metal-organic compounds
μ-Carbonato-bis(bis{2-[(diethylamino)methyl]phenyl}bismuth(III))
aFacultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania, and bInstitut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334, Bremen, Germany
*Correspondence e-mail: asoran@chem.ubbcluj.ro
The molecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bisecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bismuth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intramolecular interaction [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intramolecular N→Bi interactions per metal atom are considered, the overall coordination geometry at bismuth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intramolecular Bi⋯O interactions are also present [3.796 (8)–4.020 (9) Å]. Intermolecular associations through weak η6⋯Bi interactions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supramolecular association.
Related literature
For structures of related carbonates and similar η6⋯Bi interactions, see: Breunig et al. (2008, 2010); Yin et al. (2008). For the induced by the coordination of the N atom, see: IUPAC (1979). For Bi—N, Bi—O and Bi—C bond lengths, see: Emsley, (1994). For CO2 absorption by bis(diorganobismuth)oxides, see: Suzuki et al. (1994).
Experimental
Crystal data
|
Data collection: XSCANS (Siemens, 1994); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681005453X/rk2252sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681005453X/rk2252Isup2.hkl
To a stirred solution of [2-(Et2NCH2)C6H4]2BiCl (1 g, 1.75 mmoles) in 35 ml CH2Cl2 was added, at room temperature, a solution of Na2CO3 (0.09 g, 0.84 mmoles + 0.09 g, 100% excess) in 25 ml distilled water. The reaction mixture was stirred for 48 h at room temperature, then the organic layer was separated and the water phase was washed with CH2Cl2 (2 × 40 ml). The resulting colourless solution was dried on Na2SO4 for 24 h and then filtered. Evaporation of the solution under vacuum afforded the title compound: 0.62 g (65%) as a white powder. Single crystals were grown from CH2Cl2 / n-hexane (1:5 by volume). M.p. = 393 K. Elemental analyses: found: C, 48.23; H, 5.65; N, 4.87. Calc. for C45H64Bi2N4O3: C, 47.96; H, 5.72; N 4.97%. IR (nujol, cm-1): ν(CO3) 1656 s, 1877 s. 1H-NMR (CDCl3, 300.11 MHz, r.t.): δ 0.92 t (24H, -NCH2CH3, 3JHH = 7.1 Hz), 2.57 q (8H, -NCH2CH3, 3JHH = 7.1 Hz), AB spin system with A at 3.60 and B at 3.80 (8H, -CH2-, 2JHH = 13.3 Hz), 7.25 m (8H, H4 + H5), 7.40 m (4H, H3), 8.24 d (4H, H6, 3JHH = 7.2 Hz). 13C-NMR (CDCl3, 75.47 MHz, r.t.): δ 9.72 s (-NCH2CH3), 44.95 s (-NCH2CH3), 61.61 s (C7), 127.15 s (C4), 129.51 s (C3), 130.06 s (C5), 139.35 s (C6), 146.49 s (C2), 164.99 s [O–C(O)–O], 188.32 s (C1). MS (CIpos, NH3, 473 K): m/z, (relative intensity, %) 776 (1) [(RBiO)2]+, 533 (100) [R2Bi]+, 386 (4) [RBiO]+, 164 [R + 2H]+. MS (CIneg, NH3, 473 K): m/z, (relative intensity, %) 549 (10) [R2BiO]-, 533 (18) [R2Bi]-.
All hydrogen atoms were placed in calculated positions using a riding model, with C–H = 0.93-0.97Å and with Uiso = 1.5Ueq (C) for methyl H and Uiso = 1.2Ueq(C) for non-mehyl H. Residual electron densities are 1.68 e.Å-3 at 0.1171 0.6442 0.0513 (1.53Å from N2) and -2.09 e.Å-3 at 0.1656 0.6430 0.0413 (1.35Å from N2). In the
there is a 37Å3 void (0.500 0.028 0.750 - 3.17Å from C9), but the low electron density (0.19 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.Data collection: XSCANS (Siemens, 1994); cell
XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).[Bi2(C11H16N)4(CO3)] | F(000) = 1104 |
Mr = 1126.96 | Dx = 1.624 Mg m−3 |
Monoclinic, P2/c | Melting point: 393 K |
Hall symbol: -P 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.263 (3) Å | Cell parameters from 37 reflections |
b = 12.785 (2) Å | θ = 4.9–25.0° |
c = 15.286 (2) Å | µ = 7.67 mm−1 |
β = 105.94 (1)° | T = 173 K |
V = 2304.4 (7) Å3 | Block, colourless |
Z = 2 | 0.60 × 0.30 × 0.20 mm |
Siemens P4 diffractometer | 3351 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.047 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
2θ/ω scans | h = −14→7 |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) k = −15→15 |
Tmin = 0.076, Tmax = 0.526 | l = −17→18 |
9290 measured reflections | 3 standard reflections every 197 reflections |
4065 independent reflections | intensity decay: 2% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0659P)2] where P = (Fo2 + 2Fc2)/3 |
4065 reflections | (Δ/σ)max = 0.001 |
243 parameters | Δρmax = 1.83 e Å−3 |
0 restraints | Δρmin = −2.12 e Å−3 |
[Bi2(C11H16N)4(CO3)] | V = 2304.4 (7) Å3 |
Mr = 1126.96 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 12.263 (3) Å | µ = 7.67 mm−1 |
b = 12.785 (2) Å | T = 173 K |
c = 15.286 (2) Å | 0.60 × 0.30 × 0.20 mm |
β = 105.94 (1)° |
Siemens P4 diffractometer | 3351 reflections with I > 2σ(I) |
Absorption correction: part of the (Walker & Stuart, 1983) | model (ΔF) Rint = 0.047 |
Tmin = 0.076, Tmax = 0.526 | 3 standard reflections every 197 reflections |
9290 measured reflections | intensity decay: 2% |
4065 independent reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.01 | Δρmax = 1.83 e Å−3 |
4065 reflections | Δρmin = −2.12 e Å−3 |
243 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.88618 (2) | 0.358681 (18) | 0.053526 (14) | 0.01998 (12) | |
C1 | 0.7204 (6) | 0.3360 (5) | 0.0910 (4) | 0.0204 (14) | |
C2 | 0.6990 (7) | 0.2406 (6) | 0.1311 (4) | 0.0282 (17) | |
C3 | 0.5970 (8) | 0.2327 (7) | 0.1543 (5) | 0.039 (2) | |
H3 | 0.5803 | 0.1709 | 0.1800 | 0.047* | |
C4 | 0.5218 (8) | 0.3126 (9) | 0.1405 (6) | 0.051 (3) | |
H4 | 0.4550 | 0.3051 | 0.1576 | 0.062* | |
C5 | 0.5425 (9) | 0.4052 (8) | 0.1013 (6) | 0.050 (2) | |
H5 | 0.4898 | 0.4594 | 0.0911 | 0.060* | |
C6 | 0.6429 (7) | 0.4161 (7) | 0.0775 (5) | 0.0332 (18) | |
H6 | 0.6582 | 0.4786 | 0.0521 | 0.040* | |
C7 | 0.7840 (8) | 0.1526 (5) | 0.1513 (5) | 0.0313 (18) | |
H7A | 0.8586 | 0.1815 | 0.1792 | 0.038* | |
H7B | 0.7655 | 0.1059 | 0.1952 | 0.038* | |
C8 | 0.6832 (10) | 0.0306 (7) | 0.0375 (6) | 0.051 (3) | |
H8A | 0.6195 | 0.0766 | 0.0348 | 0.062* | |
H8B | 0.6821 | −0.0241 | 0.0812 | 0.062* | |
C9 | 0.6676 (11) | −0.0192 (8) | −0.0557 (6) | 0.066 (3) | |
H9A | 0.6701 | 0.0340 | −0.0994 | 0.099* | |
H9B | 0.5957 | −0.0543 | −0.0738 | 0.099* | |
H9C | 0.7273 | −0.0689 | −0.0527 | 0.099* | |
C10 | 0.8872 (10) | 0.0226 (7) | 0.0953 (6) | 0.051 (3) | |
H10A | 0.8787 | −0.0314 | 0.0494 | 0.061* | |
H10B | 0.8892 | −0.0114 | 0.1524 | 0.061* | |
C11 | 0.9977 (9) | 0.0769 (7) | 0.1053 (6) | 0.049 (2) | |
H11A | 1.0003 | 0.1041 | 0.0474 | 0.074* | |
H11B | 1.0587 | 0.0281 | 0.1270 | 0.074* | |
H11C | 1.0052 | 0.1333 | 0.1480 | 0.074* | |
C12 | 0.8403 (7) | 0.5173 (5) | −0.0111 (4) | 0.0248 (16) | |
C13 | 0.8200 (7) | 0.5211 (5) | −0.1059 (4) | 0.0248 (16) | |
C14 | 0.7937 (7) | 0.6172 (6) | −0.1503 (5) | 0.0277 (16) | |
H14 | 0.7774 | 0.6202 | −0.2134 | 0.033* | |
C15 | 0.7918 (7) | 0.7076 (6) | −0.1014 (4) | 0.0280 (16) | |
H15 | 0.7761 | 0.7715 | −0.1314 | 0.034* | |
C16 | 0.8130 (7) | 0.7034 (6) | −0.0077 (5) | 0.0316 (18) | |
H16 | 0.8110 | 0.7642 | 0.0251 | 0.038* | |
C17 | 0.8372 (7) | 0.6090 (6) | 0.0367 (5) | 0.0284 (17) | |
H17 | 0.8516 | 0.6067 | 0.0997 | 0.034* | |
C18 | 0.8293 (8) | 0.4243 (6) | −0.1593 (5) | 0.0310 (17) | |
H18A | 0.7928 | 0.4363 | −0.2233 | 0.037* | |
H18B | 0.9086 | 0.4088 | −0.1526 | 0.037* | |
C19 | 0.6523 (8) | 0.3465 (6) | −0.1538 (5) | 0.037 (2) | |
H19A | 0.6271 | 0.3559 | −0.2192 | 0.044* | |
H19B | 0.6338 | 0.4098 | −0.1260 | 0.044* | |
C20 | 0.5867 (8) | 0.2568 (7) | −0.1285 (5) | 0.044 (2) | |
H20A | 0.5886 | 0.1980 | −0.1671 | 0.066* | |
H20B | 0.5095 | 0.2778 | −0.1362 | 0.066* | |
H20C | 0.6204 | 0.2377 | −0.0662 | 0.066* | |
C21 | 0.8230 (14) | 0.2316 (8) | −0.1560 (7) | 0.087 (3) | |
H21A | 0.9051 | 0.2348 | −0.1353 | 0.105* | |
H21B | 0.7991 | 0.1733 | −0.1251 | 0.105* | |
C22 | 0.7903 (14) | 0.2099 (9) | −0.2524 (7) | 0.087 (3) | |
H22A | 0.7095 | 0.2023 | −0.2735 | 0.131* | |
H22B | 0.8260 | 0.1464 | −0.2637 | 0.131* | |
H22C | 0.8138 | 0.2666 | −0.2842 | 0.131* | |
C23 | 1.0000 | 0.4009 (8) | 0.2500 | 0.022 (2) | |
N1 | 0.7887 (6) | 0.0909 (5) | 0.0702 (4) | 0.0340 (15) | |
N2 | 0.7747 (6) | 0.3336 (5) | −0.1268 (4) | 0.0302 (15) | |
O1 | 0.9491 (5) | 0.4556 (4) | 0.1793 (3) | 0.0277 (12) | |
O2 | 1.0000 | 0.3026 (5) | 0.2500 | 0.0249 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.02017 (17) | 0.01928 (16) | 0.02040 (16) | 0.00227 (12) | 0.00542 (11) | −0.00038 (9) |
C1 | 0.008 (3) | 0.030 (4) | 0.023 (3) | 0.000 (3) | 0.003 (3) | 0.000 (3) |
C2 | 0.027 (4) | 0.037 (4) | 0.021 (3) | −0.007 (4) | 0.008 (3) | −0.006 (3) |
C3 | 0.036 (5) | 0.049 (5) | 0.036 (4) | −0.011 (4) | 0.015 (4) | −0.004 (4) |
C4 | 0.022 (5) | 0.090 (8) | 0.047 (5) | −0.001 (5) | 0.017 (4) | −0.003 (5) |
C5 | 0.039 (6) | 0.068 (7) | 0.044 (5) | 0.018 (5) | 0.015 (4) | −0.002 (5) |
C6 | 0.031 (5) | 0.042 (4) | 0.029 (4) | 0.009 (4) | 0.011 (3) | 0.002 (3) |
C7 | 0.033 (5) | 0.031 (4) | 0.031 (4) | −0.008 (4) | 0.009 (3) | 0.001 (3) |
C8 | 0.060 (7) | 0.041 (5) | 0.052 (5) | −0.016 (5) | 0.014 (5) | −0.013 (4) |
C9 | 0.081 (9) | 0.037 (5) | 0.078 (7) | −0.019 (6) | 0.017 (7) | −0.020 (5) |
C10 | 0.066 (8) | 0.032 (5) | 0.057 (5) | 0.001 (5) | 0.022 (5) | 0.000 (4) |
C11 | 0.053 (7) | 0.039 (5) | 0.056 (5) | 0.009 (5) | 0.015 (5) | −0.003 (4) |
C12 | 0.028 (4) | 0.022 (4) | 0.020 (3) | 0.006 (3) | −0.001 (3) | 0.000 (3) |
C13 | 0.031 (5) | 0.022 (4) | 0.023 (3) | 0.003 (3) | 0.009 (3) | 0.000 (3) |
C14 | 0.030 (4) | 0.030 (4) | 0.024 (3) | 0.000 (4) | 0.009 (3) | 0.002 (3) |
C15 | 0.021 (4) | 0.027 (4) | 0.036 (4) | 0.003 (3) | 0.008 (3) | 0.008 (3) |
C16 | 0.032 (5) | 0.022 (4) | 0.044 (4) | 0.003 (4) | 0.016 (4) | −0.005 (3) |
C17 | 0.030 (5) | 0.027 (4) | 0.026 (3) | 0.010 (4) | 0.003 (3) | 0.000 (3) |
C18 | 0.042 (5) | 0.028 (4) | 0.027 (3) | −0.006 (4) | 0.016 (3) | −0.007 (3) |
C19 | 0.035 (5) | 0.043 (5) | 0.026 (4) | −0.003 (4) | −0.003 (4) | −0.003 (3) |
C20 | 0.034 (5) | 0.058 (6) | 0.033 (4) | −0.018 (5) | −0.002 (4) | 0.001 (4) |
C21 | 0.154 (11) | 0.043 (4) | 0.078 (5) | 0.002 (6) | 0.051 (6) | −0.019 (4) |
C22 | 0.154 (11) | 0.043 (4) | 0.078 (5) | 0.002 (6) | 0.051 (6) | −0.019 (4) |
C23 | 0.016 (5) | 0.025 (5) | 0.023 (5) | 0.000 | 0.003 (4) | 0.000 |
N1 | 0.038 (4) | 0.025 (3) | 0.038 (3) | −0.009 (3) | 0.010 (3) | −0.004 (3) |
N2 | 0.030 (4) | 0.031 (3) | 0.029 (3) | −0.007 (3) | 0.005 (3) | −0.008 (3) |
O1 | 0.036 (3) | 0.025 (3) | 0.018 (2) | −0.001 (2) | −0.001 (2) | −0.0007 (18) |
O2 | 0.023 (4) | 0.026 (4) | 0.024 (3) | 0.000 | 0.003 (3) | 0.000 |
Bi1—O1 | 2.238 (4) | C12—C17 | 1.387 (10) |
Bi1—C12 | 2.259 (7) | C12—C13 | 1.402 (9) |
Bi1—C1 | 2.277 (7) | C13—C14 | 1.398 (9) |
Bi1—N2 | 2.739 (6) | C13—C18 | 1.504 (9) |
C1—C6 | 1.373 (10) | C14—C15 | 1.381 (10) |
C1—C2 | 1.422 (10) | C14—H14 | 0.9300 |
C2—C3 | 1.393 (11) | C15—C16 | 1.384 (9) |
C2—C7 | 1.508 (11) | C15—H15 | 0.9300 |
C3—C4 | 1.354 (13) | C16—C17 | 1.377 (10) |
C3—H3 | 0.9300 | C16—H16 | 0.9300 |
C4—C5 | 1.382 (15) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—N2 | 1.491 (10) |
C5—C6 | 1.383 (13) | C18—H18A | 0.9700 |
C5—H5 | 0.9300 | C18—H18B | 0.9700 |
C6—H6 | 0.9300 | C19—N2 | 1.453 (11) |
C7—N1 | 1.484 (9) | C19—C20 | 1.510 (11) |
C7—H7A | 0.9700 | C19—H19A | 0.9700 |
C7—H7B | 0.9700 | C19—H19B | 0.9700 |
C8—N1 | 1.470 (12) | C20—H20A | 0.9600 |
C8—C9 | 1.525 (11) | C20—H20B | 0.9600 |
C8—H8A | 0.9700 | C20—H20C | 0.9600 |
C8—H8B | 0.9700 | C21—C22 | 1.444 (13) |
C9—H9A | 0.9600 | C21—N2 | 1.548 (12) |
C9—H9B | 0.9600 | C21—H21A | 0.9700 |
C9—H9C | 0.9600 | C21—H21B | 0.9700 |
C10—N1 | 1.454 (12) | C22—H22A | 0.9600 |
C10—C11 | 1.492 (14) | C22—H22B | 0.9600 |
C10—H10A | 0.9700 | C22—H22C | 0.9600 |
C10—H10B | 0.9700 | C23—O2 | 1.257 (13) |
C11—H11A | 0.9600 | C23—O1i | 1.295 (7) |
C11—H11B | 0.9600 | C23—O1 | 1.295 (7) |
C11—H11C | 0.9600 | ||
O1—Bi1—C12 | 82.2 (2) | C14—C13—C18 | 120.1 (6) |
O1—Bi1—C1 | 88.6 (2) | C12—C13—C18 | 121.0 (6) |
C12—Bi1—C1 | 95.3 (3) | C15—C14—C13 | 120.6 (6) |
O1—Bi1—N2 | 152.65 (18) | C15—C14—H14 | 119.7 |
C12—Bi1—N2 | 70.7 (2) | C13—C14—H14 | 119.7 |
C1—Bi1—N2 | 90.3 (2) | C14—C15—C16 | 120.1 (6) |
C6—C1—C2 | 120.1 (7) | C14—C15—H15 | 120.0 |
C6—C1—Bi1 | 119.7 (5) | C16—C15—H15 | 120.0 |
C2—C1—Bi1 | 120.1 (5) | C17—C16—C15 | 119.9 (7) |
C3—C2—C1 | 117.2 (8) | C17—C16—H16 | 120.0 |
C3—C2—C7 | 120.8 (7) | C15—C16—H16 | 120.0 |
C1—C2—C7 | 122.0 (7) | C16—C17—C12 | 120.9 (6) |
C4—C3—C2 | 121.8 (8) | C16—C17—H17 | 119.5 |
C4—C3—H3 | 119.1 | C12—C17—H17 | 119.5 |
C2—C3—H3 | 119.1 | N2—C18—C13 | 110.6 (6) |
C3—C4—C5 | 121.0 (9) | N2—C18—H18A | 109.5 |
C3—C4—H4 | 119.5 | C13—C18—H18A | 109.5 |
C5—C4—H4 | 119.5 | N2—C18—H18B | 109.5 |
C4—C5—C6 | 118.9 (9) | C13—C18—H18B | 109.5 |
C4—C5—H5 | 120.6 | H18A—C18—H18B | 108.1 |
C6—C5—H5 | 120.6 | N2—C19—C20 | 115.0 (7) |
C1—C6—C5 | 121.0 (8) | N2—C19—H19A | 108.5 |
C1—C6—H6 | 119.5 | C20—C19—H19A | 108.5 |
C5—C6—H6 | 119.5 | N2—C19—H19B | 108.5 |
N1—C7—C2 | 114.2 (6) | C20—C19—H19B | 108.5 |
N1—C7—H7A | 108.7 | H19A—C19—H19B | 107.5 |
C2—C7—H7A | 108.7 | C19—C20—H20A | 109.5 |
N1—C7—H7B | 108.7 | C19—C20—H20B | 109.5 |
C2—C7—H7B | 108.7 | H20A—C20—H20B | 109.5 |
H7A—C7—H7B | 107.6 | C19—C20—H20C | 109.5 |
N1—C8—C9 | 114.2 (8) | H20A—C20—H20C | 109.5 |
N1—C8—H8A | 108.7 | H20B—C20—H20C | 109.5 |
C9—C8—H8A | 108.7 | C22—C21—N2 | 115.8 (10) |
N1—C8—H8B | 108.7 | C22—C21—H21A | 108.3 |
C9—C8—H8B | 108.7 | N2—C21—H21A | 108.3 |
H8A—C8—H8B | 107.6 | C22—C21—H21B | 108.3 |
C8—C9—H9A | 109.5 | N2—C21—H21B | 108.3 |
C8—C9—H9B | 109.5 | H21A—C21—H21B | 107.4 |
H9A—C9—H9B | 109.5 | C21—C22—H22A | 109.5 |
C8—C9—H9C | 109.5 | C21—C22—H22B | 109.5 |
H9A—C9—H9C | 109.5 | H22A—C22—H22B | 109.5 |
H9B—C9—H9C | 109.5 | C21—C22—H22C | 109.5 |
N1—C10—C11 | 114.4 (7) | H22A—C22—H22C | 109.5 |
N1—C10—H10A | 108.7 | H22B—C22—H22C | 109.5 |
C11—C10—H10A | 108.7 | O2—C23—O1i | 122.7 (4) |
N1—C10—H10B | 108.7 | O2—C23—O1 | 122.7 (4) |
C11—C10—H10B | 108.7 | O1i—C23—O1 | 114.7 (9) |
H10A—C10—H10B | 107.6 | C10—N1—C8 | 111.4 (7) |
C10—C11—H11A | 109.5 | C10—N1—C7 | 108.6 (6) |
C10—C11—H11B | 109.5 | C8—N1—C7 | 109.3 (7) |
H11A—C11—H11B | 109.5 | C19—N2—C18 | 109.9 (6) |
C10—C11—H11C | 109.5 | C19—N2—C21 | 117.5 (8) |
H11A—C11—H11C | 109.5 | C18—N2—C21 | 108.5 (7) |
H11B—C11—H11C | 109.5 | C19—N2—Bi1 | 117.6 (5) |
C17—C12—C13 | 119.5 (6) | C18—N2—Bi1 | 95.6 (4) |
C17—C12—Bi1 | 124.6 (5) | C21—N2—Bi1 | 105.3 (6) |
C13—C12—Bi1 | 115.8 (5) | C23—O1—Bi1 | 113.1 (5) |
C14—C13—C12 | 118.9 (6) | ||
O1—Bi1—C1—C6 | 75.9 (5) | C13—C12—C17—C16 | 0.9 (13) |
C12—Bi1—C1—C6 | −6.1 (6) | Bi1—C12—C17—C16 | 177.2 (6) |
N2—Bi1—C1—C6 | −76.7 (5) | C14—C13—C18—N2 | −138.3 (8) |
O1—Bi1—C1—C2 | −101.8 (5) | C12—C13—C18—N2 | 43.4 (11) |
C12—Bi1—C1—C2 | 176.1 (5) | C11—C10—N1—C8 | 164.4 (7) |
N2—Bi1—C1—C2 | 105.5 (5) | C11—C10—N1—C7 | −75.1 (9) |
C6—C1—C2—C3 | 0.8 (10) | C9—C8—N1—C10 | −71.3 (10) |
Bi1—C1—C2—C3 | 178.6 (5) | C9—C8—N1—C7 | 168.7 (8) |
C6—C1—C2—C7 | −177.0 (6) | C2—C7—N1—C10 | 169.2 (7) |
Bi1—C1—C2—C7 | 0.8 (9) | C2—C7—N1—C8 | −69.0 (8) |
C1—C2—C3—C4 | −0.8 (12) | C20—C19—N2—C18 | 177.3 (6) |
C7—C2—C3—C4 | 177.0 (7) | C20—C19—N2—C21 | 52.6 (9) |
C2—C3—C4—C5 | 1.0 (14) | C20—C19—N2—Bi1 | −74.8 (7) |
C3—C4—C5—C6 | −1.1 (14) | C13—C18—N2—C19 | 71.0 (8) |
C2—C1—C6—C5 | −1.0 (11) | C13—C18—N2—C21 | −159.3 (8) |
Bi1—C1—C6—C5 | −178.8 (6) | C13—C18—N2—Bi1 | −51.0 (7) |
C4—C5—C6—C1 | 1.1 (13) | C22—C21—N2—C19 | 56.3 (14) |
C3—C2—C7—N1 | 105.3 (8) | C22—C21—N2—C18 | −69.1 (13) |
C1—C2—C7—N1 | −76.9 (9) | C22—C21—N2—Bi1 | −170.6 (10) |
O1—Bi1—C12—C17 | −14.3 (7) | O1—Bi1—N2—C19 | −69.1 (7) |
C1—Bi1—C12—C17 | 73.5 (7) | C12—Bi1—N2—C19 | −77.1 (6) |
N2—Bi1—C12—C17 | 162.0 (8) | C1—Bi1—N2—C19 | 18.4 (6) |
O1—Bi1—C12—C13 | 162.1 (6) | O1—Bi1—N2—C18 | 46.9 (7) |
C1—Bi1—C12—C13 | −110.0 (6) | C12—Bi1—N2—C18 | 38.9 (5) |
N2—Bi1—C12—C13 | −21.6 (5) | C1—Bi1—N2—C18 | 134.4 (5) |
C17—C12—C13—C14 | −1.9 (12) | O1—Bi1—N2—C21 | 157.8 (6) |
Bi1—C12—C13—C14 | −178.5 (6) | C12—Bi1—N2—C21 | 149.8 (7) |
C17—C12—C13—C18 | 176.4 (8) | C1—Bi1—N2—C21 | −114.7 (6) |
Bi1—C12—C13—C18 | −0.2 (10) | O2—C23—O1—Bi1 | −9.0 (4) |
C12—C13—C14—C15 | 2.4 (13) | O1i—C23—O1—Bi1 | 171.0 (4) |
C18—C13—C14—C15 | −176.0 (8) | C12—Bi1—O1—C23 | −175.1 (4) |
C13—C14—C15—C16 | −1.7 (13) | C1—Bi1—O1—C23 | 89.3 (4) |
C14—C15—C16—C17 | 0.6 (12) | N2—Bi1—O1—C23 | 177.3 (3) |
C15—C16—C17—C12 | −0.2 (13) |
Symmetry code: (i) −x+2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Bi2(C11H16N)4(CO3)] |
Mr | 1126.96 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 173 |
a, b, c (Å) | 12.263 (3), 12.785 (2), 15.286 (2) |
β (°) | 105.94 (1) |
V (Å3) | 2304.4 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.67 |
Crystal size (mm) | 0.60 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | Part of the refinement model (ΔF) (Walker & Stuart, 1983) |
Tmin, Tmax | 0.076, 0.526 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9290, 4065, 3351 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.104, 1.01 |
No. of reflections | 4065 |
No. of parameters | 243 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.83, −2.12 |
Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).
Acknowledgements
Financial support from the National University Research Council (Research Project PNII-RU-PD 440/2010) is greatly appreciated.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Breunig, H. J., Königsmann, L., Lork, E., Nema, M., Philipp, N., Silvestru, C., Soran, A., Varga, R. A. & Wagner, R. (2008). Dalton Trans. pp. 1831–1842. Web of Science CSD CrossRef Google Scholar
Breunig, H. J., Nema, M. G., Silvestru, C., Soran, A. P. & Varga, R. A. (2010). Dalton Trans. pp. 11277–11284. Web of Science CSD CrossRef Google Scholar
Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter. Google Scholar
IUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA Google Scholar
Suzuki, H., Ikegami, T. & Matano, Y. (1994). Tetrahedron Lett. 35, 8197–8200. CrossRef CAS Web of Science Google Scholar
Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yin, S.-F., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. 47, 6590–6593. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was obtained by reaction of Na2CO3 with the corresponding diorganobismuth(III) chloride, [2-(Et2NCH2)C6H4]2BiCl in 1:2 molar ratio, in CH2Cl2/H2O mixture. The compound was also obtained when R2BiCl [R = 2-(Et2NCH2)C6H4] is reacted with KOH in toluene/water in open atmosphere, following the slow absorption of CO2 from atmosphere by the bis(diorganobismuth)oxide, as reported for Ph3BiCO3 (Suzuki et al., 1994) or related hypervalent compound (Breunig et al., 2008; Yin et al., 2008).
The room temperature 1H NMR-spectra in CDCl3-d1 or toluene-d8 of the title compound exhibits only one set of resonances for the two organic groups attached to the bismuth centre, thus suggesting their equivalence at the NMR time scale. The 1H-resonances observed for the ethyl group protons and the AB spin systems for the benzylic CH2 protons are consistent with the coordination of both nitrogen atoms to the metal centre in solution. The coalescence of the AB system of the benzylic protons is not reached even at 333 K, thus indicating configurational stability.
The molecular structure of the title compound consists of a symmetrically bridging carbonate group [Bi1–O1/Bi1i–O1i 2.239 (4)Å; Σrcov(Bi,O) 2.18Å] which binds two [2-Et2NCH2C6H4]2Bi moieties that are crystallographically related via a twofold rotation axis bisecting the planar carbonate group. The two Bi atoms and two of the C atoms directly bonded to Bi are quasi-planar with the carbonate group [deviations from the CO3 plane: Bi1/Bi1i±0.323 (1)Å and C12/C12i±0.330 (9)Å]. The remaining two ligands are in trans-arrangement relative to the quasi-planar (CBi)2CO3 system. The metal centre is strongly coordinated by the nitrogen atom of one pendant arm [Bi1···N2 = 2.739 (6)Å; c.f. sums of the corresponding covalent, Σrcov(Bi,N) = 2.22Å, and van der Waals radii, ΣrvdW(Bi,N) = 3.94Å (Emsley, 1994)], almost trans to the oxygen atom [N2···Bi1–O1 152.6 (2)°], while the nitrogen atom of the other pendant arm exhibits a weaker intramolecular interaction [Bi1···N1 = 3.659 (7)Å] almost trans to a carbon atom [angle N1···Bi1–C12 = 145.5 (2)°]. If both these intramolecular N→Bi interactions per metal atom are considered, the overall coordination becomes distorted square-pyramidal [(C,N)2BiO cores], with C1 in apical position and the compound can be described as hypervalent 12-Bi-5 species. Additional quite short intramolecular Bi···O interactions are also present [Bi1···O2 = 3.030 (2)Å; c.f. ΣrvdW(Bi,O) = 3.8Å] (Fig.1). Similar or structurally related carbonate coordination patterns have only recently been reported for hypervalent organobismuth(III) compounds (Breunig et al., 2008, 2010; Yin et al., 2008).
Coordination of N atom induces planar chirality, with the phenyl ring as chiral plane and the nitrogen as pilot atom (IUPAC, 1979). The compound crystalizes as a racemate.
Intermolecular associations through weak [η6···Bi interactions [Bi1···Cg2 = 3.659 (1)Å (Cg2 centroid of ring defined by C12ii-C17ii atoms; Bi···Cg distance range 3.796 (8)-4.020 (9)Å; c.f. sums of the corresponding van der Waals radii ΣrvdW(Bi,Csp2) = 4.25Å, (Emsley, 1994)] between alternating (RN1,SN2/RN1i,SN2i) and (SN1,RN2/SN1iRN2i) isomers lead to a ribbon-like supramolecular association (Fig. 2). The η6···Bi interactions are almost trans to a Bi–C bond [C1–Bi1···Cg2 = 165.2 (2)°]. Symmetry codes: (i) 2-x, y, 1/2-z; (ii) 2-x, 1-y, -z). Similar η6···Bi interactions have been reported for [{2-(Me2NCH2)C6H4}2Bi]2CO3.C6H6 (Breunig et al., 2008).