organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-[5-(4-tert-Butyl­phen­yl)-1,3,4-oxa­diazol-2-yl]phen­yl}methanol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bKey Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: zhaoyl66@hotmail.com

(Received 2 December 2010; accepted 16 December 2010; online 8 January 2011)

In the title compound, C19H20N2O2, the 1,3,4-oxadiazole ring is almost coplanar with the two neighboring benzene rings [dihedral angles = 3.76 (4) and 5.49 (4)°]. In the crystal, mol­ecules are connected by strong inter­molecular O—H⋯N hydrogen bonds, forming chains parallel to the c axis.

Related literature

For the properties and applications of 1,3,4-oxadiazole derivatives, see: Hughes & Bryce (2005[Hughes, G. & Bryce, M. R. (2005). J. Mater. Chem. 15, 94-107.]); Kim & Lee (2007[Kim, J. H. & Lee, H. (2007). Synth. Met. 157, 1040-1045.]); Kulkarni et al. (2004[Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556-4573.]); Liang et al. (2003[Liang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 1935-1937.]); Liou et al. (2006[Liou, G. S., Hsiao, S. H., Chen, W. C. & Yen, H. J. (2006). Macromolecules, 39, 6036-6045.]); Strukelj et al. (1995[Strukelj, M., Papadimitrakopoulos, F., Miller, T. M. & Rothberg, L. J. (1995). Science, 267, 1969-1972.]). For the biological activity of compounds containing the 1,3,4-oxadiazole moiety, see: Cacic et al. (2006[Cacic, M., Trkovnik, M., Cacic, F. & Has-Schon, E. (2006). Molecules, 11, 134-147.]); Mansour et al. (2003[Mansour, A. K., Eid, M. M. & Khalil, N. S. A. M. (2003). Molecules, 8, 744-755.]); Yar et al. (2007[Yar, M. S., Siddiqui, A. A. & Ali, M. A. (2007). J. Chin. Chem. Soc. 54, 5-8.]); Zhang et al. (2007[Zhang, C. R., Wang, L., Ge, Y. L. & Ju, X. L. (2007). Chin. J. Org. Chem. 27, 1432-1437.]). For synthesis of the inter­mediate, see Mashraqui et al. (2007[Mashraqui, S. H., Sundaram, S., Bhasikuttan, A. C., Kapoor, S. & Sapre, A. V. (2007). Senss. Actuat. B, 122, 347-350.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O2

  • Mr = 308.37

  • Monoclinic, P 21 /c

  • a = 16.3958 (18) Å

  • b = 6.0654 (7) Å

  • c = 16.7206 (19) Å

  • β = 102.289 (2)°

  • V = 1624.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 185 K

  • 0.32 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.993

  • 8995 measured reflections

  • 2886 independent reflections

  • 1805 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.122

  • S = 0.98

  • 2886 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.84 2.07 2.906 (3) 179
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that 1,3,4-oxadiazole derivatives have strong electron affinity and possess electron-transporting characteristics. They have been widely used as electroluminescent materials and as electron-transport materials in organic light-emitting diodes (OLEDs) (Strukelj et al., 1995; Kulkarni et al., 2004; Hughes & Bryce 2005). Due to its excellent electron transporting properties, the 1,3,4-oxadiazole unit has been embedded in larger compounds to improve the quantum efficiencies of OLEDs (Liang et al., 2003; Liou et al., 2006; Kim & Lee 2007). Moreover, the compounds containing 1,3,4-oxadiazole also exhibit beneficial biological activity, such as anti-inflammatory, antibacterial, anticancer, plant growth regulation, weed and worm killing, anti-HIV and other activities (Cacic et al., 2006; Mansour et al., 2003; Zhang et al., 2007; Yar et al., 2007).

The molecular structure of the title compound is shown in Fig.1. Bond lengths and angles in the molecule are within normal ranges. The 1,3,4-oxadiazole ring is almost coplanar with two neighboring benzene rings (dihedral angles between the 1,3,4-oxadiazole ring and two benzene rings are 3.76 (4)° and 5.49 (4)°. The crystal structure is stabilized by intermolecular O—H···N hydrogen bonds (Fig. 2), to form chains parallel to the c axis.

Related literature top

For the properties and applications of 1,3,4-oxadiazole derivatives, see: Hughes & Bryce (2005); Kim & Lee (2007); Kulkarni et al. (2004); Liang et al. (2003); Liou et al. (2006); Strukelj et al. (1995). For the biological activity of compounds containing the 1,3,4-oxadiazole moiety, see: Cacic et al. (2006); Mansour et al. (2003); Yar et al. (2007); Zhang et al. (2007). For synthesis of the intermediate, see Mashraqui et al. (2007).

Experimental top

The title compound was obtained by reacting 2-[4-(bromomethyl)phenyl]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole and potassium hydroxide in N,N-dimethyllformamide. The intermediate, 2-[4-(bromomethyl)phenyl]-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, was synthesized according to the method described by Mashraqui et al. (Mashraqui et al., 2007).

After dispersing potassium hydroxide (3.62 mmol) in N,N-dimethylformamide (30 ml) for 10 min, 2-[4-(bromomethyl)phenyl]-5-(4-tert-butylphenyl)- 1,3,4-oxadiazole (3.62 mmol) was added. The reaction vessel was refluxed for one day. Neutralization with saturated aqueous ammonium chloride (100 ml) followed by extraction with dichloromethane (100 ml) was performed, and the organic layer was dried over anhydrous magnesium sulfate. The concentrated crude product was purified with silica column chromatography to afford the title compound. m.p. 381–383 K. 1H-NMR (500 MHz, CDCl3): 8.12–8.05 (m, 4H, Ar—H), 7.56–7.52 (m, 4H, Ar—H), 4.81 (s, 2H, –CH2–), 2.31 (s, 1H, –OH), 1.41 (s, 9H, –CH3).

Colourless single crystals were obtained by slow evaporation of a methanolic solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (aromatic), 0.99 (CH2), 0.98 Å (CH3) and Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The hydroxyl H atom was found in a difference Fourier map and refined as riding atom, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing the bc plane. Intermolecular O—H···N hydrogen bonds (dashed lines) form chains parallel to the c axis
{4-[5-(4-tert-Butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl}methanol top
Crystal data top
C19H20N2O2F(000) = 656
Mr = 308.37Dx = 1.261 Mg m3
Monoclinic, P21/cMelting point = 381–383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.3958 (18) ÅCell parameters from 1372 reflections
b = 6.0654 (7) Åθ = 2.5–23.3°
c = 16.7206 (19) ŵ = 0.08 mm1
β = 102.289 (2)°T = 185 K
V = 1624.7 (3) Å3Block, colorless
Z = 40.32 × 0.14 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2886 independent reflections
Radiation source: sealed tube1805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1419
Tmin = 0.974, Tmax = 0.993k = 77
8995 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
2886 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C19H20N2O2V = 1624.7 (3) Å3
Mr = 308.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.3958 (18) ŵ = 0.08 mm1
b = 6.0654 (7) ÅT = 185 K
c = 16.7206 (19) Å0.32 × 0.14 × 0.09 mm
β = 102.289 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2886 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1805 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.993Rint = 0.051
8995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
2886 reflectionsΔρmin = 0.14 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.11403 (11)0.3479 (3)0.77257 (10)0.0481 (5)
H10.13060.23040.79740.072*
O20.21110 (9)0.1173 (2)0.41106 (9)0.0363 (4)
N10.12828 (12)0.3966 (3)0.42308 (11)0.0396 (5)
N20.16872 (13)0.4399 (3)0.35861 (11)0.0405 (5)
C10.04959 (16)0.2996 (4)0.70351 (14)0.0423 (6)
H1A0.00450.21870.72190.051*
H1B0.02590.43970.67840.051*
C20.07960 (15)0.1632 (4)0.63943 (13)0.0358 (6)
C30.13751 (15)0.2496 (4)0.59808 (14)0.0388 (6)
H30.16030.39190.61190.047*
C40.16207 (15)0.1294 (4)0.53697 (13)0.0375 (6)
H40.20060.19150.50810.045*
C50.13098 (15)0.0811 (3)0.51743 (13)0.0334 (6)
C60.07323 (15)0.1692 (4)0.55888 (13)0.0373 (6)
H60.05120.31270.54580.045*
C70.04808 (15)0.0471 (4)0.61911 (13)0.0386 (6)
H70.00860.10770.64710.046*
C80.15439 (14)0.2058 (4)0.45132 (13)0.0335 (6)
C90.21555 (15)0.2722 (4)0.35340 (13)0.0346 (6)
C100.26874 (14)0.2326 (4)0.29488 (13)0.0338 (6)
C110.30966 (17)0.0348 (4)0.29253 (16)0.0514 (7)
H110.30550.07750.33110.062*
C120.35681 (17)0.0006 (4)0.23410 (16)0.0546 (8)
H120.38470.13770.23360.066*
C130.36454 (15)0.1577 (4)0.17643 (14)0.0366 (6)
C140.32332 (15)0.3538 (4)0.18029 (14)0.0422 (6)
H140.32760.46660.14200.051*
C150.27591 (15)0.3921 (4)0.23804 (14)0.0424 (6)
H150.24810.52930.23860.051*
C160.41390 (15)0.1098 (4)0.10994 (14)0.0393 (6)
C170.49387 (17)0.0160 (5)0.14583 (17)0.0589 (8)
H17A0.52870.07260.18900.088*
H17B0.52450.04550.10260.088*
H17C0.47980.15590.16890.088*
C180.4366 (2)0.3210 (4)0.06978 (19)0.0703 (10)
H18A0.46930.41740.11170.105*
H18B0.38540.39710.04270.105*
H18C0.46960.28390.02920.105*
C190.35905 (17)0.0327 (4)0.04458 (15)0.0532 (7)
H19A0.38900.06530.00110.080*
H19B0.30740.04660.02140.080*
H19C0.34560.17080.06930.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0561 (13)0.0525 (10)0.0353 (10)0.0063 (9)0.0085 (9)0.0032 (8)
O20.0408 (11)0.0420 (9)0.0285 (9)0.0023 (7)0.0127 (8)0.0020 (7)
N10.0450 (14)0.0458 (12)0.0301 (11)0.0014 (10)0.0128 (10)0.0014 (9)
N20.0427 (13)0.0494 (12)0.0323 (12)0.0062 (10)0.0144 (10)0.0039 (9)
C10.0477 (18)0.0502 (15)0.0292 (14)0.0063 (12)0.0088 (13)0.0010 (11)
C20.0388 (16)0.0416 (14)0.0275 (13)0.0080 (11)0.0084 (11)0.0043 (10)
C30.0436 (16)0.0367 (13)0.0373 (14)0.0020 (11)0.0114 (13)0.0019 (11)
C40.0393 (16)0.0422 (13)0.0340 (13)0.0038 (11)0.0146 (12)0.0061 (11)
C50.0374 (15)0.0375 (13)0.0252 (12)0.0056 (11)0.0067 (11)0.0041 (10)
C60.0421 (16)0.0405 (13)0.0298 (13)0.0031 (11)0.0090 (12)0.0046 (10)
C70.0427 (16)0.0475 (14)0.0282 (13)0.0042 (12)0.0134 (12)0.0102 (11)
C80.0345 (15)0.0411 (13)0.0252 (13)0.0011 (11)0.0074 (11)0.0064 (10)
C90.0385 (16)0.0407 (13)0.0255 (13)0.0017 (12)0.0085 (12)0.0040 (10)
C100.0326 (15)0.0410 (13)0.0281 (13)0.0004 (11)0.0068 (11)0.0021 (10)
C110.067 (2)0.0444 (15)0.0515 (17)0.0111 (13)0.0313 (16)0.0150 (12)
C120.071 (2)0.0421 (14)0.0606 (19)0.0167 (14)0.0354 (17)0.0115 (13)
C130.0366 (15)0.0410 (13)0.0342 (14)0.0008 (11)0.0119 (12)0.0010 (11)
C140.0444 (17)0.0446 (14)0.0416 (15)0.0044 (12)0.0180 (13)0.0120 (12)
C150.0427 (16)0.0417 (13)0.0456 (15)0.0108 (12)0.0156 (13)0.0097 (12)
C160.0382 (16)0.0424 (13)0.0411 (14)0.0012 (12)0.0166 (13)0.0005 (11)
C170.0458 (19)0.0787 (19)0.0555 (18)0.0067 (15)0.0181 (15)0.0091 (15)
C180.096 (3)0.0512 (17)0.085 (2)0.0044 (16)0.066 (2)0.0018 (15)
C190.0552 (19)0.0661 (18)0.0408 (16)0.0017 (14)0.0158 (14)0.0035 (13)
Geometric parameters (Å, º) top
O1—C11.420 (3)C10—C151.379 (3)
O1—H10.8400C11—C121.386 (3)
O2—C91.359 (2)C11—H110.9500
O2—C81.368 (2)C12—C131.386 (3)
N1—C81.288 (3)C12—H120.9500
N1—N21.405 (2)C13—C141.377 (3)
N2—C91.289 (3)C13—C161.536 (3)
C1—C21.516 (3)C14—C151.382 (3)
C1—H1A0.9900C14—H140.9500
C1—H1B0.9900C15—H150.9500
C2—C71.391 (3)C16—C171.525 (3)
C2—C31.391 (3)C16—C191.527 (3)
C3—C41.383 (3)C16—C181.528 (3)
C3—H30.9500C17—H17A0.9800
C4—C51.388 (3)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
C5—C61.394 (3)C18—H18A0.9800
C5—C81.457 (3)C18—H18B0.9800
C6—C71.382 (3)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—H70.9500C19—H19B0.9800
C9—C101.463 (3)C19—H19C0.9800
C10—C111.379 (3)
C1—O1—H1109.5C10—C11—H11119.9
C9—O2—C8102.87 (16)C12—C11—H11119.9
C8—N1—N2105.96 (17)C11—C12—C13122.1 (2)
C9—N2—N1106.82 (17)C11—C12—H12119.0
O1—C1—C2113.0 (2)C13—C12—H12119.0
O1—C1—H1A109.0C14—C13—C12116.6 (2)
C2—C1—H1A109.0C14—C13—C16122.48 (19)
O1—C1—H1B109.0C12—C13—C16120.9 (2)
C2—C1—H1B109.0C13—C14—C15122.2 (2)
H1A—C1—H1B107.8C13—C14—H14118.9
C7—C2—C3118.78 (19)C15—C14—H14118.9
C7—C2—C1120.89 (19)C10—C15—C14120.4 (2)
C3—C2—C1120.3 (2)C10—C15—H15119.8
C4—C3—C2120.4 (2)C14—C15—H15119.8
C4—C3—H3119.8C17—C16—C19108.9 (2)
C2—C3—H3119.8C17—C16—C18108.8 (2)
C3—C4—C5120.6 (2)C19—C16—C18108.7 (2)
C3—C4—H4119.7C17—C16—C13110.55 (19)
C5—C4—H4119.7C19—C16—C13107.72 (18)
C4—C5—C6119.35 (19)C18—C16—C13111.99 (18)
C4—C5—C8120.90 (19)C16—C17—H17A109.5
C6—C5—C8119.7 (2)C16—C17—H17B109.5
C7—C6—C5119.8 (2)H17A—C17—H17B109.5
C7—C6—H6120.1C16—C17—H17C109.5
C5—C6—H6120.1H17A—C17—H17C109.5
C6—C7—C2121.1 (2)H17B—C17—H17C109.5
C6—C7—H7119.4C16—C18—H18A109.5
C2—C7—H7119.4C16—C18—H18B109.5
N1—C8—O2112.30 (18)H18A—C18—H18B109.5
N1—C8—C5128.60 (19)C16—C18—H18C109.5
O2—C8—C5119.09 (19)H18A—C18—H18C109.5
N2—C9—O2112.03 (17)H18B—C18—H18C109.5
N2—C9—C10128.56 (19)C16—C19—H19A109.5
O2—C9—C10119.41 (19)C16—C19—H19B109.5
C11—C10—C15118.5 (2)H19A—C19—H19B109.5
C11—C10—C9121.64 (19)C16—C19—H19C109.5
C15—C10—C9119.8 (2)H19A—C19—H19C109.5
C10—C11—C12120.2 (2)H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.842.072.906 (3)179
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H20N2O2
Mr308.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)16.3958 (18), 6.0654 (7), 16.7206 (19)
β (°) 102.289 (2)
V3)1624.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8995, 2886, 1805
Rint0.051
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 0.98
No. of reflections2886
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.842.072.906 (3)179
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Gansu Province (096RJZA086) and the project of students' science and technology innovation funds (DXS2010–041) of Lanzhou Jiaotong University.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCacic, M., Trkovnik, M., Cacic, F. & Has-Schon, E. (2006). Molecules, 11, 134–147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHughes, G. & Bryce, M. R. (2005). J. Mater. Chem. 15, 94–107.  Web of Science CrossRef CAS Google Scholar
First citationKim, J. H. & Lee, H. (2007). Synth. Met. 157, 1040–1045.  Web of Science CrossRef CAS Google Scholar
First citationKulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.  Web of Science CrossRef CAS Google Scholar
First citationLiang, F. S., Zhou, Q. G., Cheng, Y. X., Wang, L. X., Ma, D. G., Jing, X. B. & Wang, F. S. (2003). Chem. Mater. 15, 1935–1937.  Web of Science CrossRef CAS Google Scholar
First citationLiou, G. S., Hsiao, S. H., Chen, W. C. & Yen, H. J. (2006). Macromolecules, 39, 6036–6045.  Web of Science CrossRef CAS Google Scholar
First citationMansour, A. K., Eid, M. M. & Khalil, N. S. A. M. (2003). Molecules, 8, 744–755.  Web of Science CrossRef CAS Google Scholar
First citationMashraqui, S. H., Sundaram, S., Bhasikuttan, A. C., Kapoor, S. & Sapre, A. V. (2007). Senss. Actuat. B, 122, 347–350.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrukelj, M., Papadimitrakopoulos, F., Miller, T. M. & Rothberg, L. J. (1995). Science, 267, 1969–1972.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYar, M. S., Siddiqui, A. A. & Ali, M. A. (2007). J. Chin. Chem. Soc. 54, 5–8.  CAS Google Scholar
First citationZhang, C. R., Wang, L., Ge, Y. L. & Ju, X. L. (2007). Chin. J. Org. Chem. 27, 1432–1437.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds