metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m135-m136

Bis(2-amino-1,3-thia­zole-κN3)di­azido­zinc

aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea, and bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: ihkim@konyang.ac.kr

(Received 13 December 2010; accepted 22 December 2010; online 8 January 2011)

In the title complex, [Zn(N3)2(C3H4N2S)2], the ZnII atom is tetra­hedrally coordinated by two terminal azide ligands and by the ring N atoms of two different 2-amino­thia­zole ligands. Intra­molecular N—H⋯N hydrogen bonds between the amino groups of both 2-amino­thia­zole ligands and the N atom of one of the azide ligands ensure that the heterocyclic rings are oriented in the same direction. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into zigzag sheets in the ac plane.

Related literature

For multi-dimensional supra­molecular complexes with organic–inorganic hybrids, see: Iwamoto (1996[Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643-690. Oxford: Pergamon Press.]); Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]); Braga et al. (1998[Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375-1406.]). For the use of pseudo-halides in the construction of supra­molecular assemblies, see: Vrieze & Koten (1987[Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225-244. Oxford: Pergamon Press.]); Cortes et al. (1997[Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016-5021.]); Yun et al. (2004[Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321-327.]); Kim et al. (2008[Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562-568.]). For the coordination chemistry of imidazole and thia­zole derivatives, see: Costes et al. (1991[Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887-1892.]); Balch et al. (1993[Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901-2905.]); Suh et al. (2005[Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 386-390.], 2007[Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.], 2009[Suh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054.]); Kim & Kim (2010[Kim, C.-H. & Kim, I. H. (2010). Acta Cryst. E66, m13.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(N3)2(C3H4N2S)2]

  • Mr = 349.71

  • Triclinic, [P \overline 1]

  • a = 8.096 (1) Å

  • b = 8.4004 (8) Å

  • c = 10.066 (1) Å

  • α = 96.489 (9)°

  • β = 100.66 (1)°

  • γ = 96.885 (9)°

  • V = 661.5 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 295 K

  • 0.42 × 0.38 × 0.24 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.462, Tmax = 0.623

  • 3352 measured reflections

  • 2747 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.068

  • S = 1.09

  • 2747 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N16—H16A⋯N4 0.86 2.30 3.080 (3) 151
N16—H16A⋯N6i 0.86 2.57 3.033 (3) 115
N16—H16B⋯N3ii 0.86 2.34 3.102 (3) 148
N26—H26A⋯N4 0.86 2.24 3.005 (3) 148
N26—H26B⋯N3iii 0.86 2.28 3.071 (3) 153
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z+1; (iii) -x, -y, -z.

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multi-dimensional supramolecular complexes with both organic and inorganic ligands have become of great interest recently (Iwamoto, 1996; Batten & Robson, 1998). They have been shown to have useful electronic, magnetic, optical, catalytic, etc. properties (Braga et al., 1998). For designing novel 1-, 2- and 3-D frameworks, we (Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of pseudohalide ions and complementary organic ligands. Pseudo-halide ions are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is known to play an important role in stabilizing multi-dimensional structures. In particular, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, the frameworks of metal complexes with thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007, 2009; Kim & Kim, 2010). Herein, we present the synthesis and structure determination of the title complex, Zn(N3)2(C3H4N2S)2, with 2-aminothiazole as shown in Fig. 1. In the title complex, the ZnII atom is tetrahedrally coordinated by two terminal azido ligands, and by the N atoms of two different 2-aminothiazole ligands. Intramolecular N—H···N hydrogen bonds between the amino groups of both 2-aminothiazole ligands and the nitrogen atom of one of the azido ligands ensure that the heterocyclic rings are oriented in the same direction. Intermolecular N—H···N hydrogen bonds form the molecules into zig-zag sheets in the ac plane (Fig. 2).

Related literature top

For multi-dimensional supramolecular complexes with organic–inorganic hybrids, see: Iwamoto (1996); Batten & Robson (1998); Braga et al. (1998). For the use of pseudo-halides in the construction of supramolecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2008). For the coordination chemistry of imidazole and thiazole derivatives, see: Costes et al. (1991); Balch et al. (1993); Suh et al. (2005, 2007, 2009); Kim & Kim (2010).

Experimental top

A water-methanolic (2:1) solution (60 ml) of sodium azide (9 mmol, 0.59 g) was added to a water-methanolic (2:1) solution (50 ml) of ZnSO4.7H2O (3 mmol, 0.87 g). To this mixture, a water-methanolic (2:1) solution (80 ml) of 2-aminobenzothiazole (10 mmol, 1.00 g) was introduced, with stirring for 1 h. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a 1 week dark-yellow block crystals suitable for X-ray analysis were obtained. Elemental analysis found: C 20.73, H 2.25, N 40.22, S 18.50, Zn 18.70%; C6H8N10S2Zn requires: C 20.61, H 2.31, N 40.05, S 18.34, Zn 18.76%.

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for hetrocyclic H atoms and N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(N) for amino H atom.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atomic numbering and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing diagram of the title complex, viewed down the b axis showing the N—H···N(dashed lines) hydrogen bonds.
Bis(2-amino-1,3-thiazole-κN3)diazidozinc top
Crystal data top
[Zn(N3)2(C3H4N2S)2]Z = 2
Mr = 349.71F(000) = 352
Triclinic, P1Dx = 1.756 Mg m3
Dm = 1.76 Mg m3
Dm measured by flotation method
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.096 (1) ÅCell parameters from 39 reflections
b = 8.4004 (8) Åθ = 4.7–14.6°
c = 10.066 (1) ŵ = 2.18 mm1
α = 96.489 (9)°T = 295 K
β = 100.66 (1)°Block, dark yellow
γ = 96.885 (9)°0.42 × 0.38 × 0.24 mm
V = 661.5 (1) Å3
Data collection top
Bruker P4
diffractometer
2544 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
2θ/ω scansh = 110
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.462, Tmax = 0.623l = 1212
3352 measured reflections3 standard reflections every 97 reflections
2747 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.3124P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2747 reflectionsΔρmax = 0.29 e Å3
173 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0118 (11)
Crystal data top
[Zn(N3)2(C3H4N2S)2]γ = 96.885 (9)°
Mr = 349.71V = 661.5 (1) Å3
Triclinic, P1Z = 2
a = 8.096 (1) ÅMo Kα radiation
b = 8.4004 (8) ŵ = 2.18 mm1
c = 10.066 (1) ÅT = 295 K
α = 96.489 (9)°0.42 × 0.38 × 0.24 mm
β = 100.66 (1)°
Data collection top
Bruker P4
diffractometer
2544 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.462, Tmax = 0.6233 standard reflections every 97 reflections
3352 measured reflections intensity decay: none
2747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
2747 reflectionsΔρmin = 0.28 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.22961 (3)0.28874 (3)0.27010 (2)0.03913 (10)
N10.3512 (3)0.4038 (3)0.1481 (2)0.0578 (5)
N20.3327 (3)0.3684 (2)0.0289 (2)0.0479 (4)
N30.3184 (4)0.3406 (3)0.0866 (2)0.0758 (8)
N40.3014 (3)0.1005 (2)0.3536 (2)0.0496 (5)
N50.4122 (3)0.0255 (2)0.32922 (19)0.0475 (5)
N60.5156 (3)0.0496 (3)0.3098 (3)0.0689 (6)
S110.28221 (10)0.65810 (8)0.64496 (7)0.05854 (18)
C120.2849 (3)0.4728 (3)0.5514 (2)0.0407 (4)
N130.2265 (3)0.4669 (2)0.41986 (18)0.0434 (4)
C140.1766 (4)0.6139 (3)0.3920 (3)0.0646 (7)
H14A0.13190.63140.30380.077*
C150.1962 (4)0.7276 (3)0.4978 (3)0.0655 (7)
H150.16740.83100.49310.079*
N160.3412 (3)0.3506 (3)0.6102 (2)0.0649 (6)
H16A0.34100.25960.56140.078*
H16B0.37790.36230.69700.078*
S210.28571 (8)0.04332 (9)0.02647 (7)0.05992 (18)
C220.0995 (3)0.0694 (3)0.1466 (2)0.0424 (5)
N230.0062 (2)0.2108 (2)0.15549 (18)0.0408 (4)
C240.0868 (3)0.3032 (3)0.0654 (3)0.0561 (6)
H24A0.03950.40790.05890.067*
C250.2352 (4)0.2348 (3)0.0113 (3)0.0616 (7)
H250.30180.28350.07600.074*
N260.0579 (3)0.0446 (3)0.2244 (3)0.0672 (7)
H26A0.03490.02730.28470.081*
H26B0.12410.13510.21410.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.04775 (16)0.03781 (14)0.03000 (14)0.00320 (10)0.00434 (10)0.00587 (9)
N10.0701 (14)0.0594 (12)0.0389 (10)0.0144 (11)0.0145 (10)0.0049 (9)
N20.0579 (12)0.0396 (9)0.0457 (11)0.0058 (8)0.0160 (9)0.0081 (8)
N30.117 (2)0.0644 (14)0.0413 (12)0.0165 (14)0.0270 (13)0.0021 (10)
N40.0558 (12)0.0490 (11)0.0446 (10)0.0134 (9)0.0044 (9)0.0130 (8)
N50.0559 (12)0.0406 (10)0.0401 (10)0.0058 (9)0.0050 (8)0.0070 (8)
N60.0728 (16)0.0597 (14)0.0763 (16)0.0273 (12)0.0086 (13)0.0100 (12)
S110.0711 (4)0.0552 (3)0.0448 (3)0.0152 (3)0.0066 (3)0.0102 (3)
C120.0433 (11)0.0447 (11)0.0333 (10)0.0047 (9)0.0090 (8)0.0020 (8)
N130.0566 (11)0.0393 (9)0.0330 (8)0.0074 (8)0.0056 (8)0.0050 (7)
C140.096 (2)0.0496 (14)0.0472 (13)0.0235 (14)0.0030 (14)0.0101 (11)
C150.085 (2)0.0483 (14)0.0629 (16)0.0222 (14)0.0088 (15)0.0033 (12)
N160.1032 (19)0.0590 (13)0.0313 (10)0.0276 (13)0.0015 (11)0.0047 (9)
S210.0440 (3)0.0662 (4)0.0607 (4)0.0020 (3)0.0054 (3)0.0040 (3)
C220.0405 (11)0.0445 (11)0.0406 (11)0.0059 (9)0.0053 (9)0.0037 (9)
N230.0439 (10)0.0395 (9)0.0381 (9)0.0061 (7)0.0035 (7)0.0088 (7)
C240.0614 (15)0.0534 (14)0.0525 (14)0.0089 (12)0.0011 (12)0.0201 (11)
C250.0622 (16)0.0697 (17)0.0516 (14)0.0199 (13)0.0030 (12)0.0163 (12)
N260.0603 (14)0.0470 (11)0.0853 (17)0.0080 (10)0.0084 (12)0.0262 (11)
Geometric parameters (Å, º) top
Zn—N41.9711 (19)C14—H14A0.9300
Zn—N11.974 (2)C15—H150.9300
Zn—N132.0066 (18)N16—H16A0.8600
Zn—N232.0292 (18)N16—H16B0.8600
N1—N21.181 (3)S21—C251.714 (3)
N2—N31.140 (3)S21—C221.723 (2)
N4—N51.202 (3)C22—N231.313 (3)
N5—N61.138 (3)C22—N261.339 (3)
S11—C151.712 (3)N23—C241.384 (3)
S11—C121.730 (2)C24—C251.326 (4)
C12—N131.314 (3)C24—H24A0.9300
C12—N161.327 (3)C25—H250.9300
N13—C141.386 (3)N26—H26A0.8600
C14—C151.320 (4)N26—H26B0.8600
N4—Zn—N1124.47 (10)C14—C15—H15124.8
N4—Zn—N13108.49 (8)S11—C15—H15124.8
N1—Zn—N13102.24 (8)C12—N16—H16A120.0
N4—Zn—N23105.71 (8)C12—N16—H16B120.0
N1—Zn—N23104.23 (8)H16A—N16—H16B120.0
N13—Zn—N23111.56 (8)C25—S21—C2289.76 (12)
N2—N1—Zn125.88 (17)N23—C22—N26124.1 (2)
N3—N2—N1177.1 (2)N23—C22—S21113.83 (17)
N5—N4—Zn127.06 (17)N26—C22—S21122.09 (18)
N6—N5—N4177.2 (3)C22—N23—C24110.0 (2)
C15—S11—C1289.52 (12)C22—N23—Zn127.90 (15)
N13—C12—N16124.6 (2)C24—N23—Zn121.96 (16)
N13—C12—S11113.59 (17)C25—C24—N23116.5 (2)
N16—C12—S11121.83 (17)C25—C24—H24A121.7
C12—N13—C14110.16 (19)N23—C24—H24A121.7
C12—N13—Zn127.78 (16)C24—C25—S21109.9 (2)
C14—N13—Zn121.67 (16)C24—C25—H25125.1
C15—C14—N13116.3 (2)S21—C25—H25125.1
C15—C14—H14A121.9C22—N26—H26A120.0
N13—C14—H14A121.9C22—N26—H26B120.0
C14—C15—S11110.5 (2)H26A—N26—H26B120.0
N4—Zn—N1—N286.1 (3)C12—N13—C14—C150.0 (4)
N13—Zn—N1—N2151.0 (2)Zn—N13—C14—C15173.3 (2)
N23—Zn—N1—N234.7 (3)N13—C14—C15—S110.3 (4)
Zn—N1—N2—N3164 (6)C12—S11—C15—C140.4 (3)
N1—Zn—N4—N58.6 (2)C25—S21—C22—N230.86 (19)
N13—Zn—N4—N5128.7 (2)C25—S21—C22—N26178.0 (2)
N23—Zn—N4—N5111.6 (2)N26—C22—N23—C24177.6 (2)
Zn—N4—N5—N6177 (100)S21—C22—N23—C241.2 (3)
C15—S11—C12—N130.5 (2)N26—C22—N23—Zn6.5 (3)
C15—S11—C12—N16179.4 (2)S21—C22—N23—Zn174.66 (10)
N16—C12—N13—C14179.5 (3)N4—Zn—N23—C225.3 (2)
S11—C12—N13—C140.4 (3)N1—Zn—N23—C22138.0 (2)
N16—C12—N13—Zn7.8 (4)N13—Zn—N23—C22112.44 (19)
S11—C12—N13—Zn172.39 (11)N4—Zn—N23—C24170.06 (19)
N4—Zn—N13—C129.6 (2)N1—Zn—N23—C2437.4 (2)
N1—Zn—N13—C12123.5 (2)N13—Zn—N23—C2472.2 (2)
N23—Zn—N13—C12125.6 (2)C22—N23—C24—C251.0 (3)
N4—Zn—N13—C14178.4 (2)Zn—N23—C24—C25175.2 (2)
N1—Zn—N13—C1448.5 (2)N23—C24—C25—S210.3 (3)
N23—Zn—N13—C1462.3 (2)C22—S21—C25—C240.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N40.862.303.080 (3)151
N16—H16A···N6i0.862.573.033 (3)115
N16—H16B···N3ii0.862.343.102 (3)148
N26—H26A···N40.862.243.005 (3)148
N26—H26B···N3iii0.862.283.071 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn(N3)2(C3H4N2S)2]
Mr349.71
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.096 (1), 8.4004 (8), 10.066 (1)
α, β, γ (°)96.489 (9), 100.66 (1), 96.885 (9)
V3)661.5 (1)
Z2
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.42 × 0.38 × 0.24
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.462, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
3352, 2747, 2544
Rint0.013
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.068, 1.09
No. of reflections2747
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···N40.862.303.080 (3)151
N16—H16A···N6i0.862.573.033 (3)115
N16—H16B···N3ii0.862.343.102 (3)148
N26—H26A···N40.862.243.005 (3)148
N26—H26B···N3iii0.862.283.071 (3)153
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z.
 

Acknowledgements

This work was supported by Konyang University.

References

First citationBalch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901–2905.  CSD CrossRef CAS Web of Science Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016–5021.  CSD CrossRef CAS Web of Science Google Scholar
First citationCostes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887–1892.  CSD CrossRef CAS Web of Science Google Scholar
First citationIwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press.  Google Scholar
First citationKim, C.-H. & Kim, I. H. (2010). Acta Cryst. E66, m13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562–568.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 386–390.  Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press.  Google Scholar
First citationYun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321–327.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m135-m136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds