metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m288-m289

cis-Di-μ-oxido-bis­­[(N,N-di­ethyl­di­thio­carbamato-κ2S,S′)oxidomolybdenum(V)](MoMo) tetra­hydro­furan monosolvate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bInstituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 14 December 2010; accepted 24 January 2011; online 29 January 2011)

The title compound, [Mo2(C5H10NS2)2O4]·C4H8O, can be readily prepared in tetra­hydro­furan (THF) by an oxidation reaction between the MoIV precursor [MoO(S2CNEt2)2] with [ReMeO3]. The compound is an axially symmetric MoV dimer (2 symmetry), in which the metal atoms exhibit a distorted square-pyramidal coordination environment. A THF mol­ecule was found to be equally disordered over two symmetry-related sites (around a twofold rotation axis), trans-coordinated to the apical oxido group and weakly inter­acting with the MoV atoms [Mo—O = 2.6213 (19) Å]. In the crystal, some weak C—H⋯O inter­actions occur between the terminal oxido and neighbouring —CH3 groups of an adjacent [Mo(μ-O)O(S2CNEt2)]2 unit.

Related literature

For applications of dithio­carbamate compounds, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]); Zhao et al. (2005[Zhao, Y., Pérez-Segarra, W., Shi, Q. & Wei, A. (2005). J. Am. Chem. Soc. 127, 7328-7329.]). For the synthesis of the MoIV precursor, [MoO(S2CNEt2)2], see: Jowitt & Mitchell (1969[Jowitt, R. N. & Mitchell, P. C. H. (1969). J. Chem. Soc. A, pp. 2632-2636.]). For the synthesis of unsolvated [Mo(μ-O)O(S2CNEt2)]2, see: Ricard et al. (1975[Ricard, L., Martin, C., Wiest, R. & Weiss, R. (1975). Inorg. Chem. 9, 2300-2301.]). For previous reports on dithio­carbamate compounds from our research groups, see: Drew et al. (1998[Drew, M. G. B., Félix, V., Gonçalves, I. S., Romão, C. C. & Royo, B. (1998). Organometallics, 17, 5782-5788.]); Romão & Royo (2002[Romão, C. C. & Royo, B. (2002). J. Organomet. Chem. 663, 78-82.]); Almeida Paz et al. (2003[Almeida Paz, F. A., Neves, M. C., Trindade, T. & Klinowski, J. (2003). Acta Cryst. E59, m1067-m1069.]). For molybdenum dimers with long Mo—OTHF bonds, see: Cotton et al. (1978[Cotton, F. A., Fanwick, P. E., Niswander, R. H. & Sekutowski, J. C. (1978). Acta Chem. Scand. Ser. A, 32, 663-671.], 1992[Cotton, F. A., Labella, L. & Shang, M. (1992). Inorg. Chim. Acta, 197, 149-158.]); Cotton & Su (1995[Cotton, F. A. & Su, J. (1995). J. Cluster Sci. 6, 39-59.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2(C5H10NS2)2O4]·C4H8O

  • Mr = 624.50

  • Monoclinic, C 2/c

  • a = 12.8695 (7) Å

  • b = 12.6025 (7) Å

  • c = 14.4579 (8) Å

  • β = 94.184 (3)°

  • V = 2338.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 150 K

  • 0.12 × 0.12 × 0.08 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.893

  • 48139 measured reflections

  • 5649 independent reflections

  • 4661 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.03

  • 5649 reflections

  • 149 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—Mo1i 2.5591 (2)
Mo1—S1 2.4788 (4)
Mo1—S2 2.4680 (4)
Mo1—O1 1.9586 (9)
Mo1—O1i 1.9472 (9)
Mo1—O2 1.6826 (10)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2ii 0.99 2.57 3.2687 (17) 127
C4—H4B⋯O2iii 0.99 2.49 3.2443 (17) 133
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dithiocarbamates and their metal complexes have several applications in the treatment of some diseases (e.g., Wilson's disease and alcoholism) and industry processes (e.g., vulcanization of rubber and pesticides) (Tiekink, 2008). These molecules have already been used in the functionalization of gold nanoparticles (Zhao et al., 2005). Following our interest in the preparation of dithiocarbamate metal complexes (Drew et al., 1998; Romão et al., 2002; Almeida Paz et al., 2003), we attempted the preparation of a heterobimetallic compound from the reaction of [MoO(S2CNEt2)2] and [ReMeO3]. The sole product was an oxidation product whose structure we wish to report here: [Mo(µ-O)O(S2CNEt2)]2.THF. We note that the corresponding unsolvated compound, [Mo(µ-O)O(S2CNEt2)]2, was previously reported by Ricard et al. (1975).

The title compound (see Scheme) is an axially symmetrical dimer of molybdenum(V) formed by way of two µ-oxido bridges, and with a short distance interaction with a tetrahydrofuran (THF) molecule, which was found to be disordered over two sites (symmetry-related by a twofold rotation axis). The asymmetric unit comprises one half of the molybdenum(V) dimer, and a half-occupied THF molecule (Figure 1). The coordination geometry around the metal centre can be envisaged as a highly distorted square pyramid (Table 1) with a terminal oxido ligand at the apex while the basal plane is occupied by two symmetry-equivalent µ-oxido bridges and a chelating dithiocarbamato ligand {MoO3S2}. The dimer also has a Mo—Mo direct bond with an intermetallic distance of 2.5591 (2) Å. A weakly-bonded THF molecule is trans to the apical oxido group.

The disordered THF molecule interacts weakly with the metal centre with the measured Mo···O distance being considerably longer [2.6213 (19) Å] than those typically found in related structures. Nevertheless, from a survey in the Cambridge Structural Database (Allen, 2002) we found 4 structures which have longer Mo—OTHF bonds than those of the title compound. These compounds correspond to isostructural dimers, each with four bridging carboxylates or dithiocarboxylates, very short Mo—Mo distances, and with THF acting as an axial ligand (Cotton et al., 1978, 1992, 1995).

Individual [Mo(µ-O)O(S2CNEt2)]2.THF complexes close pack in the solid state driven by the need to effectively fill the available space (Figure 2). Some weak C—H···O interactions are present connecting the terminal oxido and neighbouring —CH3 groups of an adjacent [Mo(µ-O)O(S2CNEt2)]2 entity (not shown; see Table 2 for geometrical details).

Related literature top

For applications of dithiocarbamate compounds, see: Tiekink (2008); Zhao et al. (2005). For the synthesis of the MoIV precursor, [MoO(S2CNEt2)2], see: Jowitt & Mitchell (1969). For the synthesis of unsolvated [Mo(µ-O)O(S2CNEt2)]2, see: Ricard et al. (1975). For previous reports on dithiocarbamate compounds from our research groups, see: Drew et al. (1998); Romão & Royo (2002); Almeida Paz et al. (2003). For molybdenum dimers with long Mo—OTHF bonds, see: Cotton et al. (1978, 1992, 1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The precursor [MoO(S2CNEt2)2] (1) was prepared using a published method (Jowitt & Mitchell, 1969). [ReMeO3] (MTO) was purchased from Sigma-Aldrich (71–76% of Re content), and used without any further purification. All manipulations were carried out by using standard Schlenk line and drybox techniques in an atmosphere of N2. THF was distilled from Na/benzophenone.

A solution of MTO (0.18 g, 0.73 mmol) in THF (10 ml) was added to a solution of 1 (0.30 g, 0.73 mmol) in THF (15 ml). After stirring magnetically for 5 h at ambient temperature, a green solution and a green solid were obtained. The volume of the mixture was reduced to half by vacuum evaporation and further precipitation was forced by cooling to -30 °C. The solid product was dissolved in the minimum amount of hot THF and submitted to slow cooling to -30 °C. Yellow crystals of the title compound suitable for single-crystal X-ray diffraction were directly isolated and preserved in N2 atmosphere prior to data collection.

Refinement top

Hydrogen atoms bound to carbon were placed in calculated positions and were included in the final structural model in riding-motion approximation with C—H = 0.99 (for the —CH2 moieties) or 0.98 Å (for the terminal —CH3 groups). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 or 1.5×Ueq of the respective parent carbon atom (for —CH2— and —CH3, respectively).

The C—C and C—O bonds of the disordered THF molecule (modeled with a fixed 50% rate of occupancy for each location) were restrained to common refineable distances in order to ensure a chemically reasonable geometry for this moiety.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular unit of the title compound showing all non-hydrogen atoms as thermal ellipsoids drawn at the 40% probability level and hydrogen atoms as small spheres with arbitrary radii. Atoms composing the asymmetric unit are highlighted by showing their respective label. The two possible locations for the disordered THF molecule are depicted with different colours for the bonds. For selected bond lengths see Table 1. Symmetry transformation used to generate equivalent atoms: (i) -x, y, 0.5 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along the [001] direction of the unit cell. The two possible locations for the disordered THF molecule are depicted with different colours for the bonds (hydrogen atoms associated with these moieties have been omitted for clarity).
cis-Di-µ-oxido-bis[(N,N'-diethyldithiocarbamato- κ2S,S')oxidomolybdenum(V)] tetrahydrofuran monosolvate top
Crystal data top
[Mo2(C5H10NS2)2O4]·C4H8OF(000) = 1256
Mr = 624.50Dx = 1.774 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9063 reflections
a = 12.8695 (7) Åθ = 2.6–35.3°
b = 12.6025 (7) ŵ = 1.46 mm1
c = 14.4579 (8) ÅT = 150 K
β = 94.184 (3)°Prism, yellow
V = 2338.6 (2) Å30.12 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
5649 independent reflections
Radiation source: fine-focus sealed tube4661 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω and ϕ scansθmax = 36.3°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2121
Tmin = 0.845, Tmax = 0.893k = 2020
48139 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0219P)2 + 2.1445P]
where P = (Fo2 + 2Fc2)/3
5649 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.74 e Å3
5 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Mo2(C5H10NS2)2O4]·C4H8OV = 2338.6 (2) Å3
Mr = 624.50Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.8695 (7) ŵ = 1.46 mm1
b = 12.6025 (7) ÅT = 150 K
c = 14.4579 (8) Å0.12 × 0.12 × 0.08 mm
β = 94.184 (3)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
5649 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4661 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.893Rint = 0.033
48139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0245 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.03Δρmax = 0.74 e Å3
5649 reflectionsΔρmin = 0.96 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.081183 (8)0.231212 (9)0.203909 (7)0.01717 (3)
S10.25495 (3)0.31525 (3)0.23038 (2)0.02555 (7)
S20.11812 (3)0.33069 (4)0.06297 (2)0.03297 (9)
O10.06648 (7)0.24910 (7)0.16391 (6)0.02023 (17)
O20.11161 (8)0.10400 (8)0.18310 (7)0.0273 (2)
N10.30133 (9)0.43361 (9)0.08463 (7)0.0222 (2)
C10.23528 (10)0.36816 (11)0.12027 (9)0.0224 (2)
C20.40421 (10)0.45692 (12)0.13224 (9)0.0250 (3)
H2A0.39980.45130.20010.030*
H2B0.42480.53040.11790.030*
C30.48586 (12)0.38032 (14)0.10190 (12)0.0336 (3)
H3A0.46710.30780.11870.050*
H3B0.55380.39860.13280.050*
H3C0.48950.38500.03450.050*
C40.27763 (12)0.48736 (12)0.00497 (9)0.0288 (3)
H4A0.22320.44710.04200.035*
H4B0.34090.48870.04000.035*
C50.24037 (16)0.59952 (15)0.00879 (12)0.0423 (4)
H5A0.17500.59800.03960.063*
H5B0.22880.63450.05160.063*
H5C0.29310.63870.04730.063*
O30.02301 (17)0.42667 (15)0.23443 (16)0.0298 (5)0.50
C60.0064 (3)0.5996 (3)0.2983 (3)0.0398 (8)0.50
H6X0.04810.66110.27990.048*0.50
H6Y0.02150.61490.35890.048*0.50
C70.0722 (3)0.4986 (3)0.3034 (3)0.0370 (9)0.50
H7X0.14470.51430.28910.044*0.50
H7Y0.07320.46690.36610.044*0.50
C80.0831 (4)0.5757 (3)0.2237 (3)0.0552 (11)0.50
H8X0.14630.55080.25230.066*0.50
H8Y0.10080.63910.18540.066*0.50
C90.0384 (3)0.4905 (3)0.1677 (3)0.0346 (8)0.50
H9X0.09430.44760.13530.042*0.50
H9Y0.00580.52090.12110.042*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01784 (5)0.01611 (5)0.01787 (5)0.00165 (3)0.00340 (3)0.00016 (3)
S10.02101 (13)0.03126 (18)0.02375 (14)0.00642 (12)0.00270 (11)0.00826 (12)
S20.02936 (16)0.0438 (2)0.02449 (15)0.01877 (15)0.00690 (12)0.01249 (14)
O10.0200 (4)0.0193 (4)0.0216 (4)0.0037 (3)0.0031 (3)0.0016 (3)
O20.0301 (5)0.0201 (5)0.0334 (5)0.0007 (4)0.0140 (4)0.0024 (4)
N10.0239 (5)0.0239 (6)0.0188 (4)0.0081 (4)0.0026 (4)0.0002 (4)
C10.0219 (5)0.0235 (6)0.0216 (5)0.0054 (4)0.0010 (4)0.0027 (4)
C20.0239 (6)0.0270 (7)0.0243 (6)0.0102 (5)0.0024 (4)0.0024 (5)
C30.0262 (6)0.0337 (8)0.0412 (8)0.0055 (6)0.0034 (6)0.0031 (6)
C40.0357 (7)0.0315 (8)0.0192 (5)0.0125 (6)0.0027 (5)0.0032 (5)
C50.0556 (11)0.0344 (9)0.0356 (8)0.0022 (8)0.0049 (7)0.0071 (7)
O30.0374 (15)0.0189 (9)0.0305 (13)0.0046 (7)0.0149 (9)0.0052 (8)
C60.0471 (19)0.0201 (14)0.054 (2)0.0070 (13)0.0157 (16)0.0181 (13)
C70.044 (2)0.0296 (19)0.036 (2)0.0117 (16)0.0057 (15)0.0132 (16)
C80.060 (3)0.033 (2)0.074 (3)0.0083 (18)0.005 (2)0.0059 (19)
C90.039 (2)0.0247 (16)0.038 (2)0.0112 (15)0.0093 (15)0.0032 (15)
Geometric parameters (Å, º) top
Mo1—Mo1i2.5591 (2)C4—C51.510 (3)
Mo1—S12.4788 (4)C4—H4A0.9900
Mo1—S22.4680 (4)C4—H4B0.9900
Mo1—O11.9586 (9)C5—H5A0.9800
Mo1—O1i1.9472 (9)C5—H5B0.9800
Mo1—O21.6826 (10)C5—H5C0.9800
Mo1—O32.6213 (19)O3—C91.446 (4)
S1—C11.7276 (13)O3—C71.457 (4)
S2—C11.7322 (13)O3—Mo1i2.972 (2)
O1—Mo1i1.9472 (9)C6—C71.527 (5)
O2—Mo1i3.4621 (10)C6—C81.549 (5)
N1—C11.3161 (16)C6—H6X0.9900
N1—C41.4739 (17)C6—H6Y0.9900
N1—C21.4766 (17)C7—H7X0.9900
C2—C31.515 (2)C7—H7Y0.9900
C2—H2A0.9900C8—C91.485 (5)
C2—H2B0.9900C8—H8X0.9900
C3—H3A0.9800C8—H8Y0.9900
C3—H3B0.9800C9—H9X0.9900
C3—H3C0.9800C9—H9Y0.9900
O1i—Mo1—O196.59 (4)C5—C4—H4A109.4
O1—Mo1—O370.04 (6)N1—C4—H4B109.4
O1i—Mo1—O371.13 (6)C5—C4—H4B109.4
O1—Mo1—S1147.29 (3)H4A—C4—H4B108.0
O1i—Mo1—S187.14 (3)C4—C5—H5A109.5
O1—Mo1—S286.50 (3)C4—C5—H5B109.5
O1i—Mo1—S2142.17 (3)H5A—C5—H5B109.5
O2—Mo1—O1106.88 (5)C4—C5—H5C109.5
O2—Mo1—O1i109.05 (5)H5A—C5—H5C109.5
O2—Mo1—O3176.86 (6)H5B—C5—H5C109.5
O2—Mo1—S1102.45 (4)C9—O3—C7107.4 (2)
O2—Mo1—S2105.96 (4)C9—O3—Mo1124.0 (2)
S1—Mo1—O380.68 (5)C7—O3—Mo1125.8 (2)
S2—Mo1—O374.70 (5)C9—O3—Mo1i115.1 (2)
S2—Mo1—S171.612 (11)C7—O3—Mo1i119.6 (2)
O2—Mo1—Mo1i107.62 (3)Mo1—O3—Mo1i54.01 (4)
O1i—Mo1—Mo1i49.26 (3)C7—C6—C8104.6 (3)
O1—Mo1—Mo1i48.87 (3)C7—C6—H6X110.8
S2—Mo1—Mo1i130.072 (11)C8—C6—H6X110.8
S1—Mo1—Mo1i132.947 (10)C7—C6—H6Y110.8
Mo1i—Mo1—O370.02 (5)C8—C6—H6Y110.8
C1—S1—Mo187.29 (4)H6X—C6—H6Y108.9
C1—S2—Mo187.53 (4)O3—C7—C6105.9 (3)
Mo1i—O1—Mo181.87 (4)C6—C7—Mo1141.2 (2)
C1—N1—C4122.27 (11)O3—C7—H7X110.6
C1—N1—C2121.66 (11)C6—C7—H7X110.6
C4—N1—C2116.06 (11)Mo1—C7—H7X92.6
N1—C1—S1123.18 (10)O3—C7—H7Y110.6
N1—C1—S2123.24 (10)C6—C7—H7Y110.6
S1—C1—S2113.54 (7)Mo1—C7—H7Y89.4
N1—C1—Mo1176.95 (11)H7X—C7—H7Y108.7
S1—C1—Mo156.96 (4)C9—C8—C6102.8 (3)
S2—C1—Mo156.60 (4)C9—C8—H8X111.2
N1—C2—C3110.82 (11)C6—C8—H8X111.2
N1—C2—H2A109.5C9—C8—H8Y111.2
C3—C2—H2A109.5C6—C8—H8Y111.2
N1—C2—H2B109.5H8X—C8—H8Y109.1
C3—C2—H2B109.5O3—C9—C8104.7 (3)
H2A—C2—H2B108.1C8—C9—Mo1138.4 (3)
C2—C3—H3A109.5O3—C9—H9X110.8
C2—C3—H3B109.5C8—C9—H9X110.8
H3A—C3—H3B109.5Mo1—C9—H9X82.1
C2—C3—H3C109.5O3—C9—H9Y110.8
H3A—C3—H3C109.5C8—C9—H9Y110.8
H3B—C3—H3C109.5Mo1—C9—H9Y100.8
N1—C4—C5111.21 (12)H9X—C9—H9Y108.9
N1—C4—H4A109.4
O2—Mo1—S1—C1103.85 (6)O1i—Mo1—O3—C750.7 (3)
O1i—Mo1—S1—C1147.26 (6)O1—Mo1—O3—C7155.4 (3)
O1—Mo1—S1—C149.51 (7)S2—Mo1—O3—C7112.8 (3)
S2—Mo1—S1—C10.95 (5)S1—Mo1—O3—C739.4 (3)
Mo1i—Mo1—S1—C1127.18 (5)Mo1i—Mo1—O3—C7103.2 (3)
O3—Mo1—S1—C175.92 (7)O1i—Mo1—O3—Mo1i52.44 (3)
O2—Mo1—S2—C199.06 (6)O1—Mo1—O3—Mo1i52.22 (3)
O1i—Mo1—S2—C158.14 (7)S2—Mo1—O3—Mo1i144.06 (3)
O1—Mo1—S2—C1154.38 (6)S1—Mo1—O3—Mo1i142.59 (3)
S1—Mo1—S2—C10.94 (5)C9—O3—C7—C621.9 (3)
Mo1i—Mo1—S2—C1130.25 (5)Mo1—O3—C7—C6176.6 (2)
O3—Mo1—S2—C184.12 (7)Mo1i—O3—C7—C6111.7 (3)
O2—Mo1—O1—Mo1i98.92 (4)C9—O3—C7—Mo1161.5 (3)
O1i—Mo1—O1—Mo1i13.32 (5)Mo1i—O3—C7—Mo164.91 (18)
S2—Mo1—O1—Mo1i155.46 (3)C8—C6—C7—O31.4 (4)
S1—Mo1—O1—Mo1i108.31 (4)C8—C6—C7—Mo11.7 (6)
O3—Mo1—O1—Mo1i80.47 (6)O2—Mo1—C7—O3173.53 (19)
O1i—Mo1—O2—Mo1i52.06 (3)O1i—Mo1—C7—O3122.3 (3)
O1—Mo1—O2—Mo1i51.33 (3)O1—Mo1—C7—O323.1 (3)
S2—Mo1—O2—Mo1i142.50 (2)S2—Mo1—C7—O363.8 (3)
S1—Mo1—O2—Mo1i143.34 (2)S1—Mo1—C7—O3136.9 (3)
C4—N1—C1—S1172.85 (11)Mo1i—Mo1—C7—O371.1 (3)
C2—N1—C1—S17.5 (2)O2—Mo1—C7—C6168.3 (3)
C4—N1—C1—S24.7 (2)O1i—Mo1—C7—C6117.0 (5)
C2—N1—C1—S2174.93 (10)O1—Mo1—C7—C617.8 (4)
Mo1—S1—C1—N1176.36 (12)S2—Mo1—C7—C669.0 (4)
Mo1—S1—C1—S21.40 (7)S1—Mo1—C7—C6142.1 (5)
Mo1—S2—C1—N1176.35 (12)Mo1i—Mo1—C7—C665.9 (4)
Mo1—S2—C1—S11.40 (7)O3—Mo1—C7—C65.2 (3)
O2—Mo1—C1—S186.15 (6)C7—C6—C8—C923.1 (5)
O1i—Mo1—C1—S137.22 (6)C7—O3—C9—C837.5 (4)
O1—Mo1—C1—S1152.10 (4)Mo1—O3—C9—C8160.5 (2)
S2—Mo1—C1—S1178.47 (8)Mo1i—O3—C9—C898.3 (3)
Mo1i—Mo1—C1—S193.83 (5)C7—O3—C9—Mo1161.9 (3)
O3—Mo1—C1—S195.97 (7)Mo1i—O3—C9—Mo162.18 (15)
O2—Mo1—C1—S292.31 (6)C6—C8—C9—O336.8 (4)
O1i—Mo1—C1—S2144.31 (4)C6—C8—C9—Mo154.3 (6)
O1—Mo1—C1—S229.43 (6)O2—Mo1—C9—O3172.71 (17)
S1—Mo1—C1—S2178.47 (8)O1i—Mo1—C9—O327.7 (3)
Mo1i—Mo1—C1—S287.70 (6)O1—Mo1—C9—O3126.7 (3)
O3—Mo1—C1—S285.56 (7)S2—Mo1—C9—O3128.3 (3)
C1—N1—C2—C390.63 (16)S1—Mo1—C9—O359.5 (3)
C4—N1—C2—C389.02 (15)Mo1i—Mo1—C9—O375.6 (3)
C1—N1—C4—C598.86 (16)O2—Mo1—C9—C8143.6 (4)
C2—N1—C4—C581.49 (16)O1i—Mo1—C9—C81.4 (4)
O1i—Mo1—O3—C9150.6 (3)O1—Mo1—C9—C897.6 (5)
O1—Mo1—O3—C946.0 (3)S2—Mo1—C9—C8157.4 (5)
S2—Mo1—O3—C945.9 (3)S1—Mo1—C9—C888.6 (5)
S1—Mo1—O3—C9119.2 (3)Mo1i—Mo1—C9—C846.5 (4)
Mo1i—Mo1—O3—C998.2 (3)O3—Mo1—C9—C829.1 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2ii0.992.573.2687 (17)127
C4—H4B···O2iii0.992.493.2443 (17)133
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mo2(C5H10NS2)2O4]·C4H8O
Mr624.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)12.8695 (7), 12.6025 (7), 14.4579 (8)
β (°) 94.184 (3)
V3)2338.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.12 × 0.12 × 0.08
Data collection
DiffractometerBruker X8 KappaCCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.845, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
48139, 5649, 4661
Rint0.033
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.03
No. of reflections5649
No. of parameters149
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.96

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
Mo1—Mo1i2.5591 (2)Mo1—O1i1.9472 (9)
Mo1—S12.4788 (4)Mo1—O21.6826 (10)
Mo1—S22.4680 (4)Mo1—O32.6213 (19)
Mo1—O11.9586 (9)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2ii0.992.573.2687 (17)127
C4—H4B···O2iii0.992.493.2443 (17)133
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grants Nos. SFRH/BPD/23461/2005 and SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAlmeida Paz, F. A., Neves, M. C., Trindade, T. & Klinowski, J. (2003). Acta Cryst. E59, m1067–m1069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Fanwick, P. E., Niswander, R. H. & Sekutowski, J. C. (1978). Acta Chem. Scand. Ser. A, 32, 663–671.  CrossRef Web of Science Google Scholar
First citationCotton, F. A., Labella, L. & Shang, M. (1992). Inorg. Chim. Acta, 197, 149–158.  CAS Google Scholar
First citationCotton, F. A. & Su, J. (1995). J. Cluster Sci. 6, 39–59.  CSD CrossRef CAS Google Scholar
First citationDrew, M. G. B., Félix, V., Gonçalves, I. S., Romão, C. C. & Royo, B. (1998). Organometallics, 17, 5782–5788.  Web of Science CSD CrossRef CAS Google Scholar
First citationJowitt, R. N. & Mitchell, P. C. H. (1969). J. Chem. Soc. A, pp. 2632–2636.  CrossRef Google Scholar
First citationRicard, L., Martin, C., Wiest, R. & Weiss, R. (1975). Inorg. Chem. 9, 2300–2301.  CrossRef Web of Science Google Scholar
First citationRomão, C. C. & Royo, B. (2002). J. Organomet. Chem. 663, 78–82.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y., Pérez-Segarra, W., Shi, Q. & Wei, A. (2005). J. Am. Chem. Soc. 127, 7328–7329.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m288-m289
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds