organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o341-o342

2-(4-Methyl­sulfanylphen­yl)-1H-benzimidazol-3-ium bromide

aDepartment of Chemistry, Bangalore University, Bangalore 560 001, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 1 January 2011; accepted 4 January 2011; online 12 January 2011)

In the cation of the title compound, C14H13N2S+·Br, the essentially planar benzimidazole system (r.m.s. deviation = 0.0082 Å) is substituted with a 4-methyl­sulfanylphenyl ring. The dihedral angle between the benzimidazole system and the 4-methyl­sulfanylphenyl ring is 2.133 (2)°. The crystal structure is characterized by strong and highly directional inter­molecular N—H⋯Br hydrogen bonds involving the bromide ion. Moreover, C—H⋯S inter­actions result in chains of mol­ecules along the c axis. The supra­molecular assembly is further stabilized by ππ stacking inter­actions between the benzimidazole system and 4-methyl­sulfanylphenyl rings [centroid–centroid distance = 3.477 (4) Å].

Related literature

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough (1999[Huang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665-2668.]); Preston (1974[Preston, P. N. (1974). Chem. Rev. 74, 279-314.]); Zarrinmayeh et al. (1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]); Zhu et al. (2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]). For related structures, see: Goker et al. (1995[Goker, H., Olgen, S., Ertan, R., Akgiin, H., Ozbey, S., Kendi, E. & Topcu, G. (1995). J. Heterocycl. Chem. 32, 1767-1773.]); Ozbey et al. (1998[Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.]); Vasudevan et al. (1994[Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1994). Acta Cryst. C50, 1286-1288.]). For hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. 34, 1555-1573.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N2S+·Br

  • Mr = 321.23

  • Monoclinic, P 21 /c

  • a = 5.3289 (2) Å

  • b = 24.0195 (12) Å

  • c = 10.9544 (5) Å

  • β = 100.113 (2)°

  • V = 1380.35 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.11 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.575, Tmax = 0.636

  • 23823 measured reflections

  • 3009 independent reflections

  • 2273 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.03

  • 3009 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.74 (2) 2.51 (2) 3.247 (2) 171 (2)
N2—H2N⋯Br1i 0.77 (3) 2.50 (2) 3.231 (2) 159
C5—H5⋯S1ii 0.97 (3) 2.98 (3) 3.736 (3) 135
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzimidazoles and their derivatives exhibit a number of important pharmacological properties, such as antihistaminic, anti-ulcerative, antiallergic, and antipyretic. In addition, benzimidazole derivatives are effective against the human cytomegalo virus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). Most of the described methods for the synthesisof benzimidazoles make use of volatile organic solvents and involve solid-phase synthesis via o-nitroanilines (Preston et al., 1974; Huang et al., 1999) or the condensation of o-phenylenediamines with carboxylic acid derivatives, aldehydes and aryl halides. In the title compound, there is one benzimidazole thiomethyl phenyl cation and one Br- anion in the asymmetric unit. The expected proton transfer from HBr to benzimidazole thiomethyl phenyl occurs at atom N1 of the benzimidazole ring. Consequently,atom N1 shows quaternary character and bears a positive charge. In the molecule, the benzimidazole and thiomethyl phenyl rings are planar inclined at an dihedral angle 2.133 (2)° between them. The molecular structure is primarily stabilized by strong intramolecular N—H···Br hydrogen bond. The bond lengths and angles for the benzimidazole moiety of the molecule are in good agreement, within experimental errors, with those observed in other benzimidazole derivatives (Goker et al., 1995; Ozbey et al., 1998; Vasudevan et al.,1994).Further, the crystal structure is stabilized by intermolecular interactions into three dimensional framework structure by the combination of C—H···S and N—H···Br. The C—H···S and N—H···Br interactions together generates tetramers linking the molecules into chain like pattern along crystallographic c-axis. Additionally,the supramolecular assembly is further stabilized by π-π-stacking interactions between the benzimidazole and thiomethyl phenyl rings. The C3—C10 (x, 0.5 - y, 1/2 + z) disposed at a distance of 3.477 (4) Å.

Related literature top

For general background to benzimidazoles and their derivatives, see: Huang & Scarborough (1999); Preston (1974); Zarrinmayeh et al. (1998); Zhu et al. (2000). For related structures, see: Goker et al. (1995); Ozbey et al. (1998); Vasudevan et al. (1994). For hydrogen bonding, see: Bernstein et al. (1995); Nardelli (1983).

Experimental top

A ethanol solution (20 ml) of zinc bromide (2.25 mg, 1.0 mmol) was treated with 2-(p-thiomethylphenyl)benzimidazole (4.80 mg, 2.0 mmol) in ethanol (20 ml). The mixture was then treated with 48% HBr (2–3 ml) followed by liquid Br2 (2–3 ml). The mixture was refluxed for 6 hrs on a steam bath filtered and allowed to stand at room temperature for two days. Coloured crystals separated and these were washed with ethanol and dried. (yield 4.00 mg; 83%).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded.
2-(4-Methylsulfanylphenyl)-1H-benzimidazol-3-ium bromide top
Crystal data top
C14H13N2S+·BrF(000) = 648
Mr = 321.23Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3009 reflections
a = 5.3289 (2) Åθ = 1.7–27.0°
b = 24.0195 (12) ŵ = 3.11 mm1
c = 10.9544 (5) ÅT = 296 K
β = 100.113 (2)°Block, yellow
V = 1380.35 (11) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3009 independent reflections
Radiation source: Enhance (Mo) X-ray Source2273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
Bruker Kappa APEX
h = 66
Tmin = 0.575, Tmax = 0.636k = 3030
23823 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.3109P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H13N2S+·BrV = 1380.35 (11) Å3
Mr = 321.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3289 (2) ŵ = 3.11 mm1
b = 24.0195 (12) ÅT = 296 K
c = 10.9544 (5) Å0.20 × 0.18 × 0.16 mm
β = 100.113 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3009 independent reflections
Absorption correction: multi-scan
Bruker Kappa APEX
2273 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.636Rint = 0.039
23823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3009 reflectionsΔρmin = 0.29 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27225 (4)0.295277 (10)0.33608 (2)0.04982 (10)
S10.57379 (16)0.00128 (3)0.21720 (8)0.0710 (2)
N10.6485 (4)0.28057 (8)0.13508 (19)0.0421 (5)
N20.9186 (4)0.25577 (8)0.01982 (17)0.0408 (4)
C10.9109 (4)0.31328 (10)0.0161 (2)0.0415 (5)
C21.0437 (5)0.35189 (11)0.0424 (2)0.0555 (6)
C30.9910 (6)0.40696 (12)0.0233 (3)0.0644 (7)
C40.8149 (6)0.42307 (12)0.0504 (3)0.0659 (8)
C50.6847 (5)0.38481 (11)0.1084 (3)0.0555 (6)
C60.7381 (4)0.32913 (10)0.0906 (2)0.0430 (5)
C70.7610 (4)0.23676 (9)0.09243 (19)0.0387 (5)
C80.7198 (4)0.17861 (9)0.1213 (2)0.0391 (5)
C90.5449 (5)0.16389 (11)0.1960 (2)0.0516 (6)
C100.5058 (5)0.10930 (11)0.2220 (2)0.0558 (6)
C110.6392 (5)0.06710 (10)0.1762 (2)0.0453 (5)
C120.8139 (6)0.08164 (11)0.1013 (3)0.0586 (7)
C130.8530 (5)0.13648 (11)0.0746 (3)0.0548 (7)
C140.7734 (8)0.04379 (14)0.1398 (4)0.0721 (9)
H1N0.562 (5)0.2802 (10)0.181 (2)0.042 (7)*
H90.464 (5)0.1907 (12)0.233 (2)0.062 (8)*
H2N0.991 (5)0.2357 (11)0.017 (2)0.049 (8)*
H120.909 (5)0.0539 (11)0.070 (2)0.065 (8)*
H14C0.736 (6)0.0776 (16)0.159 (3)0.086 (11)*
H14B0.947 (7)0.0359 (13)0.169 (3)0.090 (11)*
H50.567 (5)0.3946 (12)0.163 (2)0.075 (9)*
H40.781 (6)0.4619 (13)0.063 (3)0.085 (10)*
H21.159 (5)0.3398 (11)0.092 (2)0.058 (7)*
H130.975 (5)0.1462 (12)0.022 (3)0.079 (9)*
H100.389 (5)0.0996 (11)0.276 (2)0.064 (7)*
H31.080 (5)0.4350 (12)0.060 (2)0.070 (8)*
H14A0.736 (6)0.0374 (14)0.054 (3)0.097 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05371 (15)0.05390 (17)0.04775 (15)0.00057 (11)0.02515 (10)0.00017 (11)
S10.0965 (6)0.0390 (4)0.0891 (5)0.0055 (3)0.0480 (4)0.0060 (3)
N10.0446 (11)0.0397 (11)0.0476 (11)0.0021 (8)0.0233 (9)0.0012 (9)
N20.0441 (10)0.0396 (11)0.0436 (11)0.0006 (9)0.0212 (9)0.0029 (9)
C10.0442 (12)0.0399 (12)0.0414 (12)0.0043 (10)0.0105 (10)0.0003 (10)
C20.0593 (16)0.0521 (16)0.0598 (15)0.0093 (12)0.0233 (13)0.0045 (13)
C30.0741 (19)0.0474 (16)0.0755 (18)0.0129 (14)0.0231 (15)0.0080 (14)
C40.077 (2)0.0386 (16)0.082 (2)0.0056 (13)0.0140 (16)0.0001 (14)
C50.0626 (16)0.0411 (15)0.0655 (16)0.0024 (12)0.0185 (13)0.0077 (13)
C60.0433 (12)0.0414 (13)0.0450 (12)0.0031 (10)0.0099 (9)0.0011 (10)
C70.0380 (11)0.0407 (13)0.0392 (11)0.0013 (10)0.0121 (9)0.0001 (10)
C80.0400 (12)0.0394 (13)0.0392 (11)0.0015 (10)0.0109 (9)0.0009 (10)
C90.0621 (16)0.0380 (13)0.0626 (15)0.0046 (11)0.0331 (13)0.0005 (12)
C100.0620 (16)0.0484 (15)0.0665 (16)0.0018 (12)0.0377 (13)0.0054 (13)
C110.0512 (13)0.0386 (13)0.0483 (13)0.0036 (10)0.0147 (10)0.0016 (10)
C120.0705 (18)0.0389 (15)0.0762 (18)0.0019 (12)0.0400 (15)0.0019 (13)
C130.0615 (16)0.0436 (15)0.0689 (16)0.0011 (12)0.0377 (14)0.0004 (12)
C140.091 (3)0.0407 (18)0.089 (3)0.0024 (16)0.028 (2)0.0003 (16)
Geometric parameters (Å, º) top
S1—C111.754 (2)C5—C61.388 (3)
S1—C141.791 (4)C5—H50.97 (3)
N1—C71.335 (3)C7—C81.457 (3)
N1—C61.381 (3)C8—C131.384 (3)
N1—H1N0.74 (3)C8—C91.390 (3)
N2—C71.334 (3)C9—C101.365 (4)
N2—C11.382 (3)C9—H90.91 (3)
N2—H2N0.77 (3)C10—C111.382 (3)
C1—C61.386 (3)C10—H100.96 (3)
C1—C21.390 (3)C11—C121.389 (3)
C2—C31.376 (4)C12—C131.373 (4)
C2—H20.93 (3)C12—H120.94 (3)
C3—C41.395 (4)C13—H130.97 (3)
C3—H30.95 (3)C14—H14C0.87 (4)
C4—C51.373 (4)C14—H14B0.94 (3)
C4—H40.96 (3)C14—H14A0.94 (3)
C11—S1—C14104.57 (15)N2—C7—C8126.29 (19)
C7—N1—C6109.73 (19)N1—C7—C8125.82 (18)
C7—N1—H1N127.0 (19)C13—C8—C9118.2 (2)
C6—N1—H1N123.0 (19)C13—C8—C7120.93 (19)
C7—N2—C1109.94 (18)C9—C8—C7120.9 (2)
C7—N2—H2N121.6 (19)C10—C9—C8120.6 (2)
C1—N2—H2N128.3 (19)C10—C9—H9118.9 (17)
N2—C1—C6106.04 (19)C8—C9—H9120.3 (17)
N2—C1—C2131.7 (2)C9—C10—C11121.5 (2)
C6—C1—C2122.2 (2)C9—C10—H10120.0 (16)
C3—C2—C1115.9 (3)C11—C10—H10118.4 (16)
C3—C2—H2124.1 (16)C10—C11—C12118.1 (2)
C1—C2—H2120.0 (16)C10—C11—S1117.15 (18)
C2—C3—C4122.1 (3)C12—C11—S1124.79 (19)
C2—C3—H3119.2 (17)C13—C12—C11120.6 (2)
C4—C3—H3118.7 (17)C13—C12—H12119.2 (17)
C5—C4—C3121.9 (3)C11—C12—H12120.2 (17)
C5—C4—H4117.2 (19)C12—C13—C8121.1 (2)
C3—C4—H4121.0 (19)C12—C13—H13120.1 (17)
C4—C5—C6116.5 (3)C8—C13—H13118.9 (18)
C4—C5—H5123.9 (18)S1—C14—H14C104 (2)
C6—C5—H5119.5 (18)S1—C14—H14B111 (2)
N1—C6—C1106.4 (2)H14C—C14—H14B111 (3)
N1—C6—C5132.2 (2)S1—C14—H14A110 (2)
C1—C6—C5121.4 (2)H14C—C14—H14A112 (3)
N2—C7—N1107.9 (2)H14B—C14—H14A109 (3)
C7—N2—C1—C60.2 (3)C6—N1—C7—C8178.60 (19)
C7—N2—C1—C2177.8 (3)N2—C7—C8—C131.4 (3)
N2—C1—C2—C3178.5 (2)N1—C7—C8—C13178.0 (2)
C6—C1—C2—C30.8 (4)N2—C7—C8—C9178.3 (2)
C1—C2—C3—C40.0 (4)N1—C7—C8—C92.2 (3)
C2—C3—C4—C50.3 (5)C13—C8—C9—C100.2 (4)
C3—C4—C5—C60.3 (4)C7—C8—C9—C10179.5 (2)
C7—N1—C6—C10.8 (3)C8—C9—C10—C110.6 (4)
C7—N1—C6—C5179.2 (3)C9—C10—C11—C120.7 (4)
N2—C1—C6—N10.4 (2)C9—C10—C11—S1179.5 (2)
C2—C1—C6—N1178.6 (2)C14—S1—C11—C10178.8 (2)
N2—C1—C6—C5179.6 (2)C14—S1—C11—C121.0 (3)
C2—C1—C6—C51.4 (4)C10—C11—C12—C130.4 (4)
C4—C5—C6—N1178.9 (3)S1—C11—C12—C13179.8 (2)
C4—C5—C6—C11.1 (4)C11—C12—C13—C80.1 (5)
C1—N2—C7—N10.7 (3)C9—C8—C13—C120.1 (4)
C1—N2—C7—C8178.83 (19)C7—C8—C13—C12179.8 (2)
C6—N1—C7—N20.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.74 (2)2.51 (2)3.247 (2)171 (2)
N2—H2N···Br1i0.77 (3)2.50 (2)3.231 (2)159
C5—H5···S1ii0.97 (3)2.98 (3)3.736 (3)135
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N2S+·Br
Mr321.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.3289 (2), 24.0195 (12), 10.9544 (5)
β (°) 100.113 (2)
V3)1380.35 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.11
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
Bruker Kappa APEX
Tmin, Tmax0.575, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
23823, 3009, 2273
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.03
No. of reflections3009
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.74 (2)2.51 (2)3.247 (2)171 (2)
N2—H2N···Br1i0.77 (3)2.50 (2)3.231 (2)159
C5—H5···S1ii0.97 (3)2.98 (3)3.736 (3)135
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology (DST), India, for the data collection facility under the IRHPA–DST program. MNM thanks the M. S. Ramaiah Institute of Technology, Bangalore, for their support and encouragement.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. 34, 1555–1573.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoker, H., Olgen, S., Ertan, R., Akgiin, H., Ozbey, S., Kendi, E. & Topcu, G. (1995). J. Heterocycl. Chem. 32, 1767–1773.  Google Scholar
First citationHuang, W. & Scarborough, R. M. (1999). Tetrahedron Lett. 40, 2665–2668.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOzbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationPreston, P. N. (1974). Chem. Rev. 74, 279–314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1994). Acta Cryst. C50, 1286–1288.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o341-o342
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds