metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m153-m154

μ-Carbonato-bis­­(bis­­{2-[(di­ethyl­amino)­meth­yl]phen­yl}bis­­muth(III))

aFacultatea de Chimie si Inginerie Chimica, Universitatea Babes-Bolyai, RO-400028, Cluj-Napoca, Romania, and bInstitut für Anorganische und Physikalische Chemie, Universität Bremen, D-28334, Bremen, Germany
*Correspondence e-mail: asoran@chem.ubbcluj.ro

(Received 29 November 2010; accepted 28 December 2010; online 12 January 2011)

The mol­ecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bis­ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis­muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra­molecular inter­action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra­molecular N→Bi inter­actions per metal atom are considered, the overall coordination geometry at bis­muth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra­molecular Bi⋯O inter­actions are also present [3.796 (8)–4.020 (9) Å]. Inter­molecular associations through weak η6⋯Bi inter­actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra­molecular association.

Related literature

For structures of related carbonates and similar η6⋯Bi inter­actions, see: Breunig et al. (2008[Breunig, H. J., Königsmann, L., Lork, E., Nema, M., Philipp, N., Silvestru, C., Soran, A., Varga, R. A. & Wagner, R. (2008). Dalton Trans. pp. 1831-1842.], 2010[Breunig, H. J., Nema, M. G., Silvestru, C., Soran, A. P. & Varga, R. A. (2010). Dalton Trans. pp. 11277-11284.]); Yin et al. (2008[Yin, S.-F., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. 47, 6590-6593.]). For the chirality induced by the coordination of the N atom, see: IUPAC (1979[IUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press.]). For Bi—N, Bi—O and Bi—C bond lengths, see: Emsley, (1994[Emsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.]). For CO2 absorption by bis(diorganobismuth)oxides, see: Suzuki et al. (1994[Suzuki, H., Ikegami, T. & Matano, Y. (1994). Tetrahedron Lett. 35, 8197-8200.]).

[Scheme 1]

Experimental

Crystal data
  • [Bi2(C11H16N)4(CO3)]

  • Mr = 1126.96

  • Monoclinic, P 2/c

  • a = 12.263 (3) Å

  • b = 12.785 (2) Å

  • c = 15.286 (2) Å

  • β = 105.94 (1)°

  • V = 2304.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.67 mm−1

  • T = 173 K

  • 0.60 × 0.30 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.076, Tmax = 0.526

  • 9290 measured reflections

  • 4065 independent reflections

  • 3351 reflections with I > 2σ(I)

  • Rint = 0.047

  • 3 standard reflections every 197 reflections intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.104

  • S = 1.01

  • 4065 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −2.12 e Å−3

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained by reaction of Na2CO3 with the corresponding diorganobismuth(III) chloride, [2-(Et2NCH2)C6H4]2BiCl in 1:2 molar ratio, in CH2Cl2/H2O mixture. The compound was also obtained when R2BiCl [R = 2-(Et2NCH2)C6H4] is reacted with KOH in toluene/water in open atmosphere, following the slow absorption of CO2 from atmosphere by the bis(diorganobismuth)oxide, as reported for Ph3BiCO3 (Suzuki et al., 1994) or related hypervalent compound (Breunig et al., 2008; Yin et al., 2008).

The room temperature 1H NMR-spectra in CDCl3-d1 or toluene-d8 of the title compound exhibits only one set of resonances for the two organic groups attached to the bismuth centre, thus suggesting their equivalence at the NMR time scale. The 1H-resonances observed for the ethyl group protons and the AB spin systems for the benzylic CH2 protons are consistent with the coordination of both nitrogen atoms to the metal centre in solution. The coalescence of the AB system of the benzylic protons is not reached even at 333 K, thus indicating configurational stability.

The molecular structure of the title compound consists of a symmetrically bridging carbonate group [Bi1–O1/Bi1i–O1i 2.239 (4)Å; Σrcov(Bi,O) 2.18Å] which binds two [2-Et2NCH2C6H4]2Bi moieties that are crystallographically related via a twofold rotation axis bisecting the planar carbonate group. The two Bi atoms and two of the C atoms directly bonded to Bi are quasi-planar with the carbonate group [deviations from the CO3 plane: Bi1/Bi1i±0.323 (1)Å and C12/C12i±0.330 (9)Å]. The remaining two ligands are in trans-arrangement relative to the quasi-planar (CBi)2CO3 system. The metal centre is strongly coordinated by the nitrogen atom of one pendant arm [Bi1···N2 = 2.739 (6)Å; c.f. sums of the corresponding covalent, Σrcov(Bi,N) = 2.22Å, and van der Waals radii, ΣrvdW(Bi,N) = 3.94Å (Emsley, 1994)], almost trans to the oxygen atom [N2···Bi1–O1 152.6 (2)°], while the nitrogen atom of the other pendant arm exhibits a weaker intramolecular interaction [Bi1···N1 = 3.659 (7)Å] almost trans to a carbon atom [angle N1···Bi1–C12 = 145.5 (2)°]. If both these intramolecular NBi interactions per metal atom are considered, the overall coordination becomes distorted square-pyramidal [(C,N)2BiO cores], with C1 in apical position and the compound can be described as hypervalent 12-Bi-5 species. Additional quite short intramolecular Bi···O interactions are also present [Bi1···O2 = 3.030 (2)Å; c.f. ΣrvdW(Bi,O) = 3.8Å] (Fig.1). Similar or structurally related carbonate coordination patterns have only recently been reported for hypervalent organobismuth(III) compounds (Breunig et al., 2008, 2010; Yin et al., 2008).

Coordination of N atom induces planar chirality, with the phenyl ring as chiral plane and the nitrogen as pilot atom (IUPAC, 1979). The compound crystalizes as a racemate.

Intermolecular associations through weak [η6···Bi interactions [Bi1···Cg2 = 3.659 (1)Å (Cg2 centroid of ring defined by C12ii-C17ii atoms; Bi···Cg distance range 3.796 (8)-4.020 (9)Å; c.f. sums of the corresponding van der Waals radii ΣrvdW(Bi,Csp2) = 4.25Å, (Emsley, 1994)] between alternating (RN1,SN2/RN1i,SN2i) and (SN1,RN2/SN1iRN2i) isomers lead to a ribbon-like supramolecular association (Fig. 2). The η6···Bi interactions are almost trans to a Bi–C bond [C1–Bi1···Cg2 = 165.2 (2)°]. Symmetry codes: (i) 2-x, y, 1/2-z; (ii) 2-x, 1-y, -z). Similar η6···Bi interactions have been reported for [{2-(Me2NCH2)C6H4}2Bi]2CO3.C6H6 (Breunig et al., 2008).

Related literature top

For structures of related carbonates and similar η6···Bi interactions, see: Breunig et al. (2008, 2010); Yin et al. (2008). For the chirality induced by the coordination of the N atom, see: IUPAC (1979). For Bi—N, Bi—O and Bi—C distances, see: Emsley, (1994). For general background [to what?], see: Suzuki et al. (1994).

Experimental top

To a stirred solution of [2-(Et2NCH2)C6H4]2BiCl (1 g, 1.75 mmoles) in 35 ml CH2Cl2 was added, at room temperature, a solution of Na2CO3 (0.09 g, 0.84 mmoles + 0.09 g, 100% excess) in 25 ml distilled water. The reaction mixture was stirred for 48 h at room temperature, then the organic layer was separated and the water phase was washed with CH2Cl2 (2 × 40 ml). The resulting colourless solution was dried on Na2SO4 for 24 h and then filtered. Evaporation of the solution under vacuum afforded the title compound: 0.62 g (65%) as a white powder. Single crystals were grown from CH2Cl2 / n-hexane (1:5 by volume). M.p. = 393 K. Elemental analyses: found: C, 48.23; H, 5.65; N, 4.87. Calc. for C45H64Bi2N4O3: C, 47.96; H, 5.72; N 4.97%. IR (nujol, cm-1): ν(CO3) 1656 s, 1877 s. 1H-NMR (CDCl3, 300.11 MHz, r.t.): δ 0.92 t (24H, -NCH2CH3, 3JHH = 7.1 Hz), 2.57 q (8H, -NCH2CH3, 3JHH = 7.1 Hz), AB spin system with A at 3.60 and B at 3.80 (8H, -CH2-, 2JHH = 13.3 Hz), 7.25 m (8H, H4 + H5), 7.40 m (4H, H3), 8.24 d (4H, H6, 3JHH = 7.2 Hz). 13C-NMR (CDCl3, 75.47 MHz, r.t.): δ 9.72 s (-NCH2CH3), 44.95 s (-NCH2CH3), 61.61 s (C7), 127.15 s (C4), 129.51 s (C3), 130.06 s (C5), 139.35 s (C6), 146.49 s (C2), 164.99 s [O–C(O)–O], 188.32 s (C1). MS (CIpos, NH3, 473 K): m/z, (relative intensity, %) 776 (1) [(RBiO)2]+, 533 (100) [R2Bi]+, 386 (4) [RBiO]+, 164 [R + 2H]+. MS (CIneg, NH3, 473 K): m/z, (relative intensity, %) 549 (10) [R2BiO]-, 533 (18) [R2Bi]-.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C–H = 0.93-0.97Å and with Uiso = 1.5Ueq (C) for methyl H and Uiso = 1.2Ueq(C) for non-mehyl H. Residual electron densities are 1.68 e.Å-3 at 0.1171 0.6442 0.0513 (1.53Å from N2) and -2.09 e.Å-3 at 0.1656 0.6430 0.0413 (1.35Å from N2). In the crystal structure there is a 37Å3 void (0.500 0.028 0.750 - 3.17Å from C9), but the low electron density (0.19 e.Å-3) in the difference Fourier map suggests no solvent molecule occupying this void.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP representation of title complex (SN1,RN2/SN1i,RN2i-isomer) with the atom numbering scheme. Displacement ellipsoids are presented at 30% probability level. H atoms are shown as small spheres of arbitrary radius. Intramolecular N···Bi and O···Bi interactions are drawn by dashed lines. Symmetry code: (i) 2-x, y, 1/2-z.
[Figure 2] Fig. 2. View along the b axis showing the η6···Bi interactions between alternating (RN1,SN2/RN1i,SN2i) and (SN1,RN2/SN1i,RN2i) isomers. Hydrogen atoms are omitted for clarity. Symmetry codes: (i) 2-x, y, 1/2-z; (ii) 2-x, 1-y, -z.
µ-Carbonato-bis(bis{2-[(diethylamino)methyl]phenyl}bismuth(III)) top
Crystal data top
[Bi2(C11H16N)4(CO3)]F(000) = 1104
Mr = 1126.96Dx = 1.624 Mg m3
Monoclinic, P2/cMelting point: 393 K
Hall symbol: -P 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.263 (3) ÅCell parameters from 37 reflections
b = 12.785 (2) Åθ = 4.9–25.0°
c = 15.286 (2) ŵ = 7.67 mm1
β = 105.94 (1)°T = 173 K
V = 2304.4 (7) Å3Block, colourless
Z = 20.60 × 0.30 × 0.20 mm
Data collection top
Siemens P4
diffractometer
3351 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
2θ/ω scansh = 147
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 1515
Tmin = 0.076, Tmax = 0.526l = 1718
9290 measured reflections3 standard reflections every 197 reflections
4065 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0659P)2]
where P = (Fo2 + 2Fc2)/3
4065 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 1.83 e Å3
0 restraintsΔρmin = 2.12 e Å3
Crystal data top
[Bi2(C11H16N)4(CO3)]V = 2304.4 (7) Å3
Mr = 1126.96Z = 2
Monoclinic, P2/cMo Kα radiation
a = 12.263 (3) ŵ = 7.67 mm1
b = 12.785 (2) ÅT = 173 K
c = 15.286 (2) Å0.60 × 0.30 × 0.20 mm
β = 105.94 (1)°
Data collection top
Siemens P4
diffractometer
3351 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.047
Tmin = 0.076, Tmax = 0.5263 standard reflections every 197 reflections
9290 measured reflections intensity decay: 2%
4065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.01Δρmax = 1.83 e Å3
4065 reflectionsΔρmin = 2.12 e Å3
243 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.88618 (2)0.358681 (18)0.053526 (14)0.01998 (12)
C10.7204 (6)0.3360 (5)0.0910 (4)0.0204 (14)
C20.6990 (7)0.2406 (6)0.1311 (4)0.0282 (17)
C30.5970 (8)0.2327 (7)0.1543 (5)0.039 (2)
H30.58030.17090.18000.047*
C40.5218 (8)0.3126 (9)0.1405 (6)0.051 (3)
H40.45500.30510.15760.062*
C50.5425 (9)0.4052 (8)0.1013 (6)0.050 (2)
H50.48980.45940.09110.060*
C60.6429 (7)0.4161 (7)0.0775 (5)0.0332 (18)
H60.65820.47860.05210.040*
C70.7840 (8)0.1526 (5)0.1513 (5)0.0313 (18)
H7A0.85860.18150.17920.038*
H7B0.76550.10590.19520.038*
C80.6832 (10)0.0306 (7)0.0375 (6)0.051 (3)
H8A0.61950.07660.03480.062*
H8B0.68210.02410.08120.062*
C90.6676 (11)0.0192 (8)0.0557 (6)0.066 (3)
H9A0.67010.03400.09940.099*
H9B0.59570.05430.07380.099*
H9C0.72730.06890.05270.099*
C100.8872 (10)0.0226 (7)0.0953 (6)0.051 (3)
H10A0.87870.03140.04940.061*
H10B0.88920.01140.15240.061*
C110.9977 (9)0.0769 (7)0.1053 (6)0.049 (2)
H11A1.00030.10410.04740.074*
H11B1.05870.02810.12700.074*
H11C1.00520.13330.14800.074*
C120.8403 (7)0.5173 (5)0.0111 (4)0.0248 (16)
C130.8200 (7)0.5211 (5)0.1059 (4)0.0248 (16)
C140.7937 (7)0.6172 (6)0.1503 (5)0.0277 (16)
H140.77740.62020.21340.033*
C150.7918 (7)0.7076 (6)0.1014 (4)0.0280 (16)
H150.77610.77150.13140.034*
C160.8130 (7)0.7034 (6)0.0077 (5)0.0316 (18)
H160.81100.76420.02510.038*
C170.8372 (7)0.6090 (6)0.0367 (5)0.0284 (17)
H170.85160.60670.09970.034*
C180.8293 (8)0.4243 (6)0.1593 (5)0.0310 (17)
H18A0.79280.43630.22330.037*
H18B0.90860.40880.15260.037*
C190.6523 (8)0.3465 (6)0.1538 (5)0.037 (2)
H19A0.62710.35590.21920.044*
H19B0.63380.40980.12600.044*
C200.5867 (8)0.2568 (7)0.1285 (5)0.044 (2)
H20A0.58860.19800.16710.066*
H20B0.50950.27780.13620.066*
H20C0.62040.23770.06620.066*
C210.8230 (14)0.2316 (8)0.1560 (7)0.087 (3)
H21A0.90510.23480.13530.105*
H21B0.79910.17330.12510.105*
C220.7903 (14)0.2099 (9)0.2524 (7)0.087 (3)
H22A0.70950.20230.27350.131*
H22B0.82600.14640.26370.131*
H22C0.81380.26660.28420.131*
C231.00000.4009 (8)0.25000.022 (2)
N10.7887 (6)0.0909 (5)0.0702 (4)0.0340 (15)
N20.7747 (6)0.3336 (5)0.1268 (4)0.0302 (15)
O10.9491 (5)0.4556 (4)0.1793 (3)0.0277 (12)
O21.00000.3026 (5)0.25000.0249 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02017 (17)0.01928 (16)0.02040 (16)0.00227 (12)0.00542 (11)0.00038 (9)
C10.008 (3)0.030 (4)0.023 (3)0.000 (3)0.003 (3)0.000 (3)
C20.027 (4)0.037 (4)0.021 (3)0.007 (4)0.008 (3)0.006 (3)
C30.036 (5)0.049 (5)0.036 (4)0.011 (4)0.015 (4)0.004 (4)
C40.022 (5)0.090 (8)0.047 (5)0.001 (5)0.017 (4)0.003 (5)
C50.039 (6)0.068 (7)0.044 (5)0.018 (5)0.015 (4)0.002 (5)
C60.031 (5)0.042 (4)0.029 (4)0.009 (4)0.011 (3)0.002 (3)
C70.033 (5)0.031 (4)0.031 (4)0.008 (4)0.009 (3)0.001 (3)
C80.060 (7)0.041 (5)0.052 (5)0.016 (5)0.014 (5)0.013 (4)
C90.081 (9)0.037 (5)0.078 (7)0.019 (6)0.017 (7)0.020 (5)
C100.066 (8)0.032 (5)0.057 (5)0.001 (5)0.022 (5)0.000 (4)
C110.053 (7)0.039 (5)0.056 (5)0.009 (5)0.015 (5)0.003 (4)
C120.028 (4)0.022 (4)0.020 (3)0.006 (3)0.001 (3)0.000 (3)
C130.031 (5)0.022 (4)0.023 (3)0.003 (3)0.009 (3)0.000 (3)
C140.030 (4)0.030 (4)0.024 (3)0.000 (4)0.009 (3)0.002 (3)
C150.021 (4)0.027 (4)0.036 (4)0.003 (3)0.008 (3)0.008 (3)
C160.032 (5)0.022 (4)0.044 (4)0.003 (4)0.016 (4)0.005 (3)
C170.030 (5)0.027 (4)0.026 (3)0.010 (4)0.003 (3)0.000 (3)
C180.042 (5)0.028 (4)0.027 (3)0.006 (4)0.016 (3)0.007 (3)
C190.035 (5)0.043 (5)0.026 (4)0.003 (4)0.003 (4)0.003 (3)
C200.034 (5)0.058 (6)0.033 (4)0.018 (5)0.002 (4)0.001 (4)
C210.154 (11)0.043 (4)0.078 (5)0.002 (6)0.051 (6)0.019 (4)
C220.154 (11)0.043 (4)0.078 (5)0.002 (6)0.051 (6)0.019 (4)
C230.016 (5)0.025 (5)0.023 (5)0.0000.003 (4)0.000
N10.038 (4)0.025 (3)0.038 (3)0.009 (3)0.010 (3)0.004 (3)
N20.030 (4)0.031 (3)0.029 (3)0.007 (3)0.005 (3)0.008 (3)
O10.036 (3)0.025 (3)0.018 (2)0.001 (2)0.001 (2)0.0007 (18)
O20.023 (4)0.026 (4)0.024 (3)0.0000.003 (3)0.000
Geometric parameters (Å, º) top
Bi1—O12.238 (4)C12—C171.387 (10)
Bi1—C122.259 (7)C12—C131.402 (9)
Bi1—C12.277 (7)C13—C141.398 (9)
Bi1—N22.739 (6)C13—C181.504 (9)
C1—C61.373 (10)C14—C151.381 (10)
C1—C21.422 (10)C14—H140.9300
C2—C31.393 (11)C15—C161.384 (9)
C2—C71.508 (11)C15—H150.9300
C3—C41.354 (13)C16—C171.377 (10)
C3—H30.9300C16—H160.9300
C4—C51.382 (15)C17—H170.9300
C4—H40.9300C18—N21.491 (10)
C5—C61.383 (13)C18—H18A0.9700
C5—H50.9300C18—H18B0.9700
C6—H60.9300C19—N21.453 (11)
C7—N11.484 (9)C19—C201.510 (11)
C7—H7A0.9700C19—H19A0.9700
C7—H7B0.9700C19—H19B0.9700
C8—N11.470 (12)C20—H20A0.9600
C8—C91.525 (11)C20—H20B0.9600
C8—H8A0.9700C20—H20C0.9600
C8—H8B0.9700C21—C221.444 (13)
C9—H9A0.9600C21—N21.548 (12)
C9—H9B0.9600C21—H21A0.9700
C9—H9C0.9600C21—H21B0.9700
C10—N11.454 (12)C22—H22A0.9600
C10—C111.492 (14)C22—H22B0.9600
C10—H10A0.9700C22—H22C0.9600
C10—H10B0.9700C23—O21.257 (13)
C11—H11A0.9600C23—O1i1.295 (7)
C11—H11B0.9600C23—O11.295 (7)
C11—H11C0.9600
O1—Bi1—C1282.2 (2)C14—C13—C18120.1 (6)
O1—Bi1—C188.6 (2)C12—C13—C18121.0 (6)
C12—Bi1—C195.3 (3)C15—C14—C13120.6 (6)
O1—Bi1—N2152.65 (18)C15—C14—H14119.7
C12—Bi1—N270.7 (2)C13—C14—H14119.7
C1—Bi1—N290.3 (2)C14—C15—C16120.1 (6)
C6—C1—C2120.1 (7)C14—C15—H15120.0
C6—C1—Bi1119.7 (5)C16—C15—H15120.0
C2—C1—Bi1120.1 (5)C17—C16—C15119.9 (7)
C3—C2—C1117.2 (8)C17—C16—H16120.0
C3—C2—C7120.8 (7)C15—C16—H16120.0
C1—C2—C7122.0 (7)C16—C17—C12120.9 (6)
C4—C3—C2121.8 (8)C16—C17—H17119.5
C4—C3—H3119.1C12—C17—H17119.5
C2—C3—H3119.1N2—C18—C13110.6 (6)
C3—C4—C5121.0 (9)N2—C18—H18A109.5
C3—C4—H4119.5C13—C18—H18A109.5
C5—C4—H4119.5N2—C18—H18B109.5
C4—C5—C6118.9 (9)C13—C18—H18B109.5
C4—C5—H5120.6H18A—C18—H18B108.1
C6—C5—H5120.6N2—C19—C20115.0 (7)
C1—C6—C5121.0 (8)N2—C19—H19A108.5
C1—C6—H6119.5C20—C19—H19A108.5
C5—C6—H6119.5N2—C19—H19B108.5
N1—C7—C2114.2 (6)C20—C19—H19B108.5
N1—C7—H7A108.7H19A—C19—H19B107.5
C2—C7—H7A108.7C19—C20—H20A109.5
N1—C7—H7B108.7C19—C20—H20B109.5
C2—C7—H7B108.7H20A—C20—H20B109.5
H7A—C7—H7B107.6C19—C20—H20C109.5
N1—C8—C9114.2 (8)H20A—C20—H20C109.5
N1—C8—H8A108.7H20B—C20—H20C109.5
C9—C8—H8A108.7C22—C21—N2115.8 (10)
N1—C8—H8B108.7C22—C21—H21A108.3
C9—C8—H8B108.7N2—C21—H21A108.3
H8A—C8—H8B107.6C22—C21—H21B108.3
C8—C9—H9A109.5N2—C21—H21B108.3
C8—C9—H9B109.5H21A—C21—H21B107.4
H9A—C9—H9B109.5C21—C22—H22A109.5
C8—C9—H9C109.5C21—C22—H22B109.5
H9A—C9—H9C109.5H22A—C22—H22B109.5
H9B—C9—H9C109.5C21—C22—H22C109.5
N1—C10—C11114.4 (7)H22A—C22—H22C109.5
N1—C10—H10A108.7H22B—C22—H22C109.5
C11—C10—H10A108.7O2—C23—O1i122.7 (4)
N1—C10—H10B108.7O2—C23—O1122.7 (4)
C11—C10—H10B108.7O1i—C23—O1114.7 (9)
H10A—C10—H10B107.6C10—N1—C8111.4 (7)
C10—C11—H11A109.5C10—N1—C7108.6 (6)
C10—C11—H11B109.5C8—N1—C7109.3 (7)
H11A—C11—H11B109.5C19—N2—C18109.9 (6)
C10—C11—H11C109.5C19—N2—C21117.5 (8)
H11A—C11—H11C109.5C18—N2—C21108.5 (7)
H11B—C11—H11C109.5C19—N2—Bi1117.6 (5)
C17—C12—C13119.5 (6)C18—N2—Bi195.6 (4)
C17—C12—Bi1124.6 (5)C21—N2—Bi1105.3 (6)
C13—C12—Bi1115.8 (5)C23—O1—Bi1113.1 (5)
C14—C13—C12118.9 (6)
O1—Bi1—C1—C675.9 (5)C13—C12—C17—C160.9 (13)
C12—Bi1—C1—C66.1 (6)Bi1—C12—C17—C16177.2 (6)
N2—Bi1—C1—C676.7 (5)C14—C13—C18—N2138.3 (8)
O1—Bi1—C1—C2101.8 (5)C12—C13—C18—N243.4 (11)
C12—Bi1—C1—C2176.1 (5)C11—C10—N1—C8164.4 (7)
N2—Bi1—C1—C2105.5 (5)C11—C10—N1—C775.1 (9)
C6—C1—C2—C30.8 (10)C9—C8—N1—C1071.3 (10)
Bi1—C1—C2—C3178.6 (5)C9—C8—N1—C7168.7 (8)
C6—C1—C2—C7177.0 (6)C2—C7—N1—C10169.2 (7)
Bi1—C1—C2—C70.8 (9)C2—C7—N1—C869.0 (8)
C1—C2—C3—C40.8 (12)C20—C19—N2—C18177.3 (6)
C7—C2—C3—C4177.0 (7)C20—C19—N2—C2152.6 (9)
C2—C3—C4—C51.0 (14)C20—C19—N2—Bi174.8 (7)
C3—C4—C5—C61.1 (14)C13—C18—N2—C1971.0 (8)
C2—C1—C6—C51.0 (11)C13—C18—N2—C21159.3 (8)
Bi1—C1—C6—C5178.8 (6)C13—C18—N2—Bi151.0 (7)
C4—C5—C6—C11.1 (13)C22—C21—N2—C1956.3 (14)
C3—C2—C7—N1105.3 (8)C22—C21—N2—C1869.1 (13)
C1—C2—C7—N176.9 (9)C22—C21—N2—Bi1170.6 (10)
O1—Bi1—C12—C1714.3 (7)O1—Bi1—N2—C1969.1 (7)
C1—Bi1—C12—C1773.5 (7)C12—Bi1—N2—C1977.1 (6)
N2—Bi1—C12—C17162.0 (8)C1—Bi1—N2—C1918.4 (6)
O1—Bi1—C12—C13162.1 (6)O1—Bi1—N2—C1846.9 (7)
C1—Bi1—C12—C13110.0 (6)C12—Bi1—N2—C1838.9 (5)
N2—Bi1—C12—C1321.6 (5)C1—Bi1—N2—C18134.4 (5)
C17—C12—C13—C141.9 (12)O1—Bi1—N2—C21157.8 (6)
Bi1—C12—C13—C14178.5 (6)C12—Bi1—N2—C21149.8 (7)
C17—C12—C13—C18176.4 (8)C1—Bi1—N2—C21114.7 (6)
Bi1—C12—C13—C180.2 (10)O2—C23—O1—Bi19.0 (4)
C12—C13—C14—C152.4 (13)O1i—C23—O1—Bi1171.0 (4)
C18—C13—C14—C15176.0 (8)C12—Bi1—O1—C23175.1 (4)
C13—C14—C15—C161.7 (13)C1—Bi1—O1—C2389.3 (4)
C14—C15—C16—C170.6 (12)N2—Bi1—O1—C23177.3 (3)
C15—C16—C17—C120.2 (13)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Bi2(C11H16N)4(CO3)]
Mr1126.96
Crystal system, space groupMonoclinic, P2/c
Temperature (K)173
a, b, c (Å)12.263 (3), 12.785 (2), 15.286 (2)
β (°) 105.94 (1)
V3)2304.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)7.67
Crystal size (mm)0.60 × 0.30 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.076, 0.526
No. of measured, independent and
observed [I > 2σ(I)] reflections
9290, 4065, 3351
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.104, 1.01
No. of reflections4065
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 2.12

Computer programs: XSCANS (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

 

Acknowledgements

Financial support from the National University Research Council (Research Project PNII-RU-PD 440/2010) is greatly appreciated.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreunig, H. J., Königsmann, L., Lork, E., Nema, M., Philipp, N., Silvestru, C., Soran, A., Varga, R. A. & Wagner, R. (2008). Dalton Trans. pp. 1831–1842.  Web of Science CSD CrossRef Google Scholar
First citationBreunig, H. J., Nema, M. G., Silvestru, C., Soran, A. P. & Varga, R. A. (2010). Dalton Trans. pp. 11277–11284.  Web of Science CSD CrossRef Google Scholar
First citationEmsley, J. (1994). Die Elemente. Berlin: Walter de Gruyter.  Google Scholar
First citationIUPAC (1979). Nomenclature of Organic Chemistry. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA  Google Scholar
First citationSuzuki, H., Ikegami, T. & Matano, Y. (1994). Tetrahedron Lett. 35, 8197–8200.  CrossRef CAS Web of Science Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, S.-F., Maruyama, J., Yamashita, T. & Shimada, S. (2008). Angew. Chem. 47, 6590–6593.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m153-m154
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds