02148 (12)0.59936 (18)0.0621 (5)
O30.58804 (16)0.33063 (14)0.6199 (2)0.0731 (6)
O40.55320 (14)0.04417 (12)0.69224 (19)0.0669 (5)
O50.07063 (17)0.30379 (18)1.0992 (2)0.0965 (7)
O60.02953 (19)0.13441 (18)1.1075 (2)0.0978 (7)
N10.08472 (19)0.2076 (2)1.0746 (2)0.0682 (6)
N20.42612 (16)0.10150 (15)0.80560 (19)0.0532 (5)
H20.43890.03320.79790.064*
C10.1735 (2)0.1808 (2)1.0033 (3)0.0512 (6)
C20.2364 (2)0.2628 (2)0.9673 (3)0.0610 (7)
H2A0.22250.33490.98720.073*
C30.3200 (2)0.23774 (19)0.9015 (3)0.0599 (7)
H30.36250.29310.87520.072*
C40.3412 (2)0.13024 (18)0.8742 (2)0.0475 (6)
C50.2780 (2)0.04875 (19)0.9127 (2)0.0578 (7)
H50.29300.02370.89590.069*
C60.1926 (2)0.0739 (2)0.9760 (3)0.0619 (7)
H60.14850.01910.99980.074*
C70.4875 (2)0.17060 (19)0.7523 (2)0.0519 (6)
H70.47280.24420.76150.062*
C80.5701 (2)0.14631 (17)0.6851 (2)0.0473 (6)
C90.6166 (2)0.2361 (2)0.6219 (3)0.0525 (6)
C100.60071 (19)0.03607 (19)0.6628 (2)0.0511 (6)
C110.7596 (2)0.11232 (19)0.5931 (3)0.0532 (6)
C120.8456 (2)0.1284 (2)0.7444 (3)0.0690 (8)
H12A0.80680.14460.81830.104*
H12C0.89500.18780.73870.104*
H12B0.88960.06320.77260.104*
C130.8114 (2)0.0867 (2)0.4690 (3)0.0759 (8)
H13B0.85430.02040.49200.114*
H13C0.86070.14520.45930.114*
H13A0.75230.07820.37620.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0627 (12)0.0520 (10)0.0669 (11)0.0033 (9)0.0258 (10)0.0107 (8)
O20.0610 (11)0.0457 (10)0.0923 (12)0.0069 (8)0.0423 (10)0.0037 (9)
O30.0796 (14)0.0420 (10)0.1021 (14)0.0003 (10)0.0332 (11)0.0071 (10)
O40.0672 (12)0.0411 (10)0.1041 (14)0.0106 (9)0.0433 (11)0.0009 (9)
O50.0895 (16)0.0796 (15)0.1366 (19)0.0217 (12)0.0585 (15)0.0083 (13)
O60.0944 (17)0.0955 (16)0.1287 (18)0.0093 (13)0.0723 (15)0.0001 (13)
N10.0586 (16)0.0776 (17)0.0710 (15)0.0078 (14)0.0227 (13)0.0020 (14)
N20.0587 (14)0.0437 (11)0.0612 (12)0.0031 (10)0.0239 (11)0.0054 (10)
C10.0471 (15)0.0550 (16)0.0535 (15)0.0051 (13)0.0174 (12)0.0008 (12)
C20.0594 (17)0.0466 (15)0.0818 (18)0.0016 (13)0.0277 (15)0.0086 (14)
C30.0608 (17)0.0451 (15)0.0818 (18)0.0078 (13)0.0331 (15)0.0046 (13)
C40.0484 (15)0.0463 (14)0.0487 (14)0.0026 (12)0.0153 (12)0.0019 (11)
C50.0762 (19)0.0415 (14)0.0645 (16)0.0012 (13)0.0342 (15)0.0017 (12)
C60.0730 (19)0.0531 (17)0.0698 (17)0.0020 (14)0.0369 (15)0.0070 (13)
C70.0546 (16)0.0451 (14)0.0541 (15)0.0042 (12)0.0123 (13)0.0046 (12)
C80.0506 (15)0.0378 (13)0.0560 (15)0.0043 (11)0.0192 (13)0.0001 (11)
C90.0492 (16)0.0509 (16)0.0528 (15)0.0054 (13)0.0072 (12)0.0013 (13)
C100.0473 (15)0.0470 (15)0.0599 (15)0.0066 (12)0.0169 (13)0.0002 (12)
C110.0536 (16)0.0483 (15)0.0624 (16)0.0090 (13)0.0238 (14)0.0034 (13)
C120.0577 (18)0.0740 (18)0.0759 (18)0.0065 (15)0.0199 (15)0.0105 (15)
C130.078 (2)0.0794 (19)0.0812 (18)0.0113 (17)0.0400 (17)0.0039 (16)
Geometric parameters (Å, º) top
O1—C91.363 (3)C3—C41.382 (3)
O1—C111.426 (3)C4—C51.375 (3)
O2—C101.353 (2)C5—H50.9300
O2—C111.447 (3)C5—C61.375 (3)
O3—C91.211 (3)C6—H60.9300
O4—C101.215 (2)C7—H70.9300
O5—N11.224 (3)C7—C81.366 (3)
O6—N11.216 (3)C8—C91.442 (3)
N1—C11.465 (3)C8—C101.435 (3)
N2—H20.8600C11—C121.508 (3)
N2—C41.414 (3)C11—C131.500 (3)
N2—C71.322 (3)C12—H12A0.9600
C1—C21.367 (3)C12—H12C0.9600
C1—C61.370 (3)C12—H12B0.9600
C2—H2A0.9300C13—H13B0.9600
C2—C31.372 (3)C13—H13C0.9600
C3—H30.9300C13—H13A0.9600
O1—C9—C8116.1 (2)C4—C5—H5119.9
O1—C11—O2110.98 (19)C4—C5—C6120.2 (2)
O1—C11—C12109.5 (2)C5—C4—N2118.7 (2)
O1—C11—C13106.38 (19)C5—C4—C3119.8 (2)
O2—C10—C8117.1 (2)C5—C6—H6120.4
O2—C11—C12110.04 (19)C6—C1—N1119.3 (2)
O2—C11—C13106.03 (19)C6—C5—H5119.9
O3—C9—O1117.5 (2)C7—N2—H2117.2
O3—C9—C8126.3 (2)C7—N2—C4125.6 (2)
O4—C10—O2118.2 (2)C7—C8—C9116.8 (2)
O4—C10—C8124.7 (2)C7—C8—C10122.1 (2)
O5—N1—C1117.7 (2)C8—C7—H7116.3
O6—N1—O5123.2 (2)C9—O1—C11118.27 (17)
O6—N1—C1119.2 (2)C10—O2—C11119.07 (18)
N2—C7—H7116.3C10—C8—C9120.7 (2)
N2—C7—C8127.4 (2)C11—C12—H12A109.5
C1—C2—H2A120.3C11—C12—H12C109.5
C1—C2—C3119.4 (2)C11—C12—H12B109.5
C1—C6—C5119.2 (2)C11—C13—H13B109.5
C1—C6—H6120.4C11—C13—H13C109.5
C2—C1—N1119.4 (2)C11—C13—H13A109.5
C2—C1—C6121.4 (2)H12A—C12—H12C109.5
C2—C3—H3120.0H12A—C12—H12B109.5
C2—C3—C4120.0 (2)H12C—C12—H12B109.5
C3—C2—H2A120.3C13—C11—C12113.8 (2)
C3—C4—N2121.5 (2)H13B—C13—H13C109.5
C4—N2—H2117.2H13B—C13—H13A109.5
C4—C3—H3120.0H13C—C13—H13A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.653.411 (3)148
N2—H2···O40.862.152.771 (2)129
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H12N2O6
Mr292.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.2822 (8), 12.2762 (7), 9.2760 (6)
β (°) 106.636 (7)
V3)1340.08 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.933, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6063, 2741, 1432
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.126, 1.00
No. of reflections2741
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.653.411 (3)148
N2—H2···O40.862.152.771 (2)129
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationCassis, R., Tapia, R. & Valderrama, J. A. (1985). Synth. Commun. 15, 125–133.  CrossRef CAS Web of Science Google Scholar
First citationDarque, A., Dumetre, A., Hutter, S., Casano, G., Robin, M., Pannecouque, C. & Azas, N. (2009). Bioorg. Med. Chem. Lett. 19, 5962–5964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.   Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGriera, R., Armengol, M., Reyes, A., Alvarez, M., Palomer, A., Cabre, F., Pascual, J., Garcia, M. L. & Mauleon, D. (1997). Eur. J. Med. Chem. 32, 547–570.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds