metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­{2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)cobalt(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 30 December 2010; accepted 10 January 2011; online 15 January 2011)

In the title complex, [Co(NCS)2(C13H19N3O)(H2O)], the CoII ion is six-coordinated by the N,N′,N′′-tridentate Schiff base, the N atoms of two thio­cyanate ligands and one water mol­ecule in a distorted octa­hedral geometry. Intra­molecular C—H⋯N and C—H⋯O hydrogen bonds occur. In the crystal, inter­molecular O—H⋯O, O—H⋯S, C—H⋯S and S⋯S [3.5546 (18) Å] inter­actions result in an infinite three-dimensional network.

Related literature

For the crystal structure of the analogous NiII complex, see: Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.]). For a similar Co(II) complex, see: Sun et al. (2007[Sun, X.-P., Gu, W. & Liu, X. (2007). Acta Cryst. E63, m1339-m1340.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCS)2(C13H19N3O)(H2O)]

  • Mr = 426.42

  • Monoclinic, P 21 /c

  • a = 7.1554 (3) Å

  • b = 22.187 (1) Å

  • c = 12.1297 (5) Å

  • β = 91.115 (3)°

  • V = 1925.31 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.18 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.823, Tmax = 0.915

  • 13017 measured reflections

  • 3401 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.137

  • S = 1.08

  • 3401 reflections

  • 233 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.83 (3) 1.88 (3) 2.701 (4) 172 (5)
O2—H2B⋯S1ii 0.83 (3) 2.36 (3) 3.161 (3) 162 (5)
C11—H11A⋯O2 0.99 2.40 3.121 (6) 130
C12—H12B⋯N4 0.99 2.62 3.511 (7) 150
C2—H2⋯S1i 0.95 2.85 3.774 (6) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title CoII complex is isostructural with the previously reported NiII complex (Suleiman Gwaram et al., 2011). The Schiff base, prepared in situ, acts as an N,N',N''-tridentate ligand towards the CoII ion to form two five-membered chelate rings with the metal atom. Two cis-located isothiocyanate and one water molecule complete a distorted octahedral geometry around the Co(II) center. A similar arrangement was observed in a related CoII complex (Sun et al., 2007). The molecular structure contains intramolecular C—H···N and C—H···O hydrogen bonds. In the crystal, the adjacent molecules are connected via O—H···O, O—H···S, C—H···S hydrogen bonds into infinite layers parallel to the ac plane. The layers are further linked into a three-dimensional polymeric structure through an S···S interaction [3.5546 (18) Å] between S1 and S2 of the symmetry related molecule at –x+1, y - 1/2, -z + 3/2.

Related literature top

For the crystal structure of the analogous NiII complex, see: Suleiman Gwaram et al. (2011). For a similar Co(II) complex, see: Sun et al. (2007).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of cobalt(II) acetate tetrahydrate (0.41 g, 1.65 mmol) and sodium thiocyanete (0.134 g, 1.65 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a few days.

Refinement top

The C-bound H atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent C atoms. The O-bound H atoms were located in a difference Fourier map, and refined with a distance restraint of O–H 0.84±0.02. For all H atoms, Uiso(H) was set to 1.2–1.5 Ueq(carrier atom). An additional rigid-bond type restraint (DELU in SHELXL97) was placed on the displacement parameters of S2 and C15.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.
Aqua{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine-κ3N,N',N''}bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C13H19N3O)(H2O)]F(000) = 884
Mr = 426.42Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2128 reflections
a = 7.1554 (3) Åθ = 2.5–23.4°
b = 22.187 (1) ŵ = 1.13 mm1
c = 12.1297 (5) ÅT = 100 K
β = 91.115 (3)°Rod, red
V = 1925.31 (14) Å30.18 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3401 independent reflections
Radiation source: fine-focus sealed tube2662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.823, Tmax = 0.915k = 2626
13017 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0626P)2 + 2.7605P]
where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.79 e Å3
3 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co(NCS)2(C13H19N3O)(H2O)]V = 1925.31 (14) Å3
Mr = 426.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1554 (3) ŵ = 1.13 mm1
b = 22.187 (1) ÅT = 100 K
c = 12.1297 (5) Å0.18 × 0.10 × 0.08 mm
β = 91.115 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3401 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2662 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.915Rint = 0.062
13017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0553 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.79 e Å3
3401 reflectionsΔρmin = 0.54 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.14436 (7)0.37659 (2)0.77043 (5)0.01682 (19)
S10.62351 (16)0.22817 (6)0.78138 (16)0.0511 (5)
S20.40771 (17)0.56976 (6)0.67930 (12)0.0357 (3)
O10.1265 (5)0.29112 (14)0.4482 (3)0.0315 (8)
O20.0220 (4)0.28962 (14)0.7921 (3)0.0248 (7)
H2A0.063 (7)0.2640 (18)0.836 (3)0.030*
H2B0.091 (4)0.282 (2)0.788 (4)0.030*
N10.1427 (5)0.38088 (16)0.9493 (3)0.0240 (8)
N20.1063 (4)0.41983 (16)0.8045 (3)0.0195 (8)
N30.0131 (5)0.38505 (15)0.5984 (3)0.0180 (8)
N40.3878 (5)0.32766 (17)0.7616 (3)0.0273 (9)
N50.2780 (5)0.45788 (16)0.7493 (3)0.0227 (8)
C10.2665 (7)0.3574 (2)1.0199 (4)0.0345 (12)
H10.37800.34030.99240.041*
C20.2382 (10)0.3571 (3)1.1326 (5)0.0522 (17)
H20.33000.34071.18170.063*
C30.0743 (11)0.3811 (3)1.1727 (5)0.064 (2)
H30.05060.38071.24950.076*
C40.0533 (9)0.4055 (3)1.0995 (4)0.0449 (14)
H40.16620.42241.12550.054*
C50.0178 (6)0.4054 (2)0.9889 (4)0.0271 (11)
C60.1499 (6)0.4296 (2)0.9038 (4)0.0269 (11)
C70.3223 (7)0.4624 (3)0.9403 (5)0.0456 (15)
H7A0.39860.47350.87550.068*
H7B0.28550.49890.98080.068*
H7C0.39490.43610.98830.068*
C80.2204 (6)0.4400 (2)0.7098 (4)0.0246 (10)
H8A0.27120.48070.72410.030*
H8B0.32650.41200.69740.030*
C90.0980 (6)0.4413 (2)0.6091 (4)0.0223 (10)
H9A0.17780.44660.54230.027*
H9B0.01210.47620.61450.027*
C100.1111 (6)0.33506 (19)0.5629 (4)0.0232 (10)
H10A0.18530.34780.49730.028*
H10B0.19920.32590.62260.028*
C110.0029 (7)0.2791 (2)0.5357 (4)0.0279 (11)
H11A0.06690.26500.60210.033*
H11B0.09050.24680.51240.033*
C120.2525 (7)0.3375 (2)0.4824 (4)0.0296 (11)
H12A0.34220.34520.42290.036*
H12B0.32430.32380.54830.036*
C130.1525 (7)0.3950 (2)0.5091 (4)0.0255 (10)
H13A0.08720.41030.44200.031*
H13B0.24460.42580.53340.031*
C140.4866 (6)0.2874 (2)0.7706 (4)0.0297 (11)
C150.3316 (5)0.5040 (2)0.7189 (4)0.0192 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0109 (3)0.0182 (3)0.0215 (3)0.0007 (2)0.0026 (2)0.0016 (2)
S10.0148 (6)0.0235 (7)0.1153 (15)0.0026 (5)0.0068 (7)0.0148 (8)
S20.0273 (6)0.0273 (7)0.0523 (9)0.0060 (5)0.0027 (6)0.0136 (6)
O10.0404 (19)0.0304 (18)0.0242 (18)0.0125 (15)0.0143 (15)0.0108 (14)
O20.0200 (15)0.0262 (18)0.0281 (19)0.0045 (14)0.0035 (14)0.0116 (14)
N10.0224 (19)0.0220 (19)0.028 (2)0.0062 (16)0.0038 (16)0.0029 (17)
N20.0141 (17)0.026 (2)0.018 (2)0.0001 (15)0.0031 (15)0.0023 (16)
N30.0214 (18)0.0158 (18)0.0170 (19)0.0014 (14)0.0049 (15)0.0010 (15)
N40.0164 (18)0.027 (2)0.039 (3)0.0032 (17)0.0019 (17)0.0030 (18)
N50.0175 (18)0.020 (2)0.030 (2)0.0011 (16)0.0022 (16)0.0015 (17)
C10.043 (3)0.027 (3)0.033 (3)0.004 (2)0.016 (2)0.000 (2)
C20.088 (5)0.035 (3)0.033 (3)0.003 (3)0.034 (3)0.003 (3)
C30.108 (6)0.065 (4)0.018 (3)0.005 (4)0.001 (3)0.010 (3)
C40.065 (4)0.053 (3)0.017 (3)0.001 (3)0.007 (3)0.007 (2)
C50.028 (2)0.033 (3)0.020 (3)0.009 (2)0.003 (2)0.006 (2)
C60.017 (2)0.035 (3)0.028 (3)0.005 (2)0.0004 (19)0.006 (2)
C70.021 (2)0.071 (4)0.045 (4)0.004 (3)0.011 (2)0.021 (3)
C80.018 (2)0.026 (2)0.030 (3)0.0068 (18)0.0023 (19)0.003 (2)
C90.024 (2)0.025 (2)0.018 (2)0.0018 (19)0.0060 (18)0.0027 (19)
C100.027 (2)0.022 (2)0.020 (2)0.0041 (19)0.0013 (19)0.0022 (19)
C110.035 (3)0.028 (3)0.022 (3)0.009 (2)0.008 (2)0.002 (2)
C120.033 (3)0.029 (3)0.028 (3)0.011 (2)0.017 (2)0.009 (2)
C130.035 (3)0.026 (2)0.016 (2)0.008 (2)0.008 (2)0.0005 (19)
C140.016 (2)0.025 (3)0.049 (3)0.007 (2)0.002 (2)0.004 (2)
C150.0111 (19)0.025 (2)0.021 (2)0.0056 (18)0.0041 (17)0.0041 (19)
Geometric parameters (Å, º) top
Co1—N42.057 (4)C3—C41.372 (9)
Co1—N52.060 (4)C3—H30.9500
Co1—N22.083 (3)C4—C51.371 (7)
Co1—O22.137 (3)C4—H40.9500
Co1—N12.171 (4)C5—C61.486 (7)
Co1—N32.279 (4)C6—C71.507 (6)
S1—C141.642 (5)C7—H7A0.9800
S2—C151.633 (5)C7—H7B0.9800
O1—C121.424 (5)C7—H7C0.9800
O1—C111.446 (5)C8—C91.517 (6)
O2—H2A0.83 (3)C8—H8A0.9900
O2—H2B0.83 (3)C8—H8B0.9900
N1—C11.327 (6)C9—H9A0.9900
N1—C51.366 (6)C9—H9B0.9900
N2—C61.269 (6)C10—C111.504 (6)
N2—C81.465 (6)C10—H10A0.9900
N3—C101.480 (5)C10—H10B0.9900
N3—C91.487 (5)C11—H11A0.9900
N3—C131.503 (5)C11—H11B0.9900
N4—C141.144 (6)C12—C131.501 (6)
N5—C151.155 (5)C12—H12A0.9900
C1—C21.386 (8)C12—H12B0.9900
C1—H10.9500C13—H13A0.9900
C2—C31.385 (9)C13—H13B0.9900
C2—H20.9500
N4—Co1—N593.44 (14)N2—C6—C5115.7 (4)
N4—Co1—N2170.73 (15)N2—C6—C7125.4 (5)
N5—Co1—N291.43 (14)C5—C6—C7118.9 (4)
N4—Co1—O283.07 (14)C6—C7—H7A109.5
N5—Co1—O2176.51 (13)C6—C7—H7B109.5
N2—Co1—O292.01 (13)H7A—C7—H7B109.5
N4—Co1—N195.53 (15)C6—C7—H7C109.5
N5—Co1—N195.59 (14)H7A—C7—H7C109.5
N2—Co1—N176.14 (14)H7B—C7—H7C109.5
O2—Co1—N184.63 (13)N2—C8—C9108.4 (3)
N4—Co1—N3109.26 (15)N2—C8—H8A110.0
N5—Co1—N389.88 (13)C9—C8—H8A110.0
N2—Co1—N378.61 (13)N2—C8—H8B110.0
O2—Co1—N391.41 (12)C9—C8—H8B110.0
N1—Co1—N3154.27 (13)H8A—C8—H8B108.4
C12—O1—C11109.3 (3)N3—C9—C8111.9 (3)
Co1—O2—H2A124 (4)N3—C9—H9A109.2
Co1—O2—H2B126 (3)C8—C9—H9A109.2
H2A—O2—H2B103 (5)N3—C9—H9B109.2
C1—N1—C5118.9 (4)C8—C9—H9B109.2
C1—N1—Co1127.7 (3)H9A—C9—H9B107.9
C5—N1—Co1112.9 (3)N3—C10—C11112.0 (4)
C6—N2—C8123.3 (4)N3—C10—H10A109.2
C6—N2—Co1119.7 (3)C11—C10—H10A109.2
C8—N2—Co1117.0 (3)N3—C10—H10B109.2
C10—N3—C9109.6 (3)C11—C10—H10B109.2
C10—N3—C13107.7 (3)H10A—C10—H10B107.9
C9—N3—C13107.7 (3)O1—C11—C10110.4 (4)
C10—N3—Co1116.0 (3)O1—C11—H11A109.6
C9—N3—Co1101.6 (2)C10—C11—H11A109.6
C13—N3—Co1113.9 (3)O1—C11—H11B109.6
C14—N4—Co1158.4 (4)C10—C11—H11B109.6
C15—N5—Co1166.6 (4)H11A—C11—H11B108.1
N1—C1—C2122.1 (5)O1—C12—C13112.0 (4)
N1—C1—H1119.0O1—C12—H12A109.2
C2—C1—H1119.0C13—C12—H12A109.2
C3—C2—C1119.1 (5)O1—C12—H12B109.2
C3—C2—H2120.5C13—C12—H12B109.2
C1—C2—H2120.5H12A—C12—H12B107.9
C4—C3—C2118.8 (5)C12—C13—N3110.8 (3)
C4—C3—H3120.6C12—C13—H13A109.5
C2—C3—H3120.6N3—C13—H13A109.5
C5—C4—C3120.0 (6)C12—C13—H13B109.5
C5—C4—H4120.0N3—C13—H13B109.5
C3—C4—H4120.0H13A—C13—H13B108.1
N1—C5—C4121.2 (5)N4—C14—S1178.1 (5)
N1—C5—C6115.3 (4)N5—C15—S2178.5 (4)
C4—C5—C6123.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.83 (3)1.88 (3)2.701 (4)172 (5)
O2—H2B···S1ii0.83 (3)2.36 (3)3.161 (3)162 (5)
C11—H11A···O20.992.403.121 (6)130
C12—H12B···N40.992.623.511 (7)150
C2—H2···S1i0.952.853.774 (6)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(NCS)2(C13H19N3O)(H2O)]
Mr426.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.1554 (3), 22.187 (1), 12.1297 (5)
β (°) 91.115 (3)
V3)1925.31 (14)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.18 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.823, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
13017, 3401, 2662
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.137, 1.08
No. of reflections3401
No. of parameters233
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.83 (3)1.88 (3)2.701 (4)172 (5)
O2—H2B···S1ii0.83 (3)2.36 (3)3.161 (3)162 (5)
C11—H11A···O20.992.403.121 (6)130
C12—H12B···N40.992.623.511 (7)150
C2—H2···S1i0.952.853.774 (6)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, X.-P., Gu, W. & Liu, X. (2007). Acta Cryst. E63, m1339–m1340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds