organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­benzylamino-1-de­­oxy-4,5-O-iso­propyl­­idene-β-D-fructo­pyran­ose

aSchool of Pharmaceutical Science and Technology, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024, People's Republic of China
*Correspondence e-mail: zyzhao@dlut.edu.cn

(Received 8 November 2010; accepted 24 December 2010; online 15 January 2011)

The title compound C23H29NO5, synthesized by the Amadori rearrangement of α-D-glucose with dibenzyl­amine and the ketalization, is shown to be a β-anomer. The fructopyran­ose ring adopts a chair conformation. The two benzene rings form a dihedral angle of 68.9 (1)°. In the crystal, non–classical inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three–dimensional network.

Related literature

For details of the synthesis of the title compound and the related ketone catalyst for asymmetric epoxidation, see: Shu et al. (2003[Shu, L., Shen, Y.-M., Burke, C., Goeddel, D. & Shi, Y. (2003). J. Org. Chem. 68, 4963-4965.]); Tian et al. (2000[Tian, H., Shu, L., Yu, H. & Shi, Y. (2000). J. Am. Chem. Soc. 122, 11551-11552.], 2002[Tian, H., She, X., Yu, H., Shu, L. & Shi, Y. (2002). J. Org. Chem. 67, 2435-2446.]).

[Scheme 1]

Experimental

Crystal data
  • C23H29NO5

  • Mr = 399.47

  • Orthorhombic, P 21 21 21

  • a = 8.328 (3) Å

  • b = 15.635 (5) Å

  • c = 16.547 (5) Å

  • V = 2154.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.32 × 0.26 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 8591 measured reflections

  • 3746 independent reflections

  • 3078 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 0.99

  • 3746 reflections

  • 264 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O5i 0.93 2.57 3.389 (3) 147
C17—H17A⋯O2ii 0.93 2.70 3.614 (3) 170
C19—H19A⋯O1iii 0.93 2.59 3.428 (3) 150
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Asymmetric epoxidation of olefins presents a powerful strategy for the synthesis of enriched epoxides. The title compound is a key intermediate for the preparation of an effective epoxidation catalyst which provides encouragingly high enantiomeric excess value for the epoxidation of cis–olefins and styrenes (Shu et al., 2003; Tian et al., 2000, 2002). Furthermore, it can be another starting material to synthesize the corresponding amino sugar derivatives.

The title compound is prepared via two steps including Amadori rearrangement and ketalization (Fig. 1). In the molecular structure of the title compound (Fig. 2), the fructopyranose ring adopts a chair conformation - torsion angles: C3–C2–C1–O1 = 37.9 (3)° and C4–C3–C2–C1 = -32.9 (3)°. The structure is stabilized by the non–classical intermolecular hydrogen bonds (Table 1, Fig. 3).

Related literature top

For details of the synthesis of the title compound and the related ketone catalyst for asymmetric epoxidation, see: Shu et al. (2003); Tian et al. (2000, 2002).

Experimental top

The synthesis of the title compound was shown in Fig. 1. The pure title compound was first obtained by chromatography. It (10 g) was recrystallized from a solution of ethyl ether (50 ml) cooling at 255 K to afford colourless crystals.

The molecule is characterized by NMR (Fig. 4). 1H NMR (400 MHz, CDCl3): δ 7.25–7.35 (10H, m, Ar–H), 4.15–4.18 (2H, m, H–5, H–6e), 3.99–4.07 (3H, m, H–1'', H–1''', H–4), 3.91 (1H, d, J = 13.2 Hz, H–6a), 3.48 (2H, d, J = 13.2 Hz, H–1'', H–1'''), 3.29 (1H, d, J = 7.2 Hz, H–3), 3.07 (1H, d, J = 13.2 Hz, H–1), 2.69 (1H, d, J = 13.2 Hz, H–1), 1.51 (3H, s, H–3'), 1.34 (3H, s, H–1').

13C NMR (101 MHz, CDCl3): δ 138.29 (C–2'', C–2'''), 129.31 (C–3'', C–7'', C–3''', C–7'''), 128.52 (C–4'', C–6'', C–4''', C–6'''), 127.46 (C–5'', C–5'''), 109.10 (C–2'), 96.21 (C–2), 77.79 (C–4), 73.68 (C–5), 72.17 (C–3), 59.18 (C–1'', C–1'''), 58.93 (C–6), 56.31 (C–1), 28.20 (C–1'), 26.28 (H–3').

HRMS(ES+): m/z [M+Cl]- calcd. for C23H29NO5Cl: 434.1734; found: 434.1737.

Refinement top

All H atoms attached to C atoms were treated as riding, with C—H = 0.97Å for methylene group, C—H = 0.98Å for methyne group, C—H = 0.96Å for methyl group and C—H = 0.93Å for aryl, with Uiso(H) = 1.5Ueq(C) for the methyl groups and Uiso(H) = 1.2Ueq(C) for other. The hydroxyl H–atoms were refined as rigid, with O—H = 0.82Å and Uiso(H) = 1.5Ueq(O). An absolute structure could not be established reliably by anomalous scattering effects. The 1576 Friedel pairs were merged by "MERG 2" instruction of SHELXL.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The synthesis path of title compound.
[Figure 2] Fig. 2. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 3] Fig. 3. A view of the packing of title compound. Dashed lines indicate non–classical C—H···O hydrogen bonds.
[Figure 4] Fig. 4. The structure of title compound, with atoms labeling corresponding to the characterization by NMR.
1-Dibenzylamino-1-deoxy-4,5-O-isopropylidene-β-D-fructopyranose top
Crystal data top
C23H29NO5Dx = 1.232 Mg m3
Mr = 399.47Melting point: 363 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2101 reflections
a = 8.328 (3) Åθ = 2.5–22.9°
b = 15.635 (5) ŵ = 0.09 mm1
c = 16.547 (5) ÅT = 293 K
V = 2154.6 (12) Å3Block, colourless
Z = 40.32 × 0.26 × 0.18 mm
F(000) = 856
Data collection top
Bruker SMART APEX CCD
diffractometer
3078 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ϕ– and ω–scansh = 99
8591 measured reflectionsk = 1218
3746 independent reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0586P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3746 reflectionsΔρmax = 0.16 e Å3
264 parametersΔρmin = 0.14 e Å3
12 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (15)
Crystal data top
C23H29NO5V = 2154.6 (12) Å3
Mr = 399.47Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.328 (3) ŵ = 0.09 mm1
b = 15.635 (5) ÅT = 293 K
c = 16.547 (5) Å0.32 × 0.26 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3078 reflections with I > 2σ(I)
8591 measured reflectionsRint = 0.029
3746 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03712 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 0.99Δρmax = 0.16 e Å3
3746 reflectionsΔρmin = 0.14 e Å3
264 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45371 (19)0.03531 (9)0.03276 (9)0.0445 (4)
O10.26735 (16)0.12669 (8)0.01447 (7)0.0462 (3)
O20.44619 (18)0.05470 (9)0.09987 (8)0.0570 (4)
H2A0.51760.05620.06580.086*
O30.1840 (3)0.02563 (10)0.17613 (11)0.0803 (5)
H30.27840.04050.17760.120*
O40.03036 (19)0.23207 (9)0.11486 (7)0.0552 (4)
O50.02593 (19)0.14018 (9)0.22165 (8)0.0597 (4)
C10.2928 (3)0.20454 (12)0.05737 (11)0.0531 (5)
H1A0.26740.25220.02210.064*
H1B0.40540.20880.07180.064*
C20.1933 (3)0.21137 (12)0.13278 (11)0.0496 (5)
H2B0.23890.25530.16820.059*
C30.1735 (3)0.12850 (13)0.17977 (11)0.0488 (5)
H3B0.26100.12320.21900.059*
C40.1688 (3)0.04895 (12)0.12720 (11)0.0494 (5)
H4A0.06370.04690.10070.059*
C50.2971 (2)0.05151 (12)0.06144 (10)0.0430 (4)
C60.2938 (2)0.02364 (12)0.00288 (11)0.0468 (5)
H6A0.26210.07520.03130.056*
H6B0.21590.01290.03950.056*
C70.4851 (3)0.12466 (12)0.05526 (12)0.0552 (5)
H7A0.58600.12720.08440.066*
H7B0.40120.14350.09180.066*
C80.4931 (3)0.18588 (12)0.01473 (13)0.0530 (5)
C90.5592 (4)0.16474 (16)0.08772 (15)0.0766 (7)
H9A0.59910.10980.09560.092*
C100.5678 (4)0.2241 (2)0.15046 (17)0.0973 (10)
H10A0.61140.20840.20000.117*
C110.5121 (4)0.30535 (19)0.1390 (2)0.0940 (10)
H11A0.51850.34520.18060.113*
C120.4479 (4)0.32744 (19)0.0676 (3)0.0989 (10)
H12A0.41060.38290.05980.119*
C130.4368 (3)0.26813 (14)0.00508 (19)0.0782 (7)
H13A0.39090.28420.04380.094*
C140.4789 (2)0.02062 (13)0.10350 (11)0.0487 (5)
H14A0.43040.07590.09290.058*
H14B0.42480.00410.14990.058*
C150.6535 (2)0.03325 (11)0.12364 (10)0.0422 (4)
C160.7148 (3)0.01268 (14)0.19830 (12)0.0573 (5)
H16A0.64750.01120.23710.069*
C170.8741 (3)0.02674 (16)0.21685 (14)0.0697 (7)
H17A0.91370.01170.26740.084*
C180.9742 (3)0.06300 (15)0.16054 (15)0.0674 (6)
H18A1.08140.07290.17310.081*
C190.9159 (3)0.08463 (14)0.08581 (15)0.0604 (6)
H19A0.98320.10940.04760.072*
C200.7577 (3)0.06950 (12)0.06777 (12)0.0525 (5)
H20A0.71920.08390.01680.063*
C210.0606 (3)0.21023 (14)0.18498 (12)0.0547 (5)
C220.0670 (4)0.28284 (16)0.24500 (15)0.0808 (8)
H22A0.04020.29950.25920.121*
H22B0.12320.26460.29260.121*
H22C0.12210.33060.22130.121*
C230.2231 (3)0.1807 (2)0.15849 (16)0.0861 (8)
H23A0.21170.13460.12070.129*
H23B0.27910.22730.13320.129*
H23C0.28290.16140.20460.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0465 (10)0.0434 (8)0.0437 (8)0.0012 (7)0.0014 (7)0.0021 (7)
O10.0531 (8)0.0446 (7)0.0408 (6)0.0049 (6)0.0027 (6)0.0049 (6)
O20.0469 (8)0.0727 (9)0.0514 (7)0.0011 (7)0.0076 (6)0.0009 (7)
O30.1109 (15)0.0558 (9)0.0741 (10)0.0149 (9)0.0334 (11)0.0294 (8)
O40.0653 (10)0.0561 (8)0.0442 (7)0.0055 (7)0.0080 (7)0.0095 (6)
O50.0731 (10)0.0584 (9)0.0475 (7)0.0065 (8)0.0185 (7)0.0122 (7)
C10.0606 (14)0.0458 (10)0.0528 (11)0.0090 (9)0.0062 (10)0.0019 (9)
C20.0558 (14)0.0499 (11)0.0430 (10)0.0093 (9)0.0012 (10)0.0005 (9)
C30.0522 (12)0.0571 (11)0.0370 (9)0.0009 (10)0.0017 (9)0.0052 (9)
C40.0547 (13)0.0472 (10)0.0463 (10)0.0015 (9)0.0048 (10)0.0144 (9)
C50.0411 (11)0.0450 (9)0.0431 (9)0.0026 (8)0.0022 (8)0.0054 (8)
C60.0438 (12)0.0464 (10)0.0501 (10)0.0039 (8)0.0001 (9)0.0051 (9)
C70.0651 (14)0.0494 (11)0.0511 (10)0.0006 (10)0.0012 (10)0.0058 (9)
C80.0459 (12)0.0477 (11)0.0655 (13)0.0076 (9)0.0075 (10)0.0001 (10)
C90.105 (2)0.0565 (13)0.0679 (14)0.0125 (14)0.0144 (15)0.0049 (12)
C100.129 (3)0.090 (2)0.0731 (16)0.0303 (19)0.0086 (17)0.0177 (16)
C110.093 (2)0.0794 (19)0.110 (2)0.0139 (16)0.014 (2)0.0413 (18)
C120.080 (2)0.0638 (16)0.153 (3)0.0102 (15)0.000 (2)0.0341 (19)
C130.0732 (17)0.0566 (14)0.1049 (19)0.0096 (12)0.0098 (15)0.0108 (14)
C140.0523 (13)0.0525 (10)0.0413 (9)0.0004 (10)0.0045 (9)0.0049 (9)
C150.0498 (12)0.0368 (9)0.0400 (9)0.0008 (8)0.0027 (9)0.0020 (8)
C160.0625 (15)0.0628 (12)0.0466 (11)0.0070 (11)0.0016 (10)0.0054 (10)
C170.0740 (17)0.0777 (16)0.0575 (12)0.0052 (13)0.0190 (12)0.0024 (13)
C180.0500 (14)0.0664 (14)0.0857 (16)0.0005 (11)0.0078 (13)0.0138 (13)
C190.0523 (14)0.0537 (12)0.0752 (15)0.0066 (10)0.0172 (12)0.0066 (11)
C200.0599 (14)0.0515 (11)0.0461 (10)0.0015 (10)0.0060 (10)0.0040 (9)
C210.0632 (14)0.0564 (11)0.0444 (10)0.0050 (10)0.0082 (10)0.0064 (9)
C220.112 (2)0.0641 (14)0.0663 (14)0.0090 (15)0.0213 (16)0.0049 (13)
C230.0639 (18)0.123 (2)0.0719 (15)0.0073 (16)0.0027 (14)0.0065 (16)
Geometric parameters (Å, º) top
N1—C61.468 (2)C9—H9A0.9300
N1—C71.469 (2)C10—C111.366 (5)
N1—C141.476 (2)C10—H10A0.9300
O1—C11.425 (2)C11—C121.343 (5)
O1—C51.431 (2)C11—H11A0.9300
O2—C51.396 (2)C12—C131.392 (4)
O2—H2A0.8200C12—H12A0.9300
O3—C41.425 (2)C13—H13A0.9300
O3—H30.8200C14—C151.505 (3)
O4—C21.426 (3)C14—H14A0.9700
O4—C211.427 (2)C14—H14B0.9700
O5—C31.423 (3)C15—C161.375 (3)
O5—C211.445 (2)C15—C201.389 (3)
C1—C21.502 (3)C16—C171.380 (3)
C1—H1A0.9700C16—H16A0.9300
C1—H1B0.9700C17—C181.373 (3)
C2—C31.520 (3)C17—H17A0.9300
C2—H2B0.9800C18—C191.371 (3)
C3—C41.518 (3)C18—H18A0.9300
C3—H3B0.9800C19—C201.372 (3)
C4—C51.526 (3)C19—H19A0.9300
C4—H4A0.9800C20—H20A0.9300
C5—C61.523 (3)C21—C231.495 (4)
C6—H6A0.9700C21—C221.509 (3)
C6—H6B0.9700C22—H22A0.9600
C7—C81.504 (3)C22—H22B0.9600
C7—H7A0.9700C22—H22C0.9600
C7—H7B0.9700C23—H23A0.9600
C8—C91.368 (3)C23—H23B0.9600
C8—C131.378 (3)C23—H23C0.9600
C9—C101.394 (4)
C6—N1—C7112.42 (15)C10—C9—H9A119.4
C6—N1—C14111.94 (15)C11—C10—C9119.9 (3)
C7—N1—C14109.70 (15)C11—C10—H10A120.0
C1—O1—C5113.91 (13)C9—C10—H10A120.0
C5—O2—H2A109.5C12—C11—C10119.8 (3)
C4—O3—H3109.5C12—C11—H11A120.1
C2—O4—C21106.38 (15)C10—C11—H11A120.1
C3—O5—C21108.89 (14)C11—C12—C13120.6 (3)
O1—C1—C2113.12 (16)C11—C12—H12A119.7
O1—C1—H1A109.0C13—C12—H12A119.7
C2—C1—H1A109.0C8—C13—C12120.9 (3)
O1—C1—H1B109.0C8—C13—H13A119.6
C2—C1—H1B109.0C12—C13—H13A119.6
H1A—C1—H1B107.8N1—C14—C15112.98 (15)
O4—C2—C1111.62 (16)N1—C14—H14A109.0
O4—C2—C3101.33 (16)C15—C14—H14A109.0
C1—C2—C3115.10 (17)N1—C14—H14B109.0
O4—C2—H2B109.5C15—C14—H14B109.0
C1—C2—H2B109.5H14A—C14—H14B107.8
C3—C2—H2B109.5C16—C15—C20117.5 (2)
O5—C3—C4111.21 (17)C16—C15—C14121.80 (18)
O5—C3—C2103.50 (16)C20—C15—C14120.65 (17)
C4—C3—C2114.08 (14)C15—C16—C17121.3 (2)
O5—C3—H3B109.3C15—C16—H16A119.3
C4—C3—H3B109.3C17—C16—H16A119.3
C2—C3—H3B109.3C18—C17—C16119.9 (2)
O3—C4—C3110.03 (15)C18—C17—H17A120.0
O3—C4—C5111.37 (16)C16—C17—H17A120.0
C3—C4—C5111.65 (16)C19—C18—C17120.0 (2)
O3—C4—H4A107.9C19—C18—H18A120.0
C3—C4—H4A107.9C17—C18—H18A120.0
C5—C4—H4A107.9C18—C19—C20119.6 (2)
O2—C5—O1111.86 (14)C18—C19—H19A120.2
O2—C5—C6109.49 (15)C20—C19—H19A120.2
O1—C5—C6106.55 (13)C19—C20—C15121.7 (2)
O2—C5—C4107.41 (15)C19—C20—H20A119.1
O1—C5—C4106.71 (15)C15—C20—H20A119.1
C6—C5—C4114.87 (16)O4—C21—O5104.94 (17)
N1—C6—C5109.56 (15)O4—C21—C23108.43 (18)
N1—C6—H6A109.8O5—C21—C23109.9 (2)
C5—C6—H6A109.8O4—C21—C22111.94 (18)
N1—C6—H6B109.8O5—C21—C22108.14 (18)
C5—C6—H6B109.8C23—C21—C22113.1 (2)
H6A—C6—H6B108.2C21—C22—H22A109.5
N1—C7—C8114.70 (15)C21—C22—H22B109.5
N1—C7—H7A108.6H22A—C22—H22B109.5
C8—C7—H7A108.6C21—C22—H22C109.5
N1—C7—H7B108.6H22A—C22—H22C109.5
C8—C7—H7B108.6H22B—C22—H22C109.5
H7A—C7—H7B107.6C21—C23—H23A109.5
C9—C8—C13117.7 (2)C21—C23—H23B109.5
C9—C8—C7122.96 (19)H23A—C23—H23B109.5
C13—C8—C7119.3 (2)C21—C23—H23C109.5
C8—C9—C10121.2 (3)H23A—C23—H23C109.5
C8—C9—H9A119.4H23B—C23—H23C109.5
C3—C2—C1—O137.9 (3)C4—C3—C2—C132.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.932.573.389 (3)147
C17—H17A···O2ii0.932.703.614 (3)170
C19—H19A···O1iii0.932.593.428 (3)150
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H29NO5
Mr399.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.328 (3), 15.635 (5), 16.547 (5)
V3)2154.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.26 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8591, 3746, 3078
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 0.99
No. of reflections3746
No. of parameters264
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.932.573.389 (3)147
C17—H17A···O2ii0.932.703.614 (3)170
C19—H19A···O1iii0.932.593.428 (3)150
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x+3/2, y, z1/2; (iii) x+1, y, z.
 

Acknowledgements

We thank Dr Yang Li for his help during the refinement.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShu, L., Shen, Y.-M., Burke, C., Goeddel, D. & Shi, Y. (2003). J. Org. Chem. 68, 4963–4965.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTian, H., She, X., Yu, H., Shu, L. & Shi, Y. (2002). J. Org. Chem. 67, 2435–2446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTian, H., Shu, L., Yu, H. & Shi, Y. (2000). J. Am. Chem. Soc. 122, 11551–11552.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds