organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Bromo-1-(4-fluoro­phenyl­sulfon­yl)-2-methyl­naphtho­[2,1-b]furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 9 December 2010; accepted 26 December 2010; online 8 January 2011)

In the title compound, C19H12BrFO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 80.32 (5)° with the mean plane of the naphtho­furan fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯π inter­actions. The crystal structure also exhibits aromatic ππ inter­actions between the central benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.564 (3) Å].

Related literature

For the pharmacological activity of naphtho­furan compounds, see: Einhorn et al. (1984[Einhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405-410.]); Hranjec et al. (2003[Hranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319-1324.]); Mahadevan & Vaidya (2003[Mahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128-34.]). For our previous structural studies of related 1-aryl­sulfonyl-7-bromo-2-methyl­naphtho­[2,1-b]furan derivatives, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o944.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1158.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12BrFO3S

  • Mr = 419.26

  • Monoclinic, P 21 /n

  • a = 12.0415 (2) Å

  • b = 8.1579 (1) Å

  • c = 17.4578 (3) Å

  • β = 105.325 (1)°

  • V = 1653.96 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.64 mm−1

  • T = 173 K

  • 0.25 × 0.21 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.744

  • 14803 measured reflections

  • 3803 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.078

  • S = 1.02

  • 3803 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 4-fluoro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.57 3.312 (3) 135
C18—H18⋯O2ii 0.95 2.36 3.266 (3) 160
C19—H19⋯O3i 0.95 2.57 3.113 (2) 117
C10—H10⋯Cg1iii 0.95 2.69 3.609 (2) 152
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving a naphthofuran ring have attracted much attention in view of their diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn et al., 1984, Hranjec et al., 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 1-arylsulfonyl-7-bromo-2-methylnaphtho[2,1-b]furan analogues (Choi et al., 2008a,b), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the naphthofuran moiety is essentially planar, with a mean deviation of 0.011 (2)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran system and the 4-fluorophenyl ring is 80.32 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds; the first one between a benzene H atom and the oxygen of the OSO unit (Table 1; C5–H5···O2i), and the second one between the 4-fluorophenyl H atom and the oxygen of the OSO unit (Table 1; C18–H18···O2ii), and the third one between the 4-fluorophenyl H and the oxygen of the OSO unit (Table 1; C19–H19···O3i). The molecular packing (Fig. 3) is further stabilized by an intermolecular C–H···π interaction between a benzene H atom and the 4-fluorophenyl ring (Table 1; C10–H10···Cg1iii, Cg1 is the centroid of the C14-C19 4-fluorophenyl ring). In addition, the crystal packing (Fig. 3) exhibits an aromatic ππ interaction between the central benzene rings of neighbouring molecules. The Cg2···Cg2vi distance is 3.564 (3)Å (Cg2 is the centroid of the C2/C3/C8-C11 benzene ring).

Related literature top

For the pharmacological activity of naphthofuran compounds, see: Einhorn et al. (1984); Hranjec et al. (2003); Mahadevan & Vaidya (2003). For our previous structural studies of related 1-arylsulfonyl-7-bromo-2-methylnaphtho[2,1-b]furan derivatives, see: Choi et al. (2008a,b).

Experimental top

3-Chloroperoxybenzoic acid (77%) (404 mg, 1.8 mmol) was added in small portions to a stirred solution of 7-bromo-1-(4-fluorophenylsulfanyl)-2-methylnaphtho[2,1-b]furan (348 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colourless solid [yield 73%, m.p. 485-486 K; Rf = 0.52 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95Å for aryl and 0.98Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of C–H···O interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) x, y+1, z; (iv) -x+1/2, y-1/2, -z+1/2; (v) x, y-1, z.
[Figure 3] Fig. 3. A view of C–H···π and ππ interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (iii) x+1/2, -y+1/2, z+1/2; (vi) -x+1, -y, -z + 1; (vii) x-1/2, -y+1/2, z-1/2.
7-Bromo-1-(4-fluorophenylsulfonyl)-2-methylnaphtho[2,1-b]furan top
Crystal data top
C19H12BrFO3SF(000) = 840
Mr = 419.26Dx = 1.684 Mg m3
Monoclinic, P21/nMelting point = 485–486 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.0415 (2) ÅCell parameters from 4448 reflections
b = 8.1579 (1) Åθ = 2.4–27.4°
c = 17.4578 (3) ŵ = 2.64 mm1
β = 105.325 (1)°T = 173 K
V = 1653.96 (5) Å3Block, colourless
Z = 40.25 × 0.21 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3803 independent reflections
Radiation source: rotating anode3026 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.9°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.553, Tmax = 0.744l = 2222
14803 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.6504P]
where P = (Fo2 + 2Fc2)/3
3803 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H12BrFO3SV = 1653.96 (5) Å3
Mr = 419.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0415 (2) ŵ = 2.64 mm1
b = 8.1579 (1) ÅT = 173 K
c = 17.4578 (3) Å0.25 × 0.21 × 0.12 mm
β = 105.325 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3026 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.744Rint = 0.032
14803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
3803 reflectionsΔρmin = 0.41 e Å3
227 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23409 (2)0.55058 (3)0.595181 (15)0.04881 (10)
S10.40951 (4)0.07887 (6)0.25320 (3)0.02349 (12)
F10.52925 (15)0.6513 (2)0.09244 (10)0.0670 (5)
O10.68915 (11)0.0164 (2)0.42360 (8)0.0308 (3)
O20.42383 (14)0.06341 (18)0.20874 (9)0.0363 (4)
O30.29924 (11)0.1077 (2)0.26702 (8)0.0316 (3)
C10.51536 (16)0.0748 (2)0.34372 (11)0.0240 (4)
C20.52174 (16)0.1490 (3)0.42090 (10)0.0234 (4)
C30.44999 (16)0.2428 (2)0.45819 (10)0.0236 (4)
C40.33609 (16)0.2927 (3)0.42204 (11)0.0285 (4)
H40.30210.26370.36820.034*
C50.27304 (18)0.3815 (3)0.46198 (12)0.0327 (5)
H50.19630.41320.43630.039*
C60.32294 (19)0.4253 (3)0.54121 (13)0.0322 (5)
C70.43192 (19)0.3815 (3)0.57901 (12)0.0329 (5)
H70.46380.41370.63260.040*
C80.49895 (17)0.2882 (3)0.53949 (11)0.0277 (4)
C90.61271 (18)0.2411 (3)0.58063 (11)0.0331 (5)
H90.64290.27470.63420.040*
C100.67917 (17)0.1498 (3)0.54546 (12)0.0323 (5)
H100.75470.11650.57310.039*
C110.63028 (16)0.1071 (3)0.46594 (11)0.0269 (4)
C120.61837 (17)0.0014 (3)0.34912 (12)0.0280 (4)
C130.6701 (2)0.0921 (3)0.29391 (14)0.0407 (6)
H13A0.73210.02670.28260.061*
H13B0.61100.11360.24430.061*
H13C0.70140.19640.31820.061*
C140.44463 (15)0.2512 (3)0.20340 (10)0.0219 (4)
C150.49975 (17)0.2294 (3)0.14369 (11)0.0327 (5)
H150.51800.12250.12920.039*
C160.5279 (2)0.3660 (4)0.10549 (13)0.0423 (6)
H160.56510.35490.06410.051*
C170.5005 (2)0.5172 (3)0.12903 (14)0.0400 (6)
C180.44494 (19)0.5411 (3)0.18684 (13)0.0344 (5)
H180.42640.64840.20070.041*
C190.41645 (17)0.4054 (3)0.22448 (11)0.0268 (4)
H190.37750.41800.26490.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06439 (18)0.04182 (17)0.05384 (16)0.00541 (13)0.03959 (13)0.00784 (12)
S10.0259 (2)0.0209 (3)0.0210 (2)0.00233 (19)0.00152 (17)0.00073 (19)
F10.0806 (11)0.0562 (11)0.0654 (10)0.0212 (9)0.0216 (9)0.0257 (9)
O10.0236 (7)0.0369 (9)0.0295 (7)0.0027 (6)0.0025 (6)0.0064 (7)
O20.0475 (9)0.0228 (8)0.0324 (7)0.0016 (7)0.0001 (7)0.0057 (7)
O30.0245 (7)0.0399 (9)0.0282 (7)0.0059 (7)0.0031 (5)0.0003 (7)
C10.0260 (9)0.0230 (11)0.0215 (8)0.0011 (8)0.0035 (7)0.0048 (8)
C20.0254 (9)0.0204 (10)0.0220 (8)0.0053 (8)0.0019 (7)0.0044 (8)
C30.0282 (9)0.0200 (10)0.0208 (8)0.0053 (8)0.0034 (7)0.0045 (8)
C40.0303 (10)0.0307 (12)0.0235 (9)0.0016 (9)0.0054 (8)0.0011 (9)
C50.0320 (10)0.0350 (13)0.0316 (10)0.0018 (10)0.0095 (8)0.0037 (10)
C60.0453 (12)0.0250 (12)0.0328 (10)0.0040 (10)0.0217 (9)0.0015 (9)
C70.0460 (12)0.0310 (12)0.0233 (9)0.0120 (10)0.0116 (9)0.0008 (9)
C80.0342 (10)0.0240 (11)0.0235 (9)0.0085 (9)0.0049 (8)0.0018 (9)
C90.0374 (11)0.0355 (13)0.0210 (9)0.0114 (10)0.0017 (8)0.0019 (9)
C100.0262 (10)0.0376 (13)0.0263 (9)0.0054 (9)0.0048 (8)0.0076 (10)
C110.0258 (9)0.0260 (11)0.0269 (9)0.0033 (8)0.0037 (8)0.0058 (9)
C120.0286 (10)0.0283 (11)0.0252 (9)0.0005 (9)0.0036 (8)0.0062 (9)
C130.0378 (12)0.0487 (16)0.0375 (12)0.0106 (11)0.0131 (9)0.0027 (11)
C140.0200 (8)0.0243 (11)0.0187 (8)0.0015 (8)0.0004 (6)0.0014 (8)
C150.0360 (11)0.0347 (13)0.0292 (10)0.0052 (10)0.0116 (9)0.0006 (10)
C160.0404 (12)0.0553 (18)0.0359 (11)0.0010 (12)0.0183 (10)0.0100 (12)
C170.0396 (12)0.0381 (14)0.0387 (12)0.0108 (11)0.0040 (10)0.0151 (11)
C180.0394 (12)0.0222 (12)0.0366 (11)0.0024 (10)0.0012 (9)0.0004 (10)
C190.0283 (10)0.0259 (11)0.0242 (9)0.0014 (9)0.0036 (7)0.0016 (9)
Geometric parameters (Å, º) top
Br1—C61.900 (2)C7—H70.9500
S1—O31.4303 (14)C8—C91.421 (3)
S1—O21.4319 (16)C9—C101.354 (3)
S1—C11.7487 (18)C9—H90.9500
S1—C141.762 (2)C10—C111.401 (3)
F1—C171.357 (3)C10—H100.9500
O1—C121.361 (2)C12—C131.477 (3)
O1—C111.369 (3)C13—H13A0.9800
C1—C121.368 (3)C13—H13B0.9800
C1—C21.461 (3)C13—H13C0.9800
C2—C111.378 (3)C14—C191.378 (3)
C2—C31.433 (3)C14—C151.387 (3)
C3—C41.410 (3)C15—C161.386 (3)
C3—C81.434 (3)C15—H150.9500
C4—C51.367 (3)C16—C171.367 (4)
C4—H40.9500C16—H160.9500
C5—C61.401 (3)C17—C181.364 (3)
C5—H50.9500C18—C191.376 (3)
C6—C71.352 (3)C18—H180.9500
C7—C81.415 (3)C19—H190.9500
O3—S1—O2118.34 (10)C9—C10—C11116.25 (18)
O3—S1—C1109.76 (9)C9—C10—H10121.9
O2—S1—C1108.13 (9)C11—C10—H10121.9
O3—S1—C14107.86 (9)O1—C11—C2112.00 (17)
O2—S1—C14107.47 (9)O1—C11—C10121.84 (18)
C1—S1—C14104.37 (9)C2—C11—C10126.2 (2)
C12—O1—C11106.89 (15)O1—C12—C1110.17 (18)
C12—C1—C2107.40 (16)O1—C12—C13114.29 (17)
C12—C1—S1120.12 (15)C1—C12—C13135.52 (19)
C2—C1—S1132.37 (15)C12—C13—H13A109.5
C11—C2—C3117.91 (17)C12—C13—H13B109.5
C11—C2—C1103.54 (17)H13A—C13—H13B109.5
C3—C2—C1138.54 (17)C12—C13—H13C109.5
C4—C3—C2125.66 (17)H13A—C13—H13C109.5
C4—C3—C8117.73 (18)H13B—C13—H13C109.5
C2—C3—C8116.61 (17)C19—C14—C15121.19 (19)
C5—C4—C3122.05 (18)C19—C14—S1119.23 (14)
C5—C4—H4119.0C15—C14—S1119.57 (17)
C3—C4—H4119.0C16—C15—C14119.0 (2)
C4—C5—C6119.2 (2)C16—C15—H15120.5
C4—C5—H5120.4C14—C15—H15120.5
C6—C5—H5120.4C17—C16—C15118.1 (2)
C7—C6—C5121.5 (2)C17—C16—H16120.9
C7—C6—Br1120.08 (16)C15—C16—H16120.9
C5—C6—Br1118.42 (17)F1—C17—C18117.9 (2)
C6—C7—C8120.63 (19)F1—C17—C16118.3 (2)
C6—C7—H7119.7C18—C17—C16123.8 (2)
C8—C7—H7119.7C17—C18—C19118.1 (2)
C7—C8—C9119.80 (18)C17—C18—H18121.0
C7—C8—C3118.90 (18)C19—C18—H18121.0
C9—C8—C3121.30 (19)C18—C19—C14119.79 (19)
C10—C9—C8121.73 (18)C18—C19—H19120.1
C10—C9—H9119.1C14—C19—H19120.1
C8—C9—H9119.1
O3—S1—C1—C12158.70 (17)C12—O1—C11—C20.2 (2)
O2—S1—C1—C1228.3 (2)C12—O1—C11—C10179.3 (2)
C14—S1—C1—C1285.93 (18)C3—C2—C11—O1179.30 (17)
O3—S1—C1—C225.7 (2)C1—C2—C11—O10.2 (2)
O2—S1—C1—C2156.10 (19)C3—C2—C11—C101.1 (3)
C14—S1—C1—C289.7 (2)C1—C2—C11—C10179.8 (2)
C12—C1—C2—C110.6 (2)C9—C10—C11—O1179.38 (19)
S1—C1—C2—C11176.64 (17)C9—C10—C11—C20.1 (3)
C12—C1—C2—C3179.4 (2)C11—O1—C12—C10.7 (2)
S1—C1—C2—C34.6 (4)C11—O1—C12—C13177.91 (19)
C11—C2—C3—C4178.3 (2)C2—C1—C12—O10.8 (2)
C1—C2—C3—C40.4 (4)S1—C1—C12—O1177.41 (14)
C11—C2—C3—C81.3 (3)C2—C1—C12—C13177.3 (3)
C1—C2—C3—C8180.0 (2)S1—C1—C12—C130.7 (4)
C2—C3—C4—C5179.7 (2)O3—S1—C14—C1938.53 (17)
C8—C3—C4—C50.1 (3)O2—S1—C14—C19167.16 (15)
C3—C4—C5—C60.3 (3)C1—S1—C14—C1978.17 (16)
C4—C5—C6—C70.1 (3)O3—S1—C14—C15141.32 (15)
C4—C5—C6—Br1179.40 (17)O2—S1—C14—C1512.69 (18)
C5—C6—C7—C80.6 (3)C1—S1—C14—C15101.98 (16)
Br1—C6—C7—C8179.98 (16)C19—C14—C15—C160.7 (3)
C6—C7—C8—C9179.0 (2)S1—C14—C15—C16179.40 (16)
C6—C7—C8—C30.9 (3)C14—C15—C16—C170.5 (3)
C4—C3—C8—C70.7 (3)C15—C16—C17—F1179.2 (2)
C2—C3—C8—C7179.70 (18)C15—C16—C17—C181.5 (4)
C4—C3—C8—C9179.25 (19)F1—C17—C18—C19179.53 (19)
C2—C3—C8—C90.4 (3)C16—C17—C18—C191.1 (3)
C7—C8—C9—C10179.0 (2)C17—C18—C19—C140.2 (3)
C3—C8—C9—C100.9 (3)C15—C14—C19—C181.1 (3)
C8—C9—C10—C111.2 (3)S1—C14—C19—C18179.04 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.573.312 (3)135
C18—H18···O2ii0.952.363.266 (3)160
C19—H19···O3i0.952.573.113 (2)117
C10—H10···Cg1iii0.952.693.609 (2)152
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H12BrFO3S
Mr419.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.0415 (2), 8.1579 (1), 17.4578 (3)
β (°) 105.325 (1)
V3)1653.96 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.64
Crystal size (mm)0.25 × 0.21 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.553, 0.744
No. of measured, independent and
observed [I > 2σ(I)] reflections
14803, 3803, 3026
Rint0.032
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.078, 1.02
No. of reflections3803
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 4-fluorophenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.573.312 (3)135.1
C18—H18···O2ii0.952.363.266 (3)160.4
C19—H19···O3i0.952.573.113 (2)116.6
C10—H10···Cg1iii0.952.693.609 (2)151.8
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEinhorn, J., Demerseman, P., Royer, R., Cavier, R. & Gayral, P. (1984). Eur. J. Med. Chem. 19, 405–410.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHranjec, M., Grdisa, M., Pavelic, K., Boykin, D. W. & Karminski-Zamola, G. (2003). Farmaco, 58, 1319–1324.  CrossRef PubMed CAS Google Scholar
First citationMahadevan, K. M. & Vaidya, V. P. (2003). Indian J. Pharm. Sci. 65, 128–34.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds