organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro-N′-(2-chloro­benzyl­­idene)benzohydrazide

aSchool of Chemistry & Environmental Engineering, Chongqing Three Gorges University, Chongqing 404000, People's Republic of China
*Correspondence e-mail: leiyan222@yahoo.cn

(Received 8 January 2011; accepted 11 January 2011; online 15 January 2011)

The title compound, C14H10Cl2N2O, was prepared from the reaction of 2-chloro­benzaldehyde with 3-chloro­benzo­hydrazide in methanol. The mol­ecule adopts an E configuration about the methyl­idene unit and the two aromatic rings form a dihedral angle of 13.8 (2)°. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming chains along the c axis.

Related literature

For background to hydrazones, see: El-Asmy et al. (2010[El-Asmy, A. A., El-Gammal, O. A., Radwan, H. A. & Ghazy, S. E. (2010). Spectrochim. Acta Part A, 77, 297-303.]); El-Sherif (2009[El-Sherif, A. A. (2009). Inorg. Chim. Acta, 362, 4991-5000.]); Singh et al. (2009[Singh, V., Katiyar, A. & Singh, S. (2009). J. Coord. Chem. 62, 1336-1346.]); El-Tabl et al. (2007[El-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2007). Transition Met. Chem. 32, 689-701.]); Lei (2011[Lei, Y. (2011). Acta Cryst. E67, o162.]). For structures of hydrazone compounds, see: Qiao et al. (2010[Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.]); Hussain et al. (2010[Hussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.]); Han & Zhao (2010[Han, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O

  • Mr = 293.14

  • Monoclinic, P 21 /c

  • a = 13.106 (3) Å

  • b = 12.588 (3) Å

  • c = 8.347 (2) Å

  • β = 97.578 (2)°

  • V = 1365.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 K

  • 0.32 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.865, Tmax = 0.873

  • 6893 measured reflections

  • 2954 independent reflections

  • 1936 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.130

  • S = 1.01

  • 2954 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.90 (1) 1.98 (1) 2.854 (2) 164 (2)
C7—H7⋯O1i 0.93 2.51 3.254 (2) 137 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much effort has been devoted for developing the hydrazones, due to their biological properties, coordinative capability, and applications in analytical chemistry (El-Asmy et al., 2010; El-Sherif, 2009; Singh et al., 2009; El-Tabl et al., 2007). Recently, a number of hydrazones have been prepared and investigated for their structures (Qiao et al., 2010; Hussain et al., 2010; Han & Zhao, 2010; Ahmad et al., 2010; Lei, 2011). As a continuation of hydrazones, the author reports herein the title new compound.

The molecule of the title compound, Fig. 1, adopts an E configuration about the methylidene unit. The two aromatic rings form a dihedral angle of 13.8 (2)°. In the crystal, the molecules are linked via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1), to form chains at the c-axis direction (Fig. 2).

Related literature top

For background to hydrazones, see: El-Asmy et al. (2010); El-Sherif (2009); Singh et al. (2009); El-Tabl et al. (2007); Lei (2011). For structures of hydrazone compounds, see: Qiao et al. (2010); Hussain et al. (2010); Han & Zhao (2010); Ahmad et al. (2010).

Experimental top

3-Chlorobenzohydrazide (1 mmol, 0.170 g) was dissolved in methanol (50 ml), then 2-chlorobenzaldehyde (1 mmol, 0.140 g) was added into the solution. The reaction mixture was heated under reflux for 1 h and cooled to room temperature. Colourless needle-shaped crystals were formed by slow evaporation of the solvent for a week.

Refinement top

The amino H atom was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonding is shown in dashed lines.
3-Chloro-N'-(2-chlorobenzylidene)benzohydrazide top
Crystal data top
C14H10Cl2N2OF(000) = 600
Mr = 293.14Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.106 (3) ÅCell parameters from 1672 reflections
b = 12.588 (3) Åθ = 2.2–25.0°
c = 8.347 (2) ŵ = 0.47 mm1
β = 97.578 (2)°T = 298 K
V = 1365.0 (6) Å3Cut from needle, colourless
Z = 40.32 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2954 independent reflections
Radiation source: fine-focus sealed tube1936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 168
Tmin = 0.865, Tmax = 0.873k = 1515
6893 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0682P)2]
where P = (Fo2 + 2Fc2)/3
2954 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
C14H10Cl2N2OV = 1365.0 (6) Å3
Mr = 293.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.106 (3) ŵ = 0.47 mm1
b = 12.588 (3) ÅT = 298 K
c = 8.347 (2) Å0.32 × 0.30 × 0.30 mm
β = 97.578 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2954 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1936 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.873Rint = 0.032
6893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
2954 reflectionsΔρmin = 0.48 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21684 (6)1.16019 (5)0.46800 (10)0.0837 (3)
Cl20.53314 (6)0.63298 (7)0.15637 (9)0.0856 (3)
N10.19380 (12)0.83421 (13)0.60855 (18)0.0400 (4)
N20.24735 (13)0.76623 (13)0.51905 (19)0.0427 (4)
O10.26043 (12)0.63872 (10)0.71199 (17)0.0540 (4)
C10.12399 (14)1.00751 (15)0.6282 (2)0.0385 (5)
C20.12993 (16)1.11524 (18)0.5925 (3)0.0490 (5)
C30.06753 (19)1.18886 (19)0.6553 (3)0.0611 (6)
H30.07271.26050.63010.073*
C40.0017 (2)1.1565 (2)0.7544 (3)0.0632 (7)
H40.04431.20590.79520.076*
C50.00819 (18)1.0505 (2)0.7936 (3)0.0587 (6)
H50.05451.02840.86220.070*
C60.05422 (16)0.97729 (17)0.7309 (2)0.0481 (5)
H60.04940.90600.75810.058*
C70.18546 (15)0.92841 (16)0.5543 (2)0.0421 (5)
H70.21870.94750.46680.050*
C80.27659 (15)0.66994 (15)0.5784 (2)0.0395 (5)
C90.33107 (14)0.60210 (16)0.4702 (2)0.0385 (5)
C100.39762 (14)0.64550 (17)0.3718 (2)0.0434 (5)
H100.40850.71850.37010.052*
C110.44732 (15)0.57875 (19)0.2767 (2)0.0491 (5)
C120.43214 (18)0.4709 (2)0.2764 (3)0.0604 (6)
H120.46600.42710.21080.073*
C130.36611 (18)0.4287 (2)0.3747 (3)0.0597 (6)
H130.35490.35580.37500.072*
C140.31610 (16)0.49373 (16)0.4730 (2)0.0480 (5)
H140.27260.46450.54060.058*
H20.2558 (19)0.784 (2)0.4177 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0797 (5)0.0687 (5)0.1097 (6)0.0039 (3)0.0387 (4)0.0327 (4)
Cl20.0801 (5)0.1113 (6)0.0754 (5)0.0101 (4)0.0480 (4)0.0065 (4)
N10.0445 (9)0.0439 (10)0.0329 (9)0.0052 (7)0.0100 (7)0.0031 (7)
N20.0552 (10)0.0449 (10)0.0309 (9)0.0109 (8)0.0159 (8)0.0019 (7)
O10.0810 (11)0.0488 (9)0.0364 (8)0.0073 (7)0.0237 (7)0.0049 (6)
C10.0390 (10)0.0428 (12)0.0332 (10)0.0044 (8)0.0028 (8)0.0010 (8)
C20.0436 (11)0.0519 (14)0.0509 (13)0.0030 (10)0.0043 (9)0.0033 (10)
C30.0637 (14)0.0438 (13)0.0743 (17)0.0098 (11)0.0037 (13)0.0032 (12)
C40.0640 (15)0.0614 (16)0.0644 (16)0.0179 (12)0.0092 (13)0.0153 (12)
C50.0548 (13)0.0700 (16)0.0540 (14)0.0091 (12)0.0177 (11)0.0036 (12)
C60.0507 (12)0.0467 (12)0.0482 (13)0.0017 (10)0.0116 (10)0.0008 (10)
C70.0435 (11)0.0482 (12)0.0357 (11)0.0037 (9)0.0098 (8)0.0013 (9)
C80.0427 (11)0.0438 (12)0.0331 (11)0.0010 (9)0.0092 (8)0.0002 (9)
C90.0376 (10)0.0452 (12)0.0323 (10)0.0052 (8)0.0033 (8)0.0015 (8)
C100.0449 (11)0.0507 (13)0.0351 (11)0.0046 (9)0.0072 (9)0.0016 (9)
C110.0445 (11)0.0647 (15)0.0400 (12)0.0093 (10)0.0122 (9)0.0011 (10)
C120.0610 (14)0.0699 (17)0.0511 (14)0.0208 (12)0.0102 (12)0.0151 (12)
C130.0675 (15)0.0473 (14)0.0640 (16)0.0079 (11)0.0077 (12)0.0082 (11)
C140.0502 (12)0.0478 (13)0.0468 (13)0.0037 (10)0.0089 (10)0.0005 (10)
Geometric parameters (Å, º) top
Cl1—C21.735 (2)C5—C61.380 (3)
Cl2—C111.743 (2)C5—H50.9300
N1—C71.269 (2)C6—H60.9300
N1—N21.386 (2)C7—H70.9300
N2—C81.346 (2)C8—C91.491 (3)
N2—H20.895 (10)C9—C141.379 (3)
O1—C81.227 (2)C9—C101.387 (3)
C1—C61.387 (3)C10—C111.377 (3)
C1—C21.393 (3)C10—H100.9300
C1—C71.467 (3)C11—C121.372 (3)
C2—C31.384 (3)C12—C131.375 (3)
C3—C41.368 (4)C12—H120.9300
C3—H30.9300C13—C141.384 (3)
C4—C51.379 (3)C13—H130.9300
C4—H40.9300C14—H140.9300
C7—N1—N2114.25 (16)N1—C7—H7119.6
C8—N2—N1119.83 (15)C1—C7—H7119.6
C8—N2—H2120.5 (17)O1—C8—N2123.24 (18)
N1—N2—H2119.3 (17)O1—C8—C9121.38 (18)
C6—C1—C2117.34 (18)N2—C8—C9115.39 (16)
C6—C1—C7121.13 (18)C14—C9—C10120.11 (19)
C2—C1—C7121.46 (19)C14—C9—C8118.42 (18)
C3—C2—C1121.2 (2)C10—C9—C8121.45 (18)
C3—C2—Cl1118.42 (19)C11—C10—C9118.9 (2)
C1—C2—Cl1120.35 (16)C11—C10—H10120.6
C4—C3—C2120.1 (2)C9—C10—H10120.6
C4—C3—H3119.9C12—C11—C10121.7 (2)
C2—C3—H3119.9C12—C11—Cl2119.40 (17)
C3—C4—C5119.9 (2)C10—C11—Cl2118.91 (18)
C3—C4—H4120.1C11—C12—C13118.9 (2)
C5—C4—H4120.1C11—C12—H12120.5
C4—C5—C6119.9 (2)C13—C12—H12120.5
C4—C5—H5120.1C12—C13—C14120.7 (2)
C6—C5—H5120.1C12—C13—H13119.7
C5—C6—C1121.6 (2)C14—C13—H13119.7
C5—C6—H6119.2C9—C14—C13119.7 (2)
C1—C6—H6119.2C9—C14—H14120.1
N1—C7—C1120.73 (18)C13—C14—H14120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)1.98 (1)2.854 (2)164 (2)
C7—H7···O1i0.932.513.254 (2)137 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O
Mr293.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.106 (3), 12.588 (3), 8.347 (2)
β (°) 97.578 (2)
V3)1365.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.32 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.865, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
6893, 2954, 1936
Rint0.032
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.01
No. of reflections2954
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.895 (10)1.982 (12)2.854 (2)164 (2)
C7—H7···O1i0.932.513.254 (2)137 (2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Chongqing Three Gorges University.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Asmy, A. A., El-Gammal, O. A., Radwan, H. A. & Ghazy, S. E. (2010). Spectrochim. Acta Part A, 77, 297–303.  Google Scholar
First citationEl-Sherif, A. A. (2009). Inorg. Chim. Acta, 362, 4991–5000.  Web of Science CrossRef CAS Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2007). Transition Met. Chem. 32, 689–701.  CAS Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, A., Shafiq, Z., Tahir, M. N. & Yaqub, M. (2010). Acta Cryst. E66, o1888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLei, Y. (2011). Acta Cryst. E67, o162.  Web of Science CrossRef IUCr Journals Google Scholar
First citationQiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V., Katiyar, A. & Singh, S. (2009). J. Coord. Chem. 62, 1336–1346.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds