metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{benzyl 3-[(1H-indol-3-yl)methyl­­idene]di­thio­carbazato-κ2N3,S}palladium(II) pyridine disolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 10 January 2011; accepted 13 January 2011; online 22 January 2011)

The PdII ion in the title compound, [Pd(C17H14N3S2)2]·2C5H5N, is located on an inversion center and is four-coordinated by two of the deprotonated N,S-bidentate Schiff base ligands in a square-planar geometry. The dihedral angle between the aromatic ring planes within the ligand is 71.12 (9)°. The indole NH groups are bonded to the pyridine solvent mol­ecules via an N—H⋯N inter­action. The crystal structure is consolidated by inter­molecular C—H⋯S inter­actions.

Related literature

For the analogous DMF disolvate PdII complex, see: Khaledi & Mohd Ali (2011[Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m84.]). For a discussion of the coordination chemistry of indole-based S-benzyl­dithio­carbazones, see: Khaledi et al. (2011[Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2011). Inorg. Chim. Acta, 366, 233-240.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C17H14N3S2)2]·2C5H5N

  • Mr = 913.46

  • Triclinic, [P \overline 1]

  • a = 9.9688 (2) Å

  • b = 10.5041 (2) Å

  • c = 10.9491 (2) Å

  • α = 62.534 (2)°

  • β = 78.494 (2)°

  • γ = 78.985 (2)°

  • V = 990.35 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.10 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.965

  • 8128 measured reflections

  • 3879 independent reflections

  • 3045 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.070

  • S = 0.99

  • 3879 reflections

  • 262 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4 0.86 (2) 1.96 (2) 2.808 (4) 171 (3)
C9—H9⋯S1i 0.95 2.58 3.267 (3) 130
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal of the title compound was obtained from a pyridine solution of the PdII complex of indole-3-carbaldehyde S-benzyldithiocarbazone. Upon deprotonation, the Schiff base chelates the PdII ion in an N,S-bidentate bonding mode to form a five-membered ring with the metal center. The PdII ion, located on an inversion center, is four-coordinated by two of the Schiff base ligands in a square-planar geometry. The pyridine solvent molecules remain uncoordinated to the metal ion and are hydrogen bonded to indole NH groups. This is similar to what was observed in the structure of the analogous DMF solvate PdII complex (Khaledi & Mohd Ali, 2011). In contrast, the cadmium(II) complex of the Schiff base ligand in a pyridine solution gave an octahedral complex wherein two trans-pyridine molecules are coordinated to the metal center (Khaledi et al., 2011). In the present structure, the aromatic ring planes within the ligand make a dihedral angle of 71.12 (9)°. The pyridine solvent ring is nearly coplanar with the indole ring, the dihedral angle between them being 11.39 (19)°. The structure is further consolidated by intramolecular interactions of the types C—H···S and C—H···N (Table 1).

Related literature top

For the analogous DMF disolvate PdII complex, see: Khaledi & Mohd Ali (2011). For a discussion of the coordination chemistry of indole-based S-benzyldithiocarbazones, see: Khaledi et al. (2011).

Experimental top

The Schiff base ligand was prepared as reported previously (Khaledi et al., 2011). A solution of palladium(II) acetate (0.224 g, 1 mmol) in ethanol (30 ml) was added to an ethanolic solution (30 ml) of the ligand (0.65 g, 2 mmol) containing a few drops of triethylamine. The mixture was refluxed for an hour, then cooled to room temperature. The resulting brown solid was filtered, washed with cold ethanol and dried over siliga-gel. The crystals of the title compound were obtained by slow evaporation of a solution of the solid in pyridine.

Refinement top

The C-bound H atoms were placed at calculated positions (C–H 0.95–0.99 Å) and were treated as riding on their parent C atoms. The N-bound H atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.02. For all H atoms, Uiso(H) was set to 1.2 Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled atoms by symmetry operation: -x, -y, -z.
Bis{benzyl 3-[(1H-indol-3-yl)methylidene]dithiocarbazato- κ2N3,S}palladium(II) pyridine disolvate top
Crystal data top
[Pd(C17H14N3S2)2]·2C5H5NZ = 1
Mr = 913.46F(000) = 468
Triclinic, P1Dx = 1.532 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9688 (2) ÅCell parameters from 2496 reflections
b = 10.5041 (2) Åθ = 2.2–27.4°
c = 10.9491 (2) ŵ = 0.72 mm1
α = 62.534 (2)°T = 100 K
β = 78.494 (2)°Block, red
γ = 78.985 (2)°0.10 × 0.07 × 0.05 mm
V = 990.35 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3879 independent reflections
Radiation source: fine-focus sealed tube3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.931, Tmax = 0.965k = 1212
8128 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
3879 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.73 e Å3
1 restraintΔρmin = 1.03 e Å3
Crystal data top
[Pd(C17H14N3S2)2]·2C5H5Nγ = 78.985 (2)°
Mr = 913.46V = 990.35 (3) Å3
Triclinic, P1Z = 1
a = 9.9688 (2) ÅMo Kα radiation
b = 10.5041 (2) ŵ = 0.72 mm1
c = 10.9491 (2) ÅT = 100 K
α = 62.534 (2)°0.10 × 0.07 × 0.05 mm
β = 78.494 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3879 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3045 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.965Rint = 0.041
8128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.73 e Å3
3879 reflectionsΔρmin = 1.03 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.00000.00000.00000.01415 (11)
S10.22662 (8)0.07299 (8)0.03590 (8)0.01946 (19)
S20.39814 (8)0.01851 (8)0.15858 (8)0.01993 (19)
N10.0326 (3)0.4905 (3)0.2098 (3)0.0209 (6)
H1N0.014 (3)0.528 (3)0.240 (3)0.025*
N20.0161 (3)0.1372 (2)0.0784 (2)0.0161 (6)
N30.1382 (3)0.1317 (2)0.1281 (2)0.0168 (6)
C10.0172 (3)0.3767 (3)0.1816 (3)0.0211 (7)
H10.10810.32860.19130.025*
C20.0838 (3)0.3404 (3)0.1364 (3)0.0175 (7)
C30.2052 (3)0.4404 (3)0.1403 (3)0.0175 (7)
C40.3413 (3)0.4581 (3)0.1129 (3)0.0207 (7)
H40.36960.39740.08220.025*
C50.4324 (3)0.5660 (3)0.1317 (3)0.0247 (8)
H50.52490.57850.11460.030*
C60.3925 (4)0.6577 (3)0.1754 (3)0.0257 (8)
H60.45800.73150.18630.031*
C70.2600 (3)0.6428 (3)0.2026 (3)0.0236 (8)
H70.23240.70520.23170.028*
C80.1682 (3)0.5327 (3)0.1860 (3)0.0185 (7)
C90.0809 (3)0.2353 (3)0.0870 (3)0.0161 (7)
H90.16380.23790.05510.019*
C100.2357 (3)0.0394 (3)0.1092 (3)0.0155 (7)
C110.3916 (3)0.1657 (3)0.2031 (3)0.0192 (7)
H11A0.48370.20040.17360.023*
H11B0.32580.24610.14840.023*
C120.3507 (3)0.1328 (3)0.3543 (3)0.0180 (7)
C130.2418 (3)0.0539 (3)0.4334 (3)0.0243 (7)
H130.18980.02080.39200.029*
C140.2083 (4)0.0229 (3)0.5724 (3)0.0283 (8)
H140.13440.03240.62600.034*
C150.2820 (4)0.0720 (3)0.6337 (3)0.0289 (8)
H150.25900.05070.72910.035*
C160.3883 (4)0.1516 (3)0.5552 (3)0.0265 (8)
H160.43830.18680.59640.032*
C170.4238 (3)0.1814 (3)0.4174 (3)0.0209 (7)
H170.49880.23560.36500.025*
N40.1071 (3)0.5947 (3)0.3379 (3)0.0247 (6)
C180.0482 (4)0.6915 (3)0.3856 (3)0.0293 (8)
H180.04420.73150.37040.035*
C190.1138 (4)0.7360 (4)0.4550 (3)0.0322 (8)
H190.06710.80440.48750.039*
C200.2470 (4)0.6811 (4)0.4771 (4)0.0392 (10)
H200.29510.71070.52450.047*
C210.3098 (4)0.5814 (4)0.4286 (4)0.0435 (10)
H210.40260.54120.44160.052*
C220.2362 (4)0.5409 (4)0.3610 (3)0.0327 (9)
H220.27990.47100.32930.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0175 (2)0.01085 (18)0.0166 (2)0.00293 (15)0.00176 (15)0.00774 (15)
S10.0206 (5)0.0190 (4)0.0251 (4)0.0007 (4)0.0042 (4)0.0151 (4)
S20.0200 (5)0.0204 (4)0.0249 (4)0.0001 (4)0.0052 (4)0.0147 (4)
N10.0240 (17)0.0187 (14)0.0272 (15)0.0053 (12)0.0004 (12)0.0160 (12)
N20.0220 (15)0.0108 (12)0.0192 (13)0.0021 (11)0.0027 (11)0.0094 (10)
N30.0201 (15)0.0144 (13)0.0184 (13)0.0034 (12)0.0033 (11)0.0084 (11)
C10.0260 (19)0.0155 (15)0.0219 (17)0.0009 (14)0.0011 (14)0.0096 (13)
C20.0228 (18)0.0120 (14)0.0159 (15)0.0032 (13)0.0021 (13)0.0060 (12)
C30.0207 (18)0.0128 (15)0.0157 (16)0.0033 (14)0.0030 (13)0.0050 (12)
C40.026 (2)0.0179 (16)0.0185 (16)0.0060 (14)0.0002 (14)0.0081 (13)
C50.0251 (19)0.0237 (17)0.0209 (17)0.0025 (15)0.0028 (14)0.0082 (14)
C60.032 (2)0.0178 (16)0.0204 (17)0.0060 (15)0.0017 (15)0.0080 (13)
C70.034 (2)0.0141 (15)0.0213 (17)0.0000 (15)0.0000 (15)0.0093 (13)
C80.0207 (18)0.0165 (15)0.0173 (16)0.0043 (14)0.0028 (13)0.0079 (13)
C90.0170 (17)0.0153 (15)0.0149 (15)0.0052 (13)0.0009 (13)0.0051 (12)
C100.0210 (18)0.0133 (14)0.0115 (15)0.0045 (13)0.0006 (13)0.0046 (12)
C110.0186 (18)0.0183 (15)0.0240 (17)0.0048 (14)0.0022 (14)0.0111 (13)
C120.0211 (18)0.0139 (15)0.0189 (16)0.0027 (13)0.0056 (13)0.0077 (13)
C130.0253 (19)0.0274 (17)0.0255 (18)0.0069 (15)0.0023 (15)0.0149 (15)
C140.030 (2)0.0265 (17)0.0221 (17)0.0056 (16)0.0026 (14)0.0066 (14)
C150.039 (2)0.0242 (17)0.0201 (18)0.0099 (17)0.0075 (16)0.0106 (15)
C160.035 (2)0.0217 (17)0.0277 (18)0.0053 (16)0.0130 (16)0.0149 (15)
C170.0237 (19)0.0162 (15)0.0246 (17)0.0011 (14)0.0053 (14)0.0102 (13)
N40.0237 (16)0.0202 (14)0.0313 (16)0.0052 (13)0.0042 (13)0.0110 (12)
C180.025 (2)0.0247 (18)0.041 (2)0.0061 (16)0.0012 (16)0.0175 (16)
C190.038 (2)0.032 (2)0.033 (2)0.0160 (18)0.0082 (17)0.0209 (16)
C200.047 (3)0.051 (2)0.025 (2)0.027 (2)0.0019 (18)0.0140 (18)
C210.030 (2)0.057 (3)0.034 (2)0.001 (2)0.0108 (18)0.011 (2)
C220.034 (2)0.0276 (19)0.031 (2)0.0034 (17)0.0009 (17)0.0120 (16)
Geometric parameters (Å, º) top
Pd1—N2i2.031 (2)C9—H90.9500
Pd1—N22.031 (2)C11—C121.510 (4)
Pd1—S1i2.2936 (8)C11—H11A0.9900
Pd1—S12.2936 (8)C11—H11B0.9900
S1—C101.729 (3)C12—C131.387 (4)
S2—C101.751 (3)C12—C171.393 (4)
S2—C111.810 (3)C13—C141.384 (4)
N1—C11.350 (4)C13—H130.9500
N1—C81.377 (4)C14—C151.384 (5)
N1—H1N0.857 (18)C14—H140.9500
N2—C91.296 (3)C15—C161.369 (5)
N2—N31.411 (3)C15—H150.9500
N3—C101.294 (3)C16—C171.376 (4)
C1—C21.387 (4)C16—H160.9500
C1—H10.9500C17—H170.9500
C2—C91.430 (4)N4—C221.326 (4)
C2—C31.450 (4)N4—C181.339 (4)
C3—C81.408 (4)C18—C191.365 (5)
C3—C41.408 (4)C18—H180.9500
C4—C51.378 (4)C19—C201.365 (5)
C4—H40.9500C19—H190.9500
C5—C61.400 (4)C20—C211.378 (5)
C5—H50.9500C20—H200.9500
C6—C71.376 (5)C21—C221.376 (5)
C6—H60.9500C21—H210.9500
C7—C81.390 (4)C22—H220.9500
C7—H70.9500
N2i—Pd1—N2180.0N3—C10—S2120.5 (2)
N2i—Pd1—S1i83.22 (7)S1—C10—S2112.65 (16)
N2—Pd1—S1i96.78 (7)C12—C11—S2116.6 (2)
N2i—Pd1—S196.78 (7)C12—C11—H11A108.1
N2—Pd1—S183.22 (7)S2—C11—H11A108.1
S1i—Pd1—S1180.0C12—C11—H11B108.1
C10—S1—Pd195.95 (11)S2—C11—H11B108.1
C10—S2—C11104.39 (14)H11A—C11—H11B107.3
C1—N1—C8109.9 (3)C13—C12—C17118.5 (3)
C1—N1—H1N124 (2)C13—C12—C11121.7 (3)
C8—N1—H1N126 (2)C17—C12—C11119.8 (3)
C9—N2—N3114.6 (2)C14—C13—C12120.4 (3)
C9—N2—Pd1124.4 (2)C14—C13—H13119.8
N3—N2—Pd1121.06 (17)C12—C13—H13119.8
C10—N3—N2112.8 (2)C13—C14—C15120.5 (3)
N1—C1—C2110.1 (3)C13—C14—H14119.8
N1—C1—H1125.0C15—C14—H14119.8
C2—C1—H1125.0C16—C15—C14119.2 (3)
C1—C2—C9131.8 (3)C16—C15—H15120.4
C1—C2—C3105.7 (3)C14—C15—H15120.4
C9—C2—C3122.4 (3)C15—C16—C17120.9 (3)
C8—C3—C4118.9 (3)C15—C16—H16119.5
C8—C3—C2106.7 (3)C17—C16—H16119.5
C4—C3—C2134.3 (3)C16—C17—C12120.5 (3)
C5—C4—C3118.1 (3)C16—C17—H17119.7
C5—C4—H4121.0C12—C17—H17119.7
C3—C4—H4121.0C22—N4—C18116.7 (3)
C4—C5—C6121.9 (3)N4—C18—C19123.6 (3)
C4—C5—H5119.1N4—C18—H18118.2
C6—C5—H5119.1C19—C18—H18118.2
C7—C6—C5121.1 (3)C18—C19—C20119.3 (3)
C7—C6—H6119.4C18—C19—H19120.4
C5—C6—H6119.4C20—C19—H19120.4
C6—C7—C8117.3 (3)C19—C20—C21118.1 (4)
C6—C7—H7121.4C19—C20—H20120.9
C8—C7—H7121.4C21—C20—H20120.9
N1—C8—C7129.7 (3)C22—C21—C20119.1 (4)
N1—C8—C3107.6 (2)C22—C21—H21120.5
C7—C8—C3122.7 (3)C20—C21—H21120.5
N2—C9—C2130.7 (3)N4—C22—C21123.2 (3)
N2—C9—H9114.7N4—C22—H22118.4
C2—C9—H9114.7C21—C22—H22118.4
N3—C10—S1126.8 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.86 (2)1.96 (2)2.808 (4)171 (3)
C9—H9···S1i0.952.583.267 (3)130
C1—H1···N30.952.422.889 (4)110
C11—H11B···N30.992.502.937 (4)106
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C17H14N3S2)2]·2C5H5N
Mr913.46
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9688 (2), 10.5041 (2), 10.9491 (2)
α, β, γ (°)62.534 (2), 78.494 (2), 78.985 (2)
V3)990.35 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.931, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
8128, 3879, 3045
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.070, 0.99
No. of reflections3879
No. of parameters262
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 1.03

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N40.86 (2)1.96 (2)2.808 (4)171 (3)
C9—H9···S1i0.952.583.267 (3)130
Symmetry code: (i) x, y, z.
 

Acknowledgements

The authors thank University of Malaya for funding this study (FRGS grant FP004/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m84.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Olmstead, M. M. (2011). Inorg. Chim. Acta, 366, 233–240.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds