organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-4-(4-meth­­oxy­phen­yl)-5-(piperidin-1-ylmeth­yl)thia­zole

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: changbin.guo@gmail.com

(Received 25 November 2010; accepted 24 December 2010; online 12 January 2011)

In the title compound, C22H23FN2OS, the piperidine ring shows chair confirmation and the two benzene rings make a dihedral angle of 17.0 (6)°. The thia­zole fragment is essentially planar with an r.m.s. deviation of 0.004 (2) Å and a maximum deviation of 0.006 (2) Å.. In the crystal, inter­molecular C—H⋯π inter­actions lead to the formation of a layer structure.

Related literature

For the biological activity of thia­zole derivatives, see: Guo et al. (2006[Guo, C. B., Guo, Y. S., Guo, Z. R., Xiao, J. F., Chu, F. M. & Cheng, G. F. (2006). Acta Chim. Sin. 64, 1559-1564.]); Karegoudar et al. (2008[Karegoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261-267.]) Reddy et al. (1999[Reddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N. & Jajoo, H. K. (1999). J. Med. Chem. 42, 1927-1940.]);. For related structures, see: Mitsutaka et al. (2006[Mitsutaka, K., Takayuki, H. & Midori, T. (2006). Cryst. Growth Des. 6, 1945-1950.]); Takayuki et al. (2009[Takayuki, H., Kosuke, A., Midori, T. & Mitsutaka, K. (2009). Cryst. Growth Des. 9, 3031-3035.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23FN2OS

  • Mr = 382.48

  • Triclinic, [P \overline 1]

  • a = 10.7565 (2) Å

  • b = 10.8846 (2) Å

  • c = 11.0179 (2) Å

  • α = 67.035 (1)°

  • β = 63.881 (1)°

  • γ = 60.768 (1)°

  • V = 985.16 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.26 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 0.746

  • 26568 measured reflections

  • 4674 independent reflections

  • 3614 reflections with I > 2.0σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.05

  • 4674 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1ACg1C10-C15i 0.96 2.98 3.781 (2) 142
C1—H1CCg2C2-C7ii 0.96 2.74 3.595 (2) 149
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+3, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazole derivatives have a varity of physiological effects, such as antiinflammatory (Guo et al., 2006) and antimicrobial (Karegoudar et al., 2008). Herein, we report the crystal structure of a new thiazole compound.

In the title compound (Fig. 1), the piperidine ring shows a chair confirmation. The thiazole fragment (S1/C9/N1/C8/C16) is essentially planar and it's mean plane makes dihedral angles of 29.2 (6) and 19.8 (1)°, with benzene rings C2—C7 and C10—C15, respectively, while the dihedral angle between the two phenyl rings is 17.0 (6)°.

The molecular packing is stabilized by C—H···π interactions (Fig. 2). The C1—H1A···Cg1 distances are 3.781 (2) Å and C1—H1C···Cg2 3.595 (2) Å, respectively (Cg 1 and 2 are is the centroids of the aromatic rings C10–C15 and C2–C7, respectively. All the C—H···π interactions have been listed in Table 1 and presented in Fig. 2.

For related literature, see: Mitsutaka et al. (2006);

Related literature top

For the biological activity of thiazole derivatives, see: Guo et al. (2006); Karegoudar et al. (2008). For related literature [on what subject?], see: Mitsutaka et al. (2006); Reddy et al. (1999); Takayuki et al. (2009).

Experimental top

To a solution of piperidine (0.5 ml) in tetrahydrofuran (THF, 15 ml) was added a solution of 5-(bromomethyl)-2-(4-fluorophenyl)-4-(4-methoxyphenyl)thiazole (0.35 g, 0.92 mmol) in THF (10 ml), and the resulting mixture was stirred at 296 K for 1 h. The precipitate was filtered, the solvent was removed by rotary evaporation, the residue was dissolved in ethyl acetate, washed the organic phase with water and brine, dried over Na2SO4, filtered, and concentrated under reduced pressure to yield the title compound as a white powder (0.11 g, 32%). Crystals suitable for X-ray analysis were prepared by slow evaporation of a solution of the title compound in dichloromethane and methanol (v/v = 2:1) at room temperature in three days.

Refinement top

The H atoms were positioned in calculated positions with C—H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms and were refined using a riding model, with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso = 1.2Ueq for others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoid and the atom numbering scheme.
[Figure 2] Fig. 2. The three-dimensional structure of the title compound, formed through C—H···π interactions; the dashed lines represent C—H···π interactions.
2-(4-Fluorophenyl)-4-(4-methoxyphenyl)-5-(piperidin-1-ylmethyl)thiazole top
Crystal data top
C22H23FN2OSZ = 2
Mr = 382.48F(000) = 404
Triclinic, P1Dx = 1.289 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.7565 (2) ÅCell parameters from 7061 reflections
b = 10.8846 (2) Åθ = 2.3–27.9°
c = 11.0179 (2) ŵ = 0.19 mm1
α = 67.035 (1)°T = 296 K
β = 63.881 (1)°Block, colourless
γ = 60.768 (1)°0.26 × 0.26 × 0.24 mm
V = 985.16 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4674 independent reflections
Radiation source: fine-focus sealed tube3614 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.035
ϕ & ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.659, Tmax = 0.746k = 1414
26568 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1593P]
where P = (Fo2 + 2Fc2)/3
4674 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H23FN2OSγ = 60.768 (1)°
Mr = 382.48V = 985.16 (3) Å3
Triclinic, P1Z = 2
a = 10.7565 (2) ÅMo Kα radiation
b = 10.8846 (2) ŵ = 0.19 mm1
c = 11.0179 (2) ÅT = 296 K
α = 67.035 (1)°0.26 × 0.26 × 0.24 mm
β = 63.881 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3614 reflections with I > 2.0σ(I)
Tmin = 0.659, Tmax = 0.746Rint = 0.035
26568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
4674 reflectionsΔρmin = 0.22 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33888 (5)0.75870 (4)0.04214 (4)0.05238 (13)
F10.59060 (15)0.58770 (13)0.56262 (10)0.0869 (4)
O10.17330 (14)1.58657 (12)0.00821 (13)0.0640 (3)
N10.36970 (13)0.98214 (12)0.14604 (12)0.0442 (3)
C170.22778 (19)0.90522 (17)0.24743 (15)0.0535 (4)
H17A0.30870.87120.28440.064*
H17B0.16141.00190.26220.064*
C10.1157 (2)1.70549 (18)0.1103 (2)0.0711 (5)
H1A0.19161.70130.19920.107*
H1B0.08631.79410.08690.107*
H1C0.03021.70140.11390.107*
C20.20949 (16)1.45111 (16)0.01833 (16)0.0479 (3)
C30.25260 (17)1.33858 (17)0.08932 (15)0.0503 (3)
H30.25571.35810.16270.060*
C40.29100 (16)1.19791 (16)0.08885 (15)0.0471 (3)
H40.32101.12360.16140.056*
C50.28547 (15)1.16533 (15)0.01895 (14)0.0428 (3)
C60.24580 (18)1.27941 (16)0.12758 (15)0.0527 (4)
H60.24461.26030.20220.063*
C70.20801 (19)1.42074 (17)0.12818 (16)0.0552 (4)
H70.18171.49500.20230.066*
C80.31552 (15)1.01781 (15)0.01896 (14)0.0431 (3)
C90.38848 (16)0.84914 (15)0.12873 (14)0.0438 (3)
C100.44413 (15)0.77917 (15)0.24329 (14)0.0438 (3)
C110.43754 (18)0.86279 (17)0.37501 (15)0.0524 (4)
H110.39920.96290.39060.063*
C120.4874 (2)0.79865 (19)0.48320 (16)0.0595 (4)
H120.48390.85440.57150.071*
C130.5419 (2)0.65120 (19)0.45685 (16)0.0584 (4)
C140.5508 (2)0.56486 (18)0.32943 (17)0.0613 (4)
H140.58900.46480.31500.074*
C150.50171 (18)0.63000 (16)0.22271 (16)0.0539 (4)
H150.50730.57290.13530.065*
C160.29129 (17)0.90992 (15)0.09436 (14)0.0470 (3)
N20.14491 (14)0.80983 (13)0.32118 (12)0.0468 (3)
C180.00257 (19)0.87436 (18)0.29190 (16)0.0571 (4)
H18A0.02140.90030.19240.068*
H18B0.06140.96180.32680.068*
C190.0763 (2)0.7702 (2)0.35887 (19)0.0665 (5)
H19A0.01500.68510.31990.080*
H19B0.17070.81550.33940.080*
C200.1053 (2)0.7259 (2)0.51460 (19)0.0736 (5)
H20A0.17800.80840.55550.088*
H20B0.14640.65170.55480.088*
C210.0389 (2)0.6692 (2)0.54608 (18)0.0677 (5)
H21A0.10470.57770.51880.081*
H21B0.01710.65210.64520.081*
C220.11816 (19)0.77385 (18)0.47077 (15)0.0545 (4)
H22A0.05750.86150.50570.065*
H22B0.21310.73100.48880.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0689 (3)0.0436 (2)0.0398 (2)0.02424 (18)0.00998 (17)0.00904 (15)
F10.1297 (10)0.0886 (8)0.0513 (6)0.0570 (7)0.0035 (6)0.0326 (5)
O10.0744 (8)0.0491 (6)0.0779 (8)0.0251 (6)0.0247 (6)0.0200 (6)
N10.0470 (7)0.0405 (6)0.0400 (6)0.0140 (5)0.0111 (5)0.0106 (5)
C170.0668 (10)0.0557 (9)0.0420 (8)0.0297 (8)0.0106 (7)0.0136 (7)
C10.0652 (11)0.0448 (9)0.1013 (15)0.0165 (8)0.0290 (10)0.0170 (9)
C20.0450 (8)0.0455 (8)0.0561 (8)0.0192 (6)0.0107 (6)0.0172 (7)
C30.0542 (9)0.0615 (9)0.0483 (8)0.0292 (7)0.0146 (7)0.0171 (7)
C40.0491 (8)0.0509 (8)0.0458 (7)0.0220 (7)0.0186 (6)0.0069 (6)
C50.0397 (7)0.0436 (7)0.0421 (7)0.0150 (6)0.0086 (6)0.0126 (6)
C60.0681 (10)0.0468 (8)0.0445 (8)0.0185 (7)0.0199 (7)0.0134 (6)
C70.0687 (10)0.0442 (8)0.0498 (8)0.0172 (7)0.0239 (8)0.0072 (6)
C80.0427 (7)0.0434 (7)0.0406 (7)0.0150 (6)0.0111 (6)0.0109 (6)
C90.0446 (7)0.0411 (7)0.0401 (7)0.0141 (6)0.0106 (6)0.0097 (6)
C100.0440 (7)0.0438 (7)0.0405 (7)0.0172 (6)0.0083 (6)0.0115 (6)
C110.0627 (9)0.0457 (8)0.0460 (8)0.0214 (7)0.0145 (7)0.0096 (6)
C120.0754 (11)0.0637 (10)0.0414 (8)0.0331 (9)0.0155 (8)0.0082 (7)
C130.0689 (10)0.0670 (10)0.0452 (8)0.0350 (9)0.0023 (7)0.0243 (7)
C140.0758 (11)0.0476 (9)0.0529 (9)0.0231 (8)0.0083 (8)0.0181 (7)
C150.0654 (10)0.0451 (8)0.0428 (8)0.0184 (7)0.0124 (7)0.0106 (6)
C160.0524 (8)0.0456 (8)0.0412 (7)0.0198 (7)0.0102 (6)0.0118 (6)
N20.0540 (7)0.0492 (7)0.0366 (6)0.0219 (6)0.0106 (5)0.0102 (5)
C180.0599 (9)0.0585 (9)0.0471 (8)0.0178 (8)0.0179 (7)0.0113 (7)
C190.0593 (10)0.0815 (12)0.0655 (11)0.0297 (9)0.0174 (8)0.0216 (9)
C200.0693 (12)0.0880 (14)0.0620 (11)0.0436 (10)0.0075 (9)0.0123 (10)
C210.0751 (12)0.0708 (11)0.0480 (9)0.0359 (10)0.0140 (8)0.0002 (8)
C220.0633 (9)0.0591 (9)0.0391 (7)0.0242 (8)0.0135 (7)0.0110 (7)
Geometric parameters (Å, º) top
S1—C161.7201 (15)C10—C151.388 (2)
S1—C91.7264 (14)C10—C111.392 (2)
F1—C131.3593 (17)C11—C121.385 (2)
O1—C21.3665 (17)C11—H110.9300
O1—C11.421 (2)C12—C131.368 (2)
N1—C91.3060 (18)C12—H120.9300
N1—C81.3912 (17)C13—C141.365 (2)
C17—N21.4632 (19)C14—C151.379 (2)
C17—C161.5054 (19)C14—H140.9300
C17—H17A0.9700C15—H150.9300
C17—H17B0.9700N2—C221.4634 (18)
C1—H1A0.9600N2—C181.466 (2)
C1—H1B0.9600C18—C191.512 (2)
C1—H1C0.9600C18—H18A0.9700
C2—C71.382 (2)C18—H18B0.9700
C2—C31.385 (2)C19—C201.518 (3)
C3—C41.379 (2)C19—H19A0.9700
C3—H30.9300C19—H19B0.9700
C4—C51.3970 (19)C20—C211.510 (3)
C4—H40.9300C20—H20A0.9700
C5—C61.389 (2)C20—H20B0.9700
C5—C81.4751 (19)C21—C221.517 (2)
C6—C71.384 (2)C21—H21A0.9700
C6—H60.9300C21—H21B0.9700
C7—H70.9300C22—H22A0.9700
C8—C161.369 (2)C22—H22B0.9700
C9—C101.4734 (19)
C16—S1—C989.65 (7)C11—C12—H12120.9
C2—O1—C1117.72 (13)F1—C13—C14118.51 (15)
C9—N1—C8110.92 (11)F1—C13—C12118.50 (15)
N2—C17—C16111.16 (12)C14—C13—C12122.99 (14)
N2—C17—H17A109.4C13—C14—C15118.20 (15)
C16—C17—H17A109.4C13—C14—H14120.9
N2—C17—H17B109.4C15—C14—H14120.9
C16—C17—H17B109.4C14—C15—C10121.25 (15)
H17A—C17—H17B108.0C14—C15—H15119.4
O1—C1—H1A109.5C10—C15—H15119.4
O1—C1—H1B109.5C8—C16—C17131.87 (13)
H1A—C1—H1B109.5C8—C16—S1110.02 (10)
O1—C1—H1C109.5C17—C16—S1118.06 (11)
H1A—C1—H1C109.5C17—N2—C22111.27 (12)
H1B—C1—H1C109.5C17—N2—C18111.22 (12)
O1—C2—C7124.48 (14)C22—N2—C18110.21 (12)
O1—C2—C3116.31 (13)N2—C18—C19110.86 (13)
C7—C2—C3119.20 (14)N2—C18—H18A109.5
C4—C3—C2120.72 (13)C19—C18—H18A109.5
C4—C3—H3119.6N2—C18—H18B109.5
C2—C3—H3119.6C19—C18—H18B109.5
C3—C4—C5120.99 (13)H18A—C18—H18B108.1
C3—C4—H4119.5C18—C19—C20110.67 (15)
C5—C4—H4119.5C18—C19—H19A109.5
C6—C5—C4117.27 (13)C20—C19—H19A109.5
C6—C5—C8119.91 (12)C18—C19—H19B109.5
C4—C5—C8122.80 (13)C20—C19—H19B109.5
C7—C6—C5121.99 (14)H19A—C19—H19B108.1
C7—C6—H6119.0C21—C20—C19109.97 (15)
C5—C6—H6119.0C21—C20—H20A109.7
C2—C7—C6119.77 (14)C19—C20—H20A109.7
C2—C7—H7120.1C21—C20—H20B109.7
C6—C7—H7120.1C19—C20—H20B109.7
C16—C8—N1114.69 (12)H20A—C20—H20B108.2
C16—C8—C5127.01 (13)C20—C21—C22111.94 (15)
N1—C8—C5118.26 (12)C20—C21—H21A109.2
N1—C9—C10124.09 (12)C22—C21—H21A109.2
N1—C9—S1114.71 (10)C20—C21—H21B109.2
C10—C9—S1121.19 (10)C22—C21—H21B109.2
C15—C10—C11118.52 (13)H21A—C21—H21B107.9
C15—C10—C9121.36 (13)N2—C22—C21111.09 (13)
C11—C10—C9120.11 (13)N2—C22—H22A109.4
C12—C11—C10120.77 (14)C21—C22—H22A109.4
C12—C11—H11119.6N2—C22—H22B109.4
C10—C11—H11119.6C21—C22—H22B109.4
C13—C12—C11118.27 (15)H22A—C22—H22B108.0
C13—C12—H12120.9
C1—O1—C2—C76.7 (2)C9—C10—C11—C12179.05 (14)
C1—O1—C2—C3174.43 (14)C10—C11—C12—C130.6 (3)
O1—C2—C3—C4179.86 (13)C11—C12—C13—F1179.83 (15)
C7—C2—C3—C41.2 (2)C11—C12—C13—C140.8 (3)
C2—C3—C4—C50.9 (2)F1—C13—C14—C15179.78 (15)
C3—C4—C5—C62.5 (2)C12—C13—C14—C150.4 (3)
C3—C4—C5—C8175.70 (13)C13—C14—C15—C100.2 (3)
C4—C5—C6—C72.2 (2)C11—C10—C15—C140.4 (2)
C8—C5—C6—C7176.13 (14)C9—C10—C15—C14178.63 (15)
O1—C2—C7—C6179.58 (14)N1—C8—C16—C17176.66 (15)
C3—C2—C7—C61.6 (2)C5—C8—C16—C171.1 (3)
C5—C6—C7—C20.1 (3)N1—C8—C16—S10.64 (16)
C9—N1—C8—C161.13 (18)C5—C8—C16—S1178.38 (12)
C9—N1—C8—C5179.08 (12)N2—C17—C16—C8146.91 (16)
C6—C5—C8—C16148.99 (16)N2—C17—C16—S130.21 (18)
C4—C5—C8—C1629.2 (2)C9—S1—C16—C80.01 (12)
C6—C5—C8—N128.7 (2)C9—S1—C16—C17177.71 (13)
C4—C5—C8—N1153.12 (13)C16—C17—N2—C22164.61 (13)
C8—N1—C9—C10179.82 (13)C16—C17—N2—C1872.10 (16)
C8—N1—C9—S11.11 (16)C17—N2—C18—C19175.32 (13)
C16—S1—C9—N10.66 (12)C22—N2—C18—C1960.79 (17)
C16—S1—C9—C10179.41 (12)N2—C18—C19—C2058.33 (19)
N1—C9—C10—C15161.52 (15)C18—C19—C20—C2153.4 (2)
S1—C9—C10—C1519.8 (2)C19—C20—C21—C2252.2 (2)
N1—C9—C10—C1119.5 (2)C17—N2—C22—C21177.25 (14)
S1—C9—C10—C11159.13 (12)C18—N2—C22—C2158.89 (17)
C15—C10—C11—C120.0 (2)C20—C21—C22—N255.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1C10-C15i0.962.983.781 (2)142
C1—H1C···Cg2C2-C7ii0.962.743.595 (2)149
Symmetry codes: (i) x, y+1, z; (ii) x, y+3, z.

Experimental details

Crystal data
Chemical formulaC22H23FN2OS
Mr382.48
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.7565 (2), 10.8846 (2), 11.0179 (2)
α, β, γ (°)67.035 (1), 63.881 (1), 60.768 (1)
V3)985.16 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.659, 0.746
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
26568, 4674, 3614
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.05
No. of reflections4674
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cg1C10-C15i0.962.983.781 (2)142
C1—H1C···Cg2C2-C7ii0.962.743.595 (2)149
Symmetry codes: (i) x, y+1, z; (ii) x, y+3, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (project No. 30873140), the Program for Excellent Talents of Beijing City (project No. 20071D0501600227) and the Beijing Municipal Commission of Education (project No. KM201010028011).

References

First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, C. B., Guo, Y. S., Guo, Z. R., Xiao, J. F., Chu, F. M. & Cheng, G. F. (2006). Acta Chim. Sin. 64, 1559–1564.  CAS Google Scholar
First citationKaregoudar, P., Karthikeyan, M. S., Prasad, D. J., Mahalinga, M., Holla, B. S. & Kumari, N. S. (2008). Eur. J. Med. Chem. 43, 261–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMitsutaka, K., Takayuki, H. & Midori, T. (2006). Cryst. Growth Des. 6, 1945–1950.  Google Scholar
First citationReddy, K. A., Lohray, B. B., Bhushan, V., Bajji, A. C., Reddy, K. V., Reddy, P. R., Krishna, T. H., Rao, I. N. & Jajoo, H. K. (1999). J. Med. Chem. 42, 1927–1940.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakayuki, H., Kosuke, A., Midori, T. & Mitsutaka, K. (2009). Cryst. Growth Des. 9, 3031–3035.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds