organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)-4-nitro­benzamide

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: sohail262001@yahoo.com

(Received 12 December 2010; accepted 4 January 2011; online 8 January 2011)

In the title compound, C13H9BrN2O3, the dihedral angle between the mean planes of the two benzene rings is 3.6 (7)°. The amide group is twisted by 28.1 (6) and 31.8 (3)° from the mean planes of the 4-bromo­phenyl and 4-nitro­benzene rings, respectively. The crystal packing features weak inter­molecular N—H⋯O and C—H⋯O hydrogen bonds resulting in a three-dimensional network.

Related literature

For the anti­microbial activity of amides, see: Priya et al. (2005[Priya, B. S., Swamy, B. S. N. & Rangapa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]). For the use of amides in supra­molecular chemical anion sensor technology, see: Jagessar & Rampersaud (2007[Jagessar, R. C. & Rampersaud, D. (2007). Life Sci. J. 4, 46-49.]). For a related structure, see: Gowda et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1294.]);

[Scheme 1]

Experimental

Crystal data
  • C13H9BrN2O3

  • Mr = 321.13

  • Monoclinic, P 21 /c

  • a = 4.57903 (6) Å

  • b = 12.92579 (15) Å

  • c = 20.5614 (3) Å

  • β = 96.0333 (11)°

  • V = 1210.24 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.70 mm−1

  • T = 123 K

  • 0.48 × 0.12 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.485, Tmax = 1.000

  • 8049 measured reflections

  • 2434 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.06

  • 2434 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.33 3.0026 (18) 133
N1—H1A⋯O2ii 0.88 2.59 3.284 (2) 136
C3—H3A⋯O1iii 0.95 2.45 3.284 (2) 146
C5—H5A⋯O3iv 0.95 2.52 3.447 (2) 166
C6—H6A⋯O2ii 0.95 2.49 3.354 (2) 151
C9—H9A⋯O2ii 0.95 2.48 3.397 (2) 162
Symmetry codes: (i) x-1, y, z; (ii) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+1; (iv) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amides are known to play a pivitol role in molecular recognition, being important components in supramolecular chemical anion sensors technology (Jagessar & Rampersaud, 2007). Moreover, amides have also been reported as antimicrobial agents (Priya et al., 2005). The structure of the title compound has been determined to explore the effect of substituents on the structure of benzanilides.

In the title compound (Fig. 1), the dihedral angle between the mean planes of the two benzene rings is 3.6 (7)°. The amide group is twisted by 28.1 (6) and 31.8 (3)° from the mean planes of the 4-bromophenyl and 4-nitrobenzene rings. The bond distances and angles in the title compound agree well with the corresponding bond distances and angles reported for a closely related compound (Gowda et al., 2008). The crystal packing of the title compound is stabilized by weak N—H···O and C—H···O intermolecular hydrogen bonds which results in a hydrogen bonded 3-D network (Fig. 2).

Related literature top

For the antimicrobial activity of amides, see: Priya et al. (2005). For the use of amides in supramolecular chemical anion sensors technology, see: Jagessar & Rampersaud (2007). For a related structure, see: Gowda et al. (2008);

Experimental top

A solution of 4-nitrobenzoyl chloride (0.01 mol) and 4-bromoaniline (0.01 mol) in anhydrous acetone was refluxed for 4 h. After completion of the reaction, the crude solid product was filtered, washed with water and purified by re-crystallization from ethyl acetate.

Refinement top

The N–H atom length was set to 0.88Å (NH) and the H atom refined isotropically.

The H atoms were placed in their calculated positions with N—H = 0.88 and C—H = 0.95° A and refined using the riding model with isotropic displacement parameters set to 1.2 times Ueq of the parent atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis; hydrogen bonds are indicated by dashed lines indicate and H-atoms not involved in hydrogen bonding have been excluded for clarity.
N-(4-Bromophenyl)-4-nitrobenzamide top
Crystal data top
C13H9BrN2O3F(000) = 640
Mr = 321.13Dx = 1.762 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7736 reflections
a = 4.57903 (6) Åθ = 5.5–73.9°
b = 12.92579 (15) ŵ = 4.70 mm1
c = 20.5614 (3) ÅT = 123 K
β = 96.0333 (11)°Needle, colorless
V = 1210.24 (3) Å30.48 × 0.12 × 0.07 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2434 independent reflections
Radiation source: Enhance (Cu) X-ray Source2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.5081 pixels mm-1θmax = 74.0°, θmin = 5.5°
ω scansh = 55
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1515
Tmin = 0.485, Tmax = 1.000l = 2025
8049 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.6292P]
where P = (Fo2 + 2Fc2)/3
2434 reflections(Δ/σ)max = 0.002
172 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H9BrN2O3V = 1210.24 (3) Å3
Mr = 321.13Z = 4
Monoclinic, P21/cCu Kα radiation
a = 4.57903 (6) ŵ = 4.70 mm1
b = 12.92579 (15) ÅT = 123 K
c = 20.5614 (3) Å0.48 × 0.12 × 0.07 mm
β = 96.0333 (11)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2434 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2329 reflections with I > 2σ(I)
Tmin = 0.485, Tmax = 1.000Rint = 0.025
8049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
2434 reflectionsΔρmin = 0.29 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.32019 (4)0.406567 (14)0.541374 (10)0.02940 (10)
O10.3492 (3)0.11877 (10)0.59423 (6)0.0247 (3)
O20.5374 (3)0.46316 (11)0.76725 (7)0.0345 (3)
O30.2924 (4)0.55958 (11)0.70717 (8)0.0377 (4)
N10.0486 (3)0.02526 (11)0.61758 (7)0.0201 (3)
H1A0.22230.03000.63200.024*
N20.3666 (3)0.47512 (12)0.72579 (7)0.0231 (3)
C10.0405 (3)0.07385 (13)0.59764 (8)0.0182 (3)
C20.2236 (4)0.08785 (13)0.54822 (9)0.0201 (3)
H2A0.29270.02950.52620.024*
C30.3048 (4)0.18693 (15)0.53110 (8)0.0219 (3)
H3A0.43030.19680.49760.026*
C40.2009 (4)0.27132 (13)0.56336 (8)0.0198 (3)
C50.0130 (4)0.25951 (14)0.61141 (9)0.0239 (4)
H5A0.05970.31820.63240.029*
C60.0673 (4)0.16009 (14)0.62825 (9)0.0230 (3)
H6A0.19680.15080.66100.028*
C70.1117 (3)0.11336 (13)0.61622 (8)0.0178 (3)
C80.0198 (3)0.20704 (13)0.64528 (8)0.0184 (3)
C90.1905 (4)0.19869 (13)0.69742 (8)0.0200 (3)
H9A0.22860.13250.71480.024*
C100.3050 (4)0.28705 (14)0.72402 (8)0.0213 (3)
H10A0.42150.28220.75950.026*
C110.2449 (4)0.38172 (14)0.69751 (8)0.0194 (3)
C120.0747 (4)0.39293 (14)0.64586 (9)0.0231 (4)
H12A0.03730.45930.62870.028*
C130.0391 (4)0.30400 (14)0.62015 (8)0.0222 (3)
H13A0.15810.30940.58510.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.03917 (15)0.01765 (14)0.03289 (15)0.00443 (7)0.01082 (9)0.00390 (6)
O10.0192 (6)0.0241 (6)0.0322 (7)0.0024 (5)0.0095 (5)0.0045 (5)
O20.0452 (8)0.0239 (7)0.0383 (8)0.0015 (6)0.0233 (6)0.0050 (6)
O30.0576 (10)0.0158 (7)0.0431 (8)0.0013 (6)0.0210 (7)0.0009 (6)
N10.0158 (6)0.0194 (7)0.0264 (7)0.0010 (5)0.0077 (5)0.0028 (6)
N20.0279 (7)0.0197 (8)0.0222 (7)0.0006 (6)0.0048 (6)0.0032 (6)
C10.0165 (7)0.0188 (8)0.0194 (8)0.0016 (6)0.0019 (6)0.0027 (6)
C20.0211 (8)0.0190 (9)0.0212 (8)0.0009 (6)0.0065 (6)0.0020 (6)
C30.0235 (8)0.0211 (9)0.0223 (8)0.0021 (6)0.0077 (6)0.0008 (7)
C40.0219 (8)0.0152 (8)0.0224 (8)0.0030 (6)0.0025 (6)0.0049 (6)
C50.0289 (8)0.0199 (9)0.0241 (8)0.0023 (7)0.0079 (7)0.0008 (7)
C60.0245 (8)0.0231 (9)0.0233 (8)0.0029 (7)0.0110 (6)0.0028 (7)
C70.0153 (7)0.0199 (8)0.0184 (8)0.0010 (6)0.0026 (6)0.0008 (6)
C80.0153 (7)0.0202 (8)0.0194 (7)0.0006 (6)0.0012 (6)0.0028 (6)
C90.0232 (8)0.0157 (8)0.0217 (8)0.0019 (6)0.0050 (6)0.0005 (6)
C100.0236 (8)0.0209 (9)0.0203 (8)0.0019 (6)0.0065 (6)0.0025 (6)
C110.0216 (8)0.0171 (8)0.0196 (8)0.0000 (6)0.0022 (6)0.0035 (6)
C120.0284 (9)0.0174 (8)0.0244 (8)0.0025 (7)0.0075 (7)0.0014 (6)
C130.0240 (8)0.0220 (9)0.0220 (8)0.0011 (6)0.0091 (6)0.0006 (7)
Geometric parameters (Å, º) top
Br—C41.9002 (17)C5—C61.390 (3)
O1—C71.223 (2)C5—H5A0.9500
O2—N21.226 (2)C6—H6A0.9500
O3—N21.217 (2)C7—C81.504 (2)
N1—C71.357 (2)C8—C131.393 (2)
N1—C11.418 (2)C8—C91.396 (2)
N1—H1A0.8800C9—C101.392 (2)
N2—C111.475 (2)C9—H9A0.9500
C1—C21.395 (2)C10—C111.379 (3)
C1—C61.396 (3)C10—H10A0.9500
C2—C31.389 (2)C11—C121.389 (3)
C2—H2A0.9500C12—C131.389 (3)
C3—C41.387 (3)C12—H12A0.9500
C3—H3A0.9500C13—H13A0.9500
C4—C51.385 (2)
C7—N1—C1125.41 (14)C1—C6—H6A119.6
C7—N1—H1A117.3O1—C7—N1124.04 (16)
C1—N1—H1A117.3O1—C7—C8120.64 (16)
O3—N2—O2123.49 (16)N1—C7—C8115.31 (14)
O3—N2—C11118.72 (15)C13—C8—C9120.04 (16)
O2—N2—C11117.79 (15)C13—C8—C7118.42 (15)
C2—C1—C6119.53 (16)C9—C8—C7121.52 (15)
C2—C1—N1122.74 (16)C10—C9—C8120.17 (16)
C6—C1—N1117.71 (15)C10—C9—H9A119.9
C3—C2—C1120.10 (16)C8—C9—H9A119.9
C3—C2—H2A120.0C11—C10—C9118.27 (16)
C1—C2—H2A120.0C11—C10—H10A120.9
C4—C3—C2119.30 (15)C9—C10—H10A120.9
C4—C3—H3A120.3C10—C11—C12123.09 (16)
C2—C3—H3A120.3C10—C11—N2118.11 (15)
C5—C4—C3121.64 (16)C12—C11—N2118.80 (16)
C5—C4—Br119.13 (13)C13—C12—C11117.87 (17)
C3—C4—Br119.23 (13)C13—C12—H12A121.1
C4—C5—C6118.67 (16)C11—C12—H12A121.1
C4—C5—H5A120.7C12—C13—C8120.55 (16)
C6—C5—H5A120.7C12—C13—H13A119.7
C5—C6—C1120.71 (16)C8—C13—H13A119.7
C5—C6—H6A119.6
C7—N1—C1—C231.0 (3)O1—C7—C8—C9146.78 (17)
C7—N1—C1—C6150.50 (17)N1—C7—C8—C932.2 (2)
C6—C1—C2—C32.0 (3)C13—C8—C9—C100.7 (2)
N1—C1—C2—C3179.60 (15)C7—C8—C9—C10178.88 (15)
C1—C2—C3—C40.3 (3)C8—C9—C10—C110.0 (2)
C2—C3—C4—C51.3 (3)C9—C10—C11—C120.3 (3)
C2—C3—C4—Br178.45 (13)C9—C10—C11—N2179.98 (15)
C3—C4—C5—C61.3 (3)O3—N2—C11—C10173.01 (17)
Br—C4—C5—C6178.45 (13)O2—N2—C11—C106.7 (2)
C4—C5—C6—C10.3 (3)O3—N2—C11—C126.7 (2)
C2—C1—C6—C52.0 (3)O2—N2—C11—C12173.58 (16)
N1—C1—C6—C5179.52 (16)C10—C11—C12—C130.0 (3)
C1—N1—C7—O13.9 (3)N2—C11—C12—C13179.68 (15)
C1—N1—C7—C8175.02 (14)C11—C12—C13—C80.7 (3)
O1—C7—C8—C1331.4 (2)C9—C8—C13—C121.0 (2)
N1—C7—C8—C13149.60 (16)C7—C8—C13—C12179.28 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.333.0026 (18)133
N1—H1A···O2ii0.882.593.284 (2)136
C3—H3A···O1iii0.952.453.284 (2)146
C5—H5A···O3iv0.952.523.447 (2)166
C6—H6A···O2ii0.952.493.354 (2)151
C9—H9A···O2ii0.952.483.397 (2)162
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H9BrN2O3
Mr321.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)4.57903 (6), 12.92579 (15), 20.5614 (3)
β (°) 96.0333 (11)
V3)1210.24 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.70
Crystal size (mm)0.48 × 0.12 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.485, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8049, 2434, 2329
Rint0.025
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.06
No. of reflections2434
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.882.333.0026 (18)133
N1—H1A···O2ii0.882.593.284 (2)136
C3—H3A···O1iii0.952.453.284 (2)146
C5—H5A···O3iv0.952.523.447 (2)166
C6—H6A···O2ii0.952.493.354 (2)151
C9—H9A···O2ii0.952.483.397 (2)162
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+3/2; (iii) x+1, y, z+1; (iv) x, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagessar, R. C. & Rampersaud, D. (2007). Life Sci. J. 4, 46–49.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPriya, B. S., Swamy, B. S. N. & Rangapa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds