metal-organic compounds
Bis(2-amino-1,3-thiazole-κN3)diazidozinc
aDepartment of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea, and bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: ihkim@konyang.ac.kr
In the title complex, [Zn(N3)2(C3H4N2S)2], the ZnII atom is tetrahedrally coordinated by two terminal azide ligands and by the ring N atoms of two different 2-aminothiazole ligands. Intramolecular N—H⋯N hydrogen bonds between the amino groups of both 2-aminothiazole ligands and the N atom of one of the azide ligands ensure that the heterocyclic rings are oriented in the same direction. Intermolecular N—H⋯N hydrogen bonds link the molecules into zigzag sheets in the ac plane.
Related literature
For multi-dimensional supramolecular complexes with organic–inorganic hybrids, see: Iwamoto (1996); Batten & Robson (1998); Braga et al. (1998). For the use of pseudo-halides in the construction of supramolecular assemblies, see: Vrieze & Koten (1987); Cortes et al. (1997); Yun et al. (2004); Kim et al. (2008). For the coordination chemistry of imidazole and thiazole derivatives, see: Costes et al. (1991); Balch et al. (1993); Suh et al. (2005, 2007, 2009); Kim & Kim (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Bruker, 1996); cell XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810053766/pk2293sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053766/pk2293Isup2.hkl
A water-methanolic (2:1) solution (60 ml) of sodium azide (9 mmol, 0.59 g) was added to a water-methanolic (2:1) solution (50 ml) of ZnSO4.7H2O (3 mmol, 0.87 g). To this mixture, a water-methanolic (2:1) solution (80 ml) of 2-aminobenzothiazole (10 mmol, 1.00 g) was introduced, with stirring for 1 h. The small amount of precipitates formed from the resulting solution were filtered off. The filtered solution was allowed to stand at room temperature. After a 1 week dark-yellow block crystals suitable for X-ray analysis were obtained. Elemental analysis found: C 20.73, H 2.25, N 40.22, S 18.50, Zn 18.70%; C6H8N10S2Zn requires: C 20.61, H 2.31, N 40.05, S 18.34, Zn 18.76%.
All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for hetrocyclic H atoms and N—H = 0.86 Å and Uiso(H) = 1.2 Ueq(N) for amino H atom.
Data collection: XSCANS (Bruker, 1996); cell
XSCANS (Bruker, 1996); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(N3)2(C3H4N2S)2] | Z = 2 |
Mr = 349.71 | F(000) = 352 |
Triclinic, P1 | Dx = 1.756 Mg m−3 Dm = 1.76 Mg m−3 Dm measured by flotation method |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.096 (1) Å | Cell parameters from 39 reflections |
b = 8.4004 (8) Å | θ = 4.7–14.6° |
c = 10.066 (1) Å | µ = 2.18 mm−1 |
α = 96.489 (9)° | T = 295 K |
β = 100.66 (1)° | Block, dark yellow |
γ = 96.885 (9)° | 0.42 × 0.38 × 0.24 mm |
V = 661.5 (1) Å3 |
Bruker P4 diffractometer | 2544 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.013 |
Graphite monochromator | θmax = 26.5°, θmin = 2.1° |
2θ/ω scans | h = −1→10 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→10 |
Tmin = 0.462, Tmax = 0.623 | l = −12→12 |
3352 measured reflections | 3 standard reflections every 97 reflections |
2747 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0243P)2 + 0.3124P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
2747 reflections | Δρmax = 0.29 e Å−3 |
173 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0118 (11) |
[Zn(N3)2(C3H4N2S)2] | γ = 96.885 (9)° |
Mr = 349.71 | V = 661.5 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.096 (1) Å | Mo Kα radiation |
b = 8.4004 (8) Å | µ = 2.18 mm−1 |
c = 10.066 (1) Å | T = 295 K |
α = 96.489 (9)° | 0.42 × 0.38 × 0.24 mm |
β = 100.66 (1)° |
Bruker P4 diffractometer | 2544 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.013 |
Tmin = 0.462, Tmax = 0.623 | 3 standard reflections every 97 reflections |
3352 measured reflections | intensity decay: none |
2747 independent reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.29 e Å−3 |
2747 reflections | Δρmin = −0.28 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.22961 (3) | 0.28874 (3) | 0.27010 (2) | 0.03913 (10) | |
N1 | 0.3512 (3) | 0.4038 (3) | 0.1481 (2) | 0.0578 (5) | |
N2 | 0.3327 (3) | 0.3684 (2) | 0.0289 (2) | 0.0479 (4) | |
N3 | 0.3184 (4) | 0.3406 (3) | −0.0866 (2) | 0.0758 (8) | |
N4 | 0.3014 (3) | 0.1005 (2) | 0.3536 (2) | 0.0496 (5) | |
N5 | 0.4122 (3) | 0.0255 (2) | 0.32922 (19) | 0.0475 (5) | |
N6 | 0.5156 (3) | −0.0496 (3) | 0.3098 (3) | 0.0689 (6) | |
S11 | 0.28221 (10) | 0.65810 (8) | 0.64496 (7) | 0.05854 (18) | |
C12 | 0.2849 (3) | 0.4728 (3) | 0.5514 (2) | 0.0407 (4) | |
N13 | 0.2265 (3) | 0.4669 (2) | 0.41986 (18) | 0.0434 (4) | |
C14 | 0.1766 (4) | 0.6139 (3) | 0.3920 (3) | 0.0646 (7) | |
H14A | 0.1319 | 0.6314 | 0.3038 | 0.077* | |
C15 | 0.1962 (4) | 0.7276 (3) | 0.4978 (3) | 0.0655 (7) | |
H15 | 0.1674 | 0.8310 | 0.4931 | 0.079* | |
N16 | 0.3412 (3) | 0.3506 (3) | 0.6102 (2) | 0.0649 (6) | |
H16A | 0.3410 | 0.2596 | 0.5614 | 0.078* | |
H16B | 0.3779 | 0.3623 | 0.6970 | 0.078* | |
S21 | −0.28571 (8) | 0.04332 (9) | 0.02647 (7) | 0.05992 (18) | |
C22 | −0.0995 (3) | 0.0694 (3) | 0.1466 (2) | 0.0424 (5) | |
N23 | −0.0062 (2) | 0.2108 (2) | 0.15549 (18) | 0.0408 (4) | |
C24 | −0.0868 (3) | 0.3032 (3) | 0.0654 (3) | 0.0561 (6) | |
H24A | −0.0395 | 0.4079 | 0.0589 | 0.067* | |
C25 | −0.2352 (4) | 0.2348 (3) | −0.0113 (3) | 0.0616 (7) | |
H25 | −0.3018 | 0.2835 | −0.0760 | 0.074* | |
N26 | −0.0579 (3) | −0.0446 (3) | 0.2244 (3) | 0.0672 (7) | |
H26A | 0.0349 | −0.0273 | 0.2847 | 0.081* | |
H26B | −0.1241 | −0.1351 | 0.2141 | 0.081* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.04775 (16) | 0.03781 (14) | 0.03000 (14) | 0.00320 (10) | 0.00434 (10) | 0.00587 (9) |
N1 | 0.0701 (14) | 0.0594 (12) | 0.0389 (10) | −0.0144 (11) | 0.0145 (10) | 0.0049 (9) |
N2 | 0.0579 (12) | 0.0396 (9) | 0.0457 (11) | −0.0058 (8) | 0.0160 (9) | 0.0081 (8) |
N3 | 0.117 (2) | 0.0644 (14) | 0.0413 (12) | −0.0165 (14) | 0.0270 (13) | 0.0021 (10) |
N4 | 0.0558 (12) | 0.0490 (11) | 0.0446 (10) | 0.0134 (9) | 0.0044 (9) | 0.0130 (8) |
N5 | 0.0559 (12) | 0.0406 (10) | 0.0401 (10) | 0.0058 (9) | −0.0050 (8) | 0.0070 (8) |
N6 | 0.0728 (16) | 0.0597 (14) | 0.0763 (16) | 0.0273 (12) | 0.0086 (13) | 0.0100 (12) |
S11 | 0.0711 (4) | 0.0552 (3) | 0.0448 (3) | 0.0152 (3) | 0.0066 (3) | −0.0102 (3) |
C12 | 0.0433 (11) | 0.0447 (11) | 0.0333 (10) | 0.0047 (9) | 0.0090 (8) | 0.0020 (8) |
N13 | 0.0566 (11) | 0.0393 (9) | 0.0330 (8) | 0.0074 (8) | 0.0056 (8) | 0.0050 (7) |
C14 | 0.096 (2) | 0.0496 (14) | 0.0472 (13) | 0.0235 (14) | 0.0030 (14) | 0.0101 (11) |
C15 | 0.085 (2) | 0.0483 (14) | 0.0629 (16) | 0.0222 (14) | 0.0088 (15) | 0.0033 (12) |
N16 | 0.1032 (19) | 0.0590 (13) | 0.0313 (10) | 0.0276 (13) | 0.0015 (11) | 0.0047 (9) |
S21 | 0.0440 (3) | 0.0662 (4) | 0.0607 (4) | 0.0020 (3) | −0.0054 (3) | 0.0040 (3) |
C22 | 0.0405 (11) | 0.0445 (11) | 0.0406 (11) | 0.0059 (9) | 0.0053 (9) | 0.0037 (9) |
N23 | 0.0439 (10) | 0.0395 (9) | 0.0381 (9) | 0.0061 (7) | 0.0035 (7) | 0.0088 (7) |
C24 | 0.0614 (15) | 0.0534 (14) | 0.0525 (14) | 0.0089 (12) | 0.0011 (12) | 0.0201 (11) |
C25 | 0.0622 (16) | 0.0697 (17) | 0.0516 (14) | 0.0199 (13) | −0.0030 (12) | 0.0163 (12) |
N26 | 0.0603 (14) | 0.0470 (11) | 0.0853 (17) | −0.0080 (10) | −0.0084 (12) | 0.0262 (11) |
Zn—N4 | 1.9711 (19) | C14—H14A | 0.9300 |
Zn—N1 | 1.974 (2) | C15—H15 | 0.9300 |
Zn—N13 | 2.0066 (18) | N16—H16A | 0.8600 |
Zn—N23 | 2.0292 (18) | N16—H16B | 0.8600 |
N1—N2 | 1.181 (3) | S21—C25 | 1.714 (3) |
N2—N3 | 1.140 (3) | S21—C22 | 1.723 (2) |
N4—N5 | 1.202 (3) | C22—N23 | 1.313 (3) |
N5—N6 | 1.138 (3) | C22—N26 | 1.339 (3) |
S11—C15 | 1.712 (3) | N23—C24 | 1.384 (3) |
S11—C12 | 1.730 (2) | C24—C25 | 1.326 (4) |
C12—N13 | 1.314 (3) | C24—H24A | 0.9300 |
C12—N16 | 1.327 (3) | C25—H25 | 0.9300 |
N13—C14 | 1.386 (3) | N26—H26A | 0.8600 |
C14—C15 | 1.320 (4) | N26—H26B | 0.8600 |
N4—Zn—N1 | 124.47 (10) | C14—C15—H15 | 124.8 |
N4—Zn—N13 | 108.49 (8) | S11—C15—H15 | 124.8 |
N1—Zn—N13 | 102.24 (8) | C12—N16—H16A | 120.0 |
N4—Zn—N23 | 105.71 (8) | C12—N16—H16B | 120.0 |
N1—Zn—N23 | 104.23 (8) | H16A—N16—H16B | 120.0 |
N13—Zn—N23 | 111.56 (8) | C25—S21—C22 | 89.76 (12) |
N2—N1—Zn | 125.88 (17) | N23—C22—N26 | 124.1 (2) |
N3—N2—N1 | 177.1 (2) | N23—C22—S21 | 113.83 (17) |
N5—N4—Zn | 127.06 (17) | N26—C22—S21 | 122.09 (18) |
N6—N5—N4 | 177.2 (3) | C22—N23—C24 | 110.0 (2) |
C15—S11—C12 | 89.52 (12) | C22—N23—Zn | 127.90 (15) |
N13—C12—N16 | 124.6 (2) | C24—N23—Zn | 121.96 (16) |
N13—C12—S11 | 113.59 (17) | C25—C24—N23 | 116.5 (2) |
N16—C12—S11 | 121.83 (17) | C25—C24—H24A | 121.7 |
C12—N13—C14 | 110.16 (19) | N23—C24—H24A | 121.7 |
C12—N13—Zn | 127.78 (16) | C24—C25—S21 | 109.9 (2) |
C14—N13—Zn | 121.67 (16) | C24—C25—H25 | 125.1 |
C15—C14—N13 | 116.3 (2) | S21—C25—H25 | 125.1 |
C15—C14—H14A | 121.9 | C22—N26—H26A | 120.0 |
N13—C14—H14A | 121.9 | C22—N26—H26B | 120.0 |
C14—C15—S11 | 110.5 (2) | H26A—N26—H26B | 120.0 |
N4—Zn—N1—N2 | 86.1 (3) | C12—N13—C14—C15 | 0.0 (4) |
N13—Zn—N1—N2 | −151.0 (2) | Zn—N13—C14—C15 | −173.3 (2) |
N23—Zn—N1—N2 | −34.7 (3) | N13—C14—C15—S11 | 0.3 (4) |
Zn—N1—N2—N3 | 164 (6) | C12—S11—C15—C14 | −0.4 (3) |
N1—Zn—N4—N5 | −8.6 (2) | C25—S21—C22—N23 | −0.86 (19) |
N13—Zn—N4—N5 | −128.7 (2) | C25—S21—C22—N26 | 178.0 (2) |
N23—Zn—N4—N5 | 111.6 (2) | N26—C22—N23—C24 | −177.6 (2) |
Zn—N4—N5—N6 | −177 (100) | S21—C22—N23—C24 | 1.2 (3) |
C15—S11—C12—N13 | 0.5 (2) | N26—C22—N23—Zn | 6.5 (3) |
C15—S11—C12—N16 | −179.4 (2) | S21—C22—N23—Zn | −174.66 (10) |
N16—C12—N13—C14 | 179.5 (3) | N4—Zn—N23—C22 | 5.3 (2) |
S11—C12—N13—C14 | −0.4 (3) | N1—Zn—N23—C22 | 138.0 (2) |
N16—C12—N13—Zn | −7.8 (4) | N13—Zn—N23—C22 | −112.44 (19) |
S11—C12—N13—Zn | 172.39 (11) | N4—Zn—N23—C24 | −170.06 (19) |
N4—Zn—N13—C12 | 9.6 (2) | N1—Zn—N23—C24 | −37.4 (2) |
N1—Zn—N13—C12 | −123.5 (2) | N13—Zn—N23—C24 | 72.2 (2) |
N23—Zn—N13—C12 | 125.6 (2) | C22—N23—C24—C25 | −1.0 (3) |
N4—Zn—N13—C14 | −178.4 (2) | Zn—N23—C24—C25 | 175.2 (2) |
N1—Zn—N13—C14 | 48.5 (2) | N23—C24—C25—S21 | 0.3 (3) |
N23—Zn—N13—C14 | −62.3 (2) | C22—S21—C25—C24 | 0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···N4 | 0.86 | 2.30 | 3.080 (3) | 151 |
N16—H16A···N6i | 0.86 | 2.57 | 3.033 (3) | 115 |
N16—H16B···N3ii | 0.86 | 2.34 | 3.102 (3) | 148 |
N26—H26A···N4 | 0.86 | 2.24 | 3.005 (3) | 148 |
N26—H26B···N3iii | 0.86 | 2.28 | 3.071 (3) | 153 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z+1; (iii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(N3)2(C3H4N2S)2] |
Mr | 349.71 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.096 (1), 8.4004 (8), 10.066 (1) |
α, β, γ (°) | 96.489 (9), 100.66 (1), 96.885 (9) |
V (Å3) | 661.5 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.18 |
Crystal size (mm) | 0.42 × 0.38 × 0.24 |
Data collection | |
Diffractometer | Bruker P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.462, 0.623 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3352, 2747, 2544 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.068, 1.09 |
No. of reflections | 2747 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.28 |
Computer programs: XSCANS (Bruker, 1996), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N16—H16A···N4 | 0.86 | 2.30 | 3.080 (3) | 151 |
N16—H16A···N6i | 0.86 | 2.57 | 3.033 (3) | 115 |
N16—H16B···N3ii | 0.86 | 2.34 | 3.102 (3) | 148 |
N26—H26A···N4 | 0.86 | 2.24 | 3.005 (3) | 148 |
N26—H26B···N3iii | 0.86 | 2.28 | 3.071 (3) | 153 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z+1; (iii) −x, −y, −z. |
Acknowledgements
This work was supported by Konyang University.
References
Balch, A. L., Noll, B. C. & Safari, N. (1993). Inorg. Chem. 32, 2901–2905. CSD CrossRef CAS Web of Science Google Scholar
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Braga, D., Grepioni, F. & Desiraju, G. R. (1998). Chem. Rev. 98, 1375–1406. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cortes, R., Urtiaga, M. K., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1997). Inorg. Chem. 36, 5016–5021. CSD CrossRef CAS Web of Science Google Scholar
Costes, J. P., Dahan, F. & Laurent, J. P. (1991). Inorg. Chem. 30, 1887–1892. CSD CrossRef CAS Web of Science Google Scholar
Iwamoto, T. (1996). Comprehensive Supramolecular Chemistry, Vol. 6, pp. 643–690. Oxford: Pergamon Press. Google Scholar
Kim, C.-H. & Kim, I. H. (2010). Acta Cryst. E66, m13. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kim, C. H., Moon, H. S. & Lee, S. G. (2008). Anal. Sci. Technol. 21, 562–568. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suh, S. W., Kim, I. H. & Kim, C. H. (2005). Anal. Sci. Technol. 18, 386–390. Google Scholar
Suh, S. W., Kim, C.-H. & Kim, I. H. (2007). Acta Cryst. E63, m2177. Web of Science CSD CrossRef IUCr Journals Google Scholar
Suh, S. W., Kim, C.-H. & Kim, I. H. (2009). Acta Cryst. E65, m1054. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vrieze, K. & Koten, G. V. (1987). Comprehensive Coordination Chemistry, Vol. 2, pp. 225–244. Oxford: Pergamon Press. Google Scholar
Yun, S. S., Moon, H. S., Kim, C. H. & Lee, S. G. (2004). J. Coord. Chem. 57, 321–327. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Multi-dimensional supramolecular complexes with both organic and inorganic ligands have become of great interest recently (Iwamoto, 1996; Batten & Robson, 1998). They have been shown to have useful electronic, magnetic, optical, catalytic, etc. properties (Braga et al., 1998). For designing novel 1-, 2- and 3-D frameworks, we (Kim et al., 2008) and others (Cortes et al., 1997; Yun et al., 2004) have used the coordination properties of pseudohalide ions and complementary organic ligands. Pseudo-halide ions are known to build up 1-, 2- and 3-D structures by bridging metal centers (Vrieze & Koten, 1987). The of use of complementary organic ligands, such as aliphatic and aromatic amines is known to play an important role in stabilizing multi-dimensional structures. In particular, aromatic heterocycles such as imidazole and thiazole derivatives represent an important class of ligands in coordination chemistry (Balch et al., 1993; Costes et al., 1991). However, the frameworks of metal complexes with thiazole derivatives have been considerably less investigated. Our research is focused on the development of novel supramolecular structures utilizing the terminal and bridging properties of pseudo-halide ions, and the coordination behaviour of thiazole derivatives as complementary organic ligands (Suh et al., 2005, 2007, 2009; Kim & Kim, 2010). Herein, we present the synthesis and structure determination of the title complex, Zn(N3)2(C3H4N2S)2, with 2-aminothiazole as shown in Fig. 1. In the title complex, the ZnII atom is tetrahedrally coordinated by two terminal azido ligands, and by the N atoms of two different 2-aminothiazole ligands. Intramolecular N—H···N hydrogen bonds between the amino groups of both 2-aminothiazole ligands and the nitrogen atom of one of the azido ligands ensure that the heterocyclic rings are oriented in the same direction. Intermolecular N—H···N hydrogen bonds form the molecules into zig-zag sheets in the ac plane (Fig. 2).