metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{tris­[2-(2-oxido­benzyl­idene­azaniumyl)ethyl]amine-κ3O,O′,O′′}calcium bis­(perchlorate) aceto­nitrile disolvate

aChemistry Department, Loughborough University, Leicestershire, LE11 3TU, England
*Correspondence e-mail: m.kose@lboro.ac.uk

(Received 13 December 2010; accepted 23 December 2010; online 8 January 2011)

The title complex, [Ca(C27H30N4O3)2](ClO4)2·2CH3CN, is composed of centrosymmetric (CaL2)2+ cations [L = tris­(2-hy­droxy­benzoyl­amino­eth­yl)amine = H3saltren], uncoordin­ated perchlorate anions and acetonitrile solvent mol­ecules. The calcium ion is six-coordinated and is bonded to all phen­oxy O atoms from both zwitterionic saltren mol­ecules. There are strong intra­molecular N—H⋯O hydrogen bonds. The cations are linked into chains via weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.306 (3) and 3.415 (3) Å].

Related literature

For crystal structure of the free ligand, see: Gündüz et al. (1985[Gündüz, N., Gündüz, T., Hursthouse, M. B., Parkes, H. G., Shaw (née Gözen), L. S., Shaw, R. A. & Tüzün, M. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 899-902.]). For structures of transition metal complexes of H3saltren, see: Steinhauser et al. (2004[Steinhauser, S., Bachman, F., Hazenkamp, M., Heinz, U., Dannacher, J. & Hegetschweiler, K. (2004). Z. Kristallogr. New Cryst. Struct. 219, 325-326.]); Elerman et al. (1994[Elerman, Y., Kabak, M., Svoboda, I. & Geselle, M. (1994). Acta Cryst. C50, 1694-1696.], 1995[Elerman, Y., Kabak, M., Svoboda, I., Fuess, H. & Atakol, O. (1995). J. Chem. Crystallogr. 25, 227-230.]).

[Scheme 1]

Experimental

Crystal data
  • [Ca(C27H30N4O3)2](ClO4)2·2C2H3N

  • Mr = 1238.19

  • Orthorhombic, P b c a

  • a = 11.3469 (7) Å

  • b = 19.5307 (12) Å

  • c = 27.3178 (16) Å

  • V = 6054.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 150 K

  • 0.12 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.662, Tmax = 0.746

  • 55467 measured reflections

  • 6915 independent reflections

  • 5810 reflections with I > 2.0σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.05

  • 6915 reflections

  • 398 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.85 (2) 1.98 (2) 2.6597 (17) 136 (2)
N3—H3A⋯O2 0.86 (2) 1.91 (2) 2.6256 (18) 140 (2)
N4—H4A⋯O3 0.83 (2) 1.98 (2) 2.6449 (17) 137 (2)
C3—H3⋯O7i 0.95 2.41 3.316 (2) 160
C20—H20A⋯O5ii 0.99 2.50 3.380 (2) 148
C10—H10A⋯O5iii 0.99 2.50 3.271 (2) 134
C21—H21⋯O5ii 0.95 2.58 3.259 (2) 129
C29—H29B⋯O6iv 0.98 2.58 3.555 (3) 173
C26—H26⋯Cg1v 0.95 2.68 3.489 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z; (iii) [x-{\script{1\over 2}}, y-1, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structures and coordination chemistry of transition metal complexes of H3saltren, tris(2-hydroxybenzoylaminoethyl)amine (L), a tripodal ligand, have been described in detail (Steinhauser et al., 2004; Elerman et al., 1994); Elerman et al., 1995). Here, we report the first example of an earth alkaline metal (Ca+2) complex of H3saltren.

The crystal structure of the title complex contains centrosymmetric (CaL2)+2 cations, uncoordinated perchlorate anions and acetonitrile molecules (Fig. 1). Each calcium ion is six-coordinated, bonded to all phenoxy O atoms from two saltren molecules. There are strong intramolecular hydrogen bonds of the type N—H···O between protonated imine and deprotonated phenol-oxygen atoms (Table 1). The cations are linked into chains via intermolecular C—H···O and C—H··· N type weak hydrogen bonds and C—H···π interactions (Tab. 1 and Fig. 2). There is evidence of π-π stacking in the crystal structure; C16 is stacked with C16* and C15* of an adjacent molecule (* = 2 - x, -y, 1 - z) with separation of 3.306 (3) and 3.415 (3) Å, respectively (Fig. 2). Protonated imine distances (CN distances) (mean 1.300 (2) Å) are longer than the corresponding CN distances reported in the neutral ligand (mean 1.267 Å) (Gündüz et al., 1985). The longer CN distances were also determined by IR spectroscopy; while CN stretch is observed at 1633 cm-1 in the neutral ligand, by protonation of imine, CN stretch shifts to 1654 cm-1.

Related literature top

For crystal structure of the free ligand, see: Gündüz et al. (1985). For structures of transition metal complexes of H3saltren, see: Steinhauser et al. (2004); Elerman et al. (1994, 1995).

Experimental top

H3Saltren (0.508 g, 1.11 mmol) was dissolved in methanol (50 ml) followed by addition of Ca(ClO4)2.3H2O (0.185 g, 0.63 mmol) in methanol (20 ml). The reaction mixture was stirred at room temperature for two hours. Yellow precipitate was collected and washed with methanol (5 ml) and diethylether (20 ml) (yield 0.506 g, 0.44 mmol, 69.6%). X-ray quality crystals were obtained from acetonitrile solution of the title complex by slow evaporation.

Refinement top

H atoms bonded to C were inserted at calculated positions with C—H distances of 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H atoms, respectively, and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). The H-atoms bonded to N-atoms were taken from the difference Fourier maps and were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of centrosymmetric calcium complex [Ca(C27H30N4O3)2](ClO4)2(CH3CN)2; displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity (Symmetry code (i) -x + 1, -y, -z + 1).
[Figure 2] Fig. 2. Packing diagram viewed perpendicular to b, showing intramolecular hydrogen bonds and π-π (phenyl-phenyl) interactions.
Bis{tris[2-(2-oxidobenzylideneazaniumyl)ethyl]amine- κ3O,O',O''}calcium bis(perchlorate) acetonitrile disolvate top
Crystal data top
[Ca(C27H30N4O3)2](ClO4)2·2C2H3NF(000) = 2600
Mr = 1238.19Dx = 1.358 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9950 reflections
a = 11.3469 (7) Åθ = 2.2–27.4°
b = 19.5307 (12) ŵ = 0.27 mm1
c = 27.3178 (16) ÅT = 150 K
V = 6054.0 (6) Å3Block, yellow
Z = 40.12 × 0.10 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
6915 independent reflections
Radiation source: fine-focus sealed tube5810 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.662, Tmax = 0.746k = 2525
55467 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0538P)2 + 3.4246P]
where P = (Fo2 + 2Fc2)/3
6915 reflections(Δ/σ)max = 0.002
398 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ca(C27H30N4O3)2](ClO4)2·2C2H3NV = 6054.0 (6) Å3
Mr = 1238.19Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.3469 (7) ŵ = 0.27 mm1
b = 19.5307 (12) ÅT = 150 K
c = 27.3178 (16) Å0.12 × 0.10 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
6915 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5810 reflections with I > 2.0σ(I)
Tmin = 0.662, Tmax = 0.746Rint = 0.030
55467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.60 e Å3
6915 reflectionsΔρmin = 0.39 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.00000.50000.01901 (10)
O10.38283 (10)0.08611 (5)0.53706 (4)0.0260 (2)
C10.32707 (13)0.13534 (8)0.51499 (5)0.0224 (3)
C20.25547 (15)0.12409 (8)0.47327 (6)0.0291 (3)
H20.24380.07860.46190.035*
C30.20240 (16)0.17746 (10)0.44891 (7)0.0349 (4)
H30.15570.16800.42080.042*
C40.21547 (17)0.24547 (9)0.46452 (7)0.0395 (4)
H40.17950.28180.44690.047*
C50.28043 (16)0.25839 (9)0.50526 (7)0.0340 (4)
H50.28790.30420.51660.041*
C60.33725 (13)0.20497 (8)0.53117 (6)0.0239 (3)
C70.40674 (14)0.22286 (8)0.57213 (5)0.0247 (3)
H70.40660.26950.58210.030*
N10.47075 (12)0.18036 (7)0.59710 (5)0.0243 (3)
C80.53399 (15)0.19940 (8)0.64171 (6)0.0277 (3)
H8A0.54440.24970.64290.033*
H8B0.61300.17790.64180.033*
C90.46415 (15)0.17550 (8)0.68610 (6)0.0264 (3)
H9A0.50050.19390.71630.032*
H9B0.38250.19310.68400.032*
N20.46228 (11)0.10039 (6)0.68827 (5)0.0228 (3)
C100.56302 (15)0.07362 (9)0.71617 (6)0.0290 (3)
H10A0.53880.06590.75050.035*
H10B0.62710.10800.71620.035*
C110.60888 (15)0.00683 (9)0.69464 (6)0.0307 (4)
H11A0.66820.01330.71700.037*
H11B0.54310.02610.69130.037*
N30.66223 (12)0.01909 (7)0.64666 (5)0.0283 (3)
C120.77320 (14)0.03357 (9)0.64084 (6)0.0303 (3)
H120.82240.03290.66900.036*
C130.82570 (14)0.05027 (8)0.59528 (6)0.0282 (3)
C140.94893 (15)0.06200 (9)0.59374 (7)0.0362 (4)
H140.99330.06050.62320.043*
C151.00481 (16)0.07539 (9)0.55058 (8)0.0385 (4)
H151.08720.08410.54990.046*
C160.93896 (16)0.07617 (9)0.50724 (7)0.0353 (4)
H160.97800.08440.47700.042*
C170.81902 (16)0.06529 (8)0.50726 (6)0.0313 (4)
H170.77720.06600.47710.038*
C180.75700 (14)0.05306 (7)0.55146 (6)0.0253 (3)
O20.64376 (10)0.04299 (6)0.55239 (4)0.0287 (2)
C190.34878 (15)0.07321 (8)0.70527 (6)0.0280 (3)
H19A0.31070.10720.72700.034*
H19B0.36260.03110.72460.034*
C200.26672 (14)0.05700 (8)0.66278 (6)0.0287 (3)
H20A0.18630.04840.67540.034*
H20B0.26300.09680.64040.034*
N40.30786 (12)0.00316 (6)0.63575 (5)0.0241 (3)
C210.29327 (13)0.06510 (8)0.65229 (6)0.0252 (3)
H210.24690.07060.68100.030*
C220.34110 (13)0.12487 (8)0.63089 (6)0.0233 (3)
C230.31923 (15)0.18869 (8)0.65401 (6)0.0308 (4)
H230.27080.19030.68240.037*
C240.36664 (16)0.24768 (9)0.63612 (7)0.0361 (4)
H240.35260.29010.65210.043*
C250.43665 (16)0.24480 (9)0.59373 (7)0.0376 (4)
H250.46900.28590.58090.045*
C260.45932 (16)0.18409 (9)0.57042 (7)0.0341 (4)
H260.50660.18420.54170.041*
C270.41389 (13)0.12088 (8)0.58811 (5)0.0231 (3)
O30.43711 (10)0.06298 (6)0.56747 (4)0.0285 (3)
C280.8355 (2)0.24381 (14)0.68889 (8)0.0537 (6)
C290.85639 (19)0.31612 (11)0.68130 (9)0.0505 (5)
H29A0.93410.32830.69430.076*
H29B0.79550.34270.69820.076*
H29C0.85380.32630.64620.076*
N50.8201 (3)0.18674 (14)0.69423 (9)0.0870 (9)
H4A0.3474 (18)0.0002 (10)0.6103 (8)0.034 (5)*
H3A0.6222 (19)0.0209 (11)0.6199 (8)0.040 (6)*
H1A0.4716 (19)0.1395 (12)0.5863 (8)0.046 (6)*
Cl10.96706 (4)0.89879 (2)0.698669 (15)0.03209 (11)
O41.04850 (18)0.84563 (10)0.70855 (9)0.0828 (6)
O51.02963 (14)0.96257 (8)0.69527 (6)0.0547 (4)
O60.88221 (16)0.90508 (10)0.73665 (7)0.0743 (6)
O70.90949 (18)0.88552 (10)0.65378 (6)0.0699 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0219 (2)0.01807 (19)0.01709 (19)0.00034 (15)0.00046 (15)0.00076 (14)
O10.0295 (6)0.0200 (5)0.0285 (6)0.0045 (4)0.0004 (4)0.0005 (4)
C10.0202 (7)0.0226 (7)0.0243 (7)0.0021 (6)0.0052 (6)0.0012 (6)
C20.0294 (8)0.0270 (8)0.0309 (8)0.0006 (6)0.0015 (7)0.0034 (6)
C30.0317 (9)0.0410 (10)0.0321 (9)0.0026 (7)0.0085 (7)0.0006 (7)
C40.0426 (10)0.0326 (9)0.0432 (10)0.0087 (8)0.0118 (8)0.0084 (8)
C50.0383 (9)0.0225 (8)0.0413 (10)0.0049 (7)0.0063 (7)0.0016 (7)
C60.0253 (7)0.0219 (7)0.0245 (7)0.0019 (6)0.0014 (6)0.0013 (6)
C70.0284 (8)0.0207 (7)0.0251 (7)0.0012 (6)0.0041 (6)0.0001 (6)
N10.0290 (7)0.0219 (6)0.0219 (6)0.0040 (5)0.0004 (5)0.0009 (5)
C80.0337 (8)0.0272 (8)0.0222 (7)0.0086 (6)0.0027 (6)0.0023 (6)
C90.0342 (8)0.0238 (7)0.0211 (7)0.0018 (6)0.0006 (6)0.0010 (6)
N20.0250 (6)0.0220 (6)0.0214 (6)0.0021 (5)0.0007 (5)0.0024 (5)
C100.0324 (9)0.0321 (8)0.0224 (7)0.0001 (7)0.0039 (6)0.0022 (6)
C110.0312 (8)0.0319 (8)0.0290 (8)0.0031 (7)0.0017 (7)0.0065 (6)
N30.0261 (7)0.0308 (7)0.0279 (7)0.0026 (6)0.0029 (6)0.0001 (6)
C120.0266 (8)0.0315 (8)0.0326 (8)0.0039 (6)0.0062 (6)0.0042 (7)
C130.0246 (8)0.0255 (7)0.0344 (8)0.0007 (6)0.0018 (6)0.0045 (6)
C140.0257 (8)0.0388 (10)0.0442 (10)0.0014 (7)0.0047 (7)0.0077 (8)
C150.0254 (8)0.0340 (9)0.0561 (12)0.0043 (7)0.0050 (8)0.0066 (8)
C160.0367 (9)0.0250 (8)0.0442 (10)0.0025 (7)0.0113 (8)0.0018 (7)
C170.0355 (9)0.0232 (8)0.0352 (9)0.0019 (6)0.0016 (7)0.0001 (6)
C180.0266 (7)0.0164 (7)0.0330 (8)0.0008 (6)0.0011 (6)0.0029 (6)
O20.0248 (6)0.0308 (6)0.0304 (6)0.0023 (4)0.0034 (4)0.0008 (5)
C190.0309 (8)0.0266 (8)0.0265 (8)0.0046 (6)0.0083 (6)0.0034 (6)
C200.0237 (8)0.0246 (8)0.0377 (9)0.0013 (6)0.0047 (6)0.0053 (6)
N40.0224 (6)0.0230 (6)0.0269 (7)0.0008 (5)0.0023 (5)0.0025 (5)
C210.0216 (7)0.0280 (8)0.0262 (7)0.0026 (6)0.0026 (6)0.0006 (6)
C220.0226 (7)0.0227 (7)0.0245 (7)0.0018 (6)0.0009 (6)0.0010 (6)
C230.0315 (8)0.0283 (8)0.0328 (9)0.0072 (6)0.0058 (7)0.0050 (7)
C240.0385 (9)0.0211 (8)0.0486 (10)0.0063 (7)0.0035 (8)0.0059 (7)
C250.0402 (10)0.0217 (8)0.0509 (11)0.0003 (7)0.0077 (8)0.0063 (7)
C260.0387 (9)0.0281 (8)0.0356 (9)0.0017 (7)0.0125 (7)0.0049 (7)
C270.0241 (7)0.0236 (7)0.0217 (7)0.0019 (6)0.0004 (6)0.0009 (6)
O30.0356 (6)0.0242 (6)0.0257 (6)0.0002 (5)0.0054 (5)0.0050 (4)
C280.0484 (12)0.0695 (15)0.0431 (11)0.0228 (11)0.0127 (9)0.0133 (10)
C290.0410 (11)0.0524 (13)0.0582 (13)0.0026 (9)0.0053 (10)0.0008 (10)
N50.105 (2)0.0817 (17)0.0743 (16)0.0495 (15)0.0320 (14)0.0278 (13)
Cl10.0298 (2)0.0318 (2)0.0346 (2)0.00051 (15)0.00320 (16)0.00806 (16)
O40.0778 (13)0.0586 (11)0.1119 (17)0.0288 (10)0.0151 (12)0.0028 (11)
O50.0497 (9)0.0468 (9)0.0675 (10)0.0183 (7)0.0038 (7)0.0143 (7)
O60.0635 (11)0.0894 (13)0.0702 (12)0.0249 (10)0.0329 (9)0.0277 (10)
O70.0905 (13)0.0724 (11)0.0469 (9)0.0234 (10)0.0246 (9)0.0098 (8)
Geometric parameters (Å, º) top
Ca1—O2i2.3269 (11)C13—C181.430 (2)
Ca1—O22.3269 (11)C14—C151.364 (3)
Ca1—O3i2.3279 (11)C14—H140.9500
Ca1—O32.3279 (11)C15—C161.400 (3)
Ca1—O1i2.3709 (10)C15—H150.9500
Ca1—O12.3709 (10)C16—C171.377 (3)
O1—C11.2993 (18)C16—H160.9500
C1—C21.417 (2)C17—C181.418 (2)
C1—C61.435 (2)C17—H170.9500
C2—C31.375 (2)C18—O21.3001 (19)
C2—H20.9500C19—C201.522 (2)
C3—C41.403 (3)C19—H19A0.9900
C3—H30.9500C19—H19B0.9900
C4—C51.358 (3)C20—N41.4642 (19)
C4—H40.9500C20—H20A0.9900
C5—C61.416 (2)C20—H20B0.9900
C5—H50.9500N4—C211.302 (2)
C6—C71.413 (2)N4—H4A0.83 (2)
C7—N11.297 (2)C21—C221.414 (2)
C7—H70.9500C21—H210.9500
N1—C81.462 (2)C22—C231.419 (2)
N1—H1A0.85 (2)C22—C271.433 (2)
C8—C91.522 (2)C23—C241.362 (2)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C24—C251.405 (3)
C9—N21.4684 (19)C24—H240.9500
C9—H9A0.9900C25—C261.370 (2)
C9—H9B0.9900C25—H250.9500
N2—C191.468 (2)C26—C271.422 (2)
N2—C101.470 (2)C26—H260.9500
C10—C111.523 (2)C27—O31.2908 (18)
C10—H10A0.9900C28—N51.138 (3)
C10—H10B0.9900C28—C291.447 (3)
C11—N31.463 (2)C29—H29A0.9800
C11—H11A0.9900C29—H29B0.9800
C11—H11B0.9900C29—H29C0.9800
N3—C121.300 (2)Cl1—O71.4135 (16)
N3—H3A0.86 (2)Cl1—O41.4158 (18)
C12—C131.418 (2)Cl1—O61.4209 (16)
C12—H120.9500Cl1—O51.4368 (15)
C13—C141.418 (2)
O2i—Ca1—O2180.00 (4)N3—C12—H12117.8
O2i—Ca1—O3i85.33 (4)C13—C12—H12117.8
O2—Ca1—O3i94.67 (4)C14—C13—C12118.54 (16)
O2i—Ca1—O394.67 (4)C14—C13—C18120.45 (16)
O2—Ca1—O385.33 (4)C12—C13—C18120.98 (14)
O3i—Ca1—O3180.0C15—C14—C13121.02 (17)
O2i—Ca1—O1i82.79 (4)C15—C14—H14119.5
O2—Ca1—O1i97.21 (4)C13—C14—H14119.5
O3i—Ca1—O1i82.23 (4)C14—C15—C16119.01 (16)
O3—Ca1—O1i97.77 (4)C14—C15—H15120.5
O2i—Ca1—O197.21 (4)C16—C15—H15120.5
O2—Ca1—O182.79 (4)C17—C16—C15121.68 (17)
O3i—Ca1—O197.77 (4)C17—C16—H16119.2
O3—Ca1—O182.23 (4)C15—C16—H16119.2
O1i—Ca1—O1180.00 (5)C16—C17—C18121.11 (17)
C1—O1—Ca1126.86 (9)C16—C17—H17119.4
O1—C1—C2122.54 (14)C18—C17—H17119.4
O1—C1—C6121.28 (14)O2—C18—C17122.19 (15)
C2—C1—C6116.17 (13)O2—C18—C13121.11 (14)
C3—C2—C1121.52 (15)C17—C18—C13116.68 (15)
C3—C2—H2119.2C18—O2—Ca1137.34 (10)
C1—C2—H2119.2N2—C19—C20111.75 (13)
C2—C3—C4121.61 (16)N2—C19—H19A109.3
C2—C3—H3119.2C20—C19—H19A109.3
C4—C3—H3119.2N2—C19—H19B109.3
C5—C4—C3118.83 (16)C20—C19—H19B109.3
C5—C4—H4120.6H19A—C19—H19B107.9
C3—C4—H4120.6N4—C20—C19110.89 (13)
C4—C5—C6121.31 (16)N4—C20—H20A109.5
C4—C5—H5119.3C19—C20—H20A109.5
C6—C5—H5119.3N4—C20—H20B109.5
C7—C6—C5117.89 (14)C19—C20—H20B109.5
C7—C6—C1121.57 (14)H20A—C20—H20B108.0
C5—C6—C1120.51 (14)C21—N4—C20122.02 (14)
N1—C7—C6124.81 (14)C21—N4—H4A115.1 (13)
N1—C7—H7117.6C20—N4—H4A122.6 (14)
C6—C7—H7117.6N4—C21—C22125.08 (14)
C7—N1—C8123.40 (14)N4—C21—H21117.5
C7—N1—H1A115.1 (15)C22—C21—H21117.5
C8—N1—H1A121.5 (15)C21—C22—C23118.28 (14)
N1—C8—C9109.29 (13)C21—C22—C27120.90 (14)
N1—C8—H8A109.8C23—C22—C27120.76 (14)
C9—C8—H8A109.8C24—C23—C22120.93 (15)
N1—C8—H8B109.8C24—C23—H23119.5
C9—C8—H8B109.8C22—C23—H23119.5
H8A—C8—H8B108.3C23—C24—C25119.02 (16)
N2—C9—C8110.25 (13)C23—C24—H24120.5
N2—C9—H9A109.6C25—C24—H24120.5
C8—C9—H9A109.6C26—C25—C24121.57 (16)
N2—C9—H9B109.6C26—C25—H25119.2
C8—C9—H9B109.6C24—C25—H25119.2
H9A—C9—H9B108.1C25—C26—C27121.68 (16)
C19—N2—C9112.74 (12)C25—C26—H26119.2
C19—N2—C10112.92 (12)C27—C26—H26119.2
C9—N2—C10111.41 (12)O3—C27—C26122.55 (14)
N2—C10—C11111.72 (13)O3—C27—C22121.43 (14)
N2—C10—H10A109.3C26—C27—C22116.02 (14)
C11—C10—H10A109.3C27—O3—Ca1150.62 (10)
N2—C10—H10B109.3N5—C28—C29178.9 (3)
C11—C10—H10B109.3C28—C29—H29A109.5
H10A—C10—H10B107.9C28—C29—H29B109.5
N3—C11—C10110.31 (13)H29A—C29—H29B109.5
N3—C11—H11A109.6C28—C29—H29C109.5
C10—C11—H11A109.6H29A—C29—H29C109.5
N3—C11—H11B109.6H29B—C29—H29C109.5
C10—C11—H11B109.6O7—Cl1—O4109.43 (13)
H11A—C11—H11B108.1O7—Cl1—O6109.65 (12)
C12—N3—C11123.08 (15)O4—Cl1—O6111.50 (14)
C12—N3—H3A113.4 (14)O7—Cl1—O5109.34 (11)
C11—N3—H3A123.3 (14)O4—Cl1—O5109.00 (12)
N3—C12—C13124.35 (15)O6—Cl1—O5107.88 (10)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.85 (2)1.98 (2)2.6597 (17)136 (2)
N3—H3A···O20.86 (2)1.91 (2)2.6256 (18)140 (2)
N4—H4A···O30.83 (2)1.98 (2)2.6449 (17)137 (2)
C3—H3···O7ii0.952.413.316 (2)160
C20—H20A···O5iii0.992.503.380 (2)148
C10—H10A···O5iv0.992.503.271 (2)134
C21—H21···O5iii0.952.583.259 (2)129
C29—H29B···O6v0.982.583.555 (3)173
C26—H26···Cg1i0.952.683.489 (2)143
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y1, z; (iv) x1/2, y1, z+3/2; (v) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ca(C27H30N4O3)2](ClO4)2·2C2H3N
Mr1238.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)11.3469 (7), 19.5307 (12), 27.3178 (16)
V3)6054.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.12 × 0.10 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.662, 0.746
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
55467, 6915, 5810
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.05
No. of reflections6915
No. of parameters398
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.39

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.85 (2)1.98 (2)2.6597 (17)136 (2)
N3—H3A···O20.86 (2)1.91 (2)2.6256 (18)140 (2)
N4—H4A···O30.83 (2)1.98 (2)2.6449 (17)137 (2)
C3—H3···O7i0.952.413.316 (2)160
C20—H20A···O5ii0.992.503.380 (2)148
C10—H10A···O5iii0.992.503.271 (2)134
C21—H21···O5ii0.952.583.259 (2)129
C29—H29B···O6iv0.982.583.555 (3)173
C26—H26···Cg1v0.952.683.489 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z; (iii) x1/2, y1, z+3/2; (iv) x+3/2, y1/2, z; (v) x+1, y, z+1.
 

Acknowledgements

We are grateful to the Turkish Government for the award of a postgraduate scholarship (to MK).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElerman, Y., Kabak, M., Svoboda, I., Fuess, H. & Atakol, O. (1995). J. Chem. Crystallogr. 25, 227–230.  CSD CrossRef CAS Web of Science Google Scholar
First citationElerman, Y., Kabak, M., Svoboda, I. & Geselle, M. (1994). Acta Cryst. C50, 1694–1696.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGündüz, N., Gündüz, T., Hursthouse, M. B., Parkes, H. G., Shaw (née Gözen), L. S., Shaw, R. A. & Tüzün, M. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 899–902.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinhauser, S., Bachman, F., Hazenkamp, M., Heinz, U., Dannacher, J. & Hegetschweiler, K. (2004). Z. Kristallogr. New Cryst. Struct. 219, 325–326.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds