metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{N-[(di­ethyl­amino)­di­methyl­sil­yl]anilido-κN}(N,N,N′,N′-tetra­methyl­ethane-1,2-di­amine-κ2N,N′)cobalt(II)

aInstitute of Applied Chemistry Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: sdbai@sxu.edu.cn

(Received 26 December 2010; accepted 22 January 2011; online 29 January 2011)

In the title cobalt(II) compound, [Co(C12H21N2Si)Cl(C6H16N2)], the ethane-1,2-diamine donor mol­ecule coordin­ates the metal atom in an N,N′-chelating mode, with Co—N distances of 2.136 (2) and 2.140 (3) Å. An anilide ligand connects to the CoII atom with a σ–bond, the Co—Nanilide distance being 1.931 (2) Å. The four-coordinate CoII atom demonstrates a slightly distorted tetra­hedral geometry.

Related literature

For reviews of related metal amides, see: Holm et al. (1996[Holm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239-2314.]); Kempe (2000[Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.]). For the catalytic applications of related N–silylated analido–group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998[Gibson, V. C., Kimberley, B. S., White, A. J. P., Williams, D. J. & Howard, P. (1998). Chem. Commun. pp. 313-314.]); Hill & Hitchcock (2002[Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258-3262.]); Yuan et al. (2010[Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085-2092.]). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000[Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747-758.]); Chen (2008[Chen, J. (2008). Acta Cryst. E64, m938.], 2009[Chen, J. (2009). Acta Cryst. E65, m1307.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H21N2Si)Cl(C6H16N2)]

  • Mr = 431.99

  • Monoclinic, C 2/c

  • a = 20.711 (2) Å

  • b = 7.7110 (8) Å

  • c = 29.844 (3) Å

  • β = 99.009 (2)°

  • V = 4707.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.774, Tmax = 0.840

  • 13181 measured reflections

  • 4630 independent reflections

  • 3530 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.134

  • S = 1.05

  • 4630 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal amides were important substitutes for cyclopentadienyl derivatives. They were found having valuable applications in various industrial and biological processes (Holm et al., 1996; Kempe, 2000). Group 4 metal amides supported with the N–silylated anilido ligands were active catalysts for olefin polymerization (Gibson et al., 1998; Hill & Hitchcock, 2002). Moreover, a class of monoionic N–silylated anilido–ligands bearing a pendant amino–group were paid much attentions. It was presumed that the empty d–orbitals on silicon would interact with the lone–pair electrons on the p–orbital of nitrogen center through d—pπ interaction throughout the N—Si—N motif. Analogous compounds with different metals including Zn (Schumann et al., 2000), Zr (Chen, 2009) and Fe (Chen, 2008) have been synthesized. A group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan et al., 2010). Here, the synthesis and crystal structure of a new cobalt(II) anilido–complex will be described.

The title compound was prepared by a one–pot reaction of nBuLi, N–[(diethylamino)dimethylsilyl]aniline, 1,2–bis(dimethylamino)ethane (tmeda) and CoCl2. The suitable for X–ray investigation single–crystal of the title compound was obtained by recrystallization in toluene. Its molecular structure is shown in Fig. 1. In the monomeric molecular structure of title compound, the metal Co center is coordinated by a chlorine atom, a chelating tmeda molecule and the anilido–ligand. The neutral donor molecule coordinates metal center in N,N'–chelating mode. Though the anilido–ligand has a pendant amino group, exhibting an N—Si—N chelating moiety, it connects Co(II) only with a σ–bond, Co—Nanilido being 1.931 (2)Å. It suggests the less affinity between the pendant amino–group and the metal center in comparing with tmeda. The angle of N1—Si1—N2 is 110.18 (12)°. The four–coordinate Co atom demonstrates a slightly distorted tetrahedral geometry. In the cases of N1—Si1—N1 biting metal center, the angles were constrained to less than 100°.

Related literature top

For related reviews of metal amides, see: Holm et al. (1996); Kempe (2000). For the catalytic applications of related N–silylated analido–group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill & Hitchcock (2002); Yuan et al. (2010). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Experimental top

A solution of nBuLi (1.6 M, 1.9 ml, 3.1 mmol) in hexane was slowly added into a mixture of N–[(diethylamino)dimethylsilyl]aniline (0.69 g, 3.1 mmol) and tmeda (0.36 g, 3.1 mmol) in Et2O (20 ml) at 273 K by syringe. The mixture was stirred at room temperature for two hours and then added to a stirring suspension of CoCl2 (0.41 g, 3.1 mmol) in Et2O (20 ml) at 273 K. The resulting mixture was stirred at room temperature for 8 h. Then all the volatiles were removed under vacuum. The residue was extracted with toluene (25 ml). The filtrate was concentrated to give the title compound as green crystals (yield 0.52 g, 39%). M.p.: 390–391 K. MS (EI, 70 eV): m/z 431 [M]+. Anal. Calc. for C18H37ClCoN4Si: C, 50.05; H, 8.63; N, 12.97%.Found: C, 49.20; H, 8.37; N, 12.59%.

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.96Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C, C—N and C—Si bonds. The methylene H atoms were constrained with C—H distances of 0.97Å and Uiso(H) = 1.2Ueq(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Chlorido{N-[(diethylamino)dimethylsilyl]anilido- κN}(N,N,N',N'-tetramethylethane- 1,2-diamine-κ2N,N')cobalt(II) top
Crystal data top
[Co(C12H21N2Si)Cl(C6H16N2)]F(000) = 1848
Mr = 431.99Dx = 1.219 Mg m3
Monoclinic, C2/cMelting point = 390–391 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.711 (2) ÅCell parameters from 2838 reflections
b = 7.7110 (8) Åθ = 2.6–27.3°
c = 29.844 (3) ŵ = 0.90 mm1
β = 99.009 (2)°T = 295 K
V = 4707.4 (8) Å3Block, green
Z = 80.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
4630 independent reflections
Radiation source: fine-focus sealed tube3530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2519
Tmin = 0.774, Tmax = 0.840k = 99
13181 measured reflectionsl = 3336
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.8817P]
where P = (Fo2 + 2Fc2)/3
4630 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C12H21N2Si)Cl(C6H16N2)]V = 4707.4 (8) Å3
Mr = 431.99Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.711 (2) ŵ = 0.90 mm1
b = 7.7110 (8) ÅT = 295 K
c = 29.844 (3) Å0.30 × 0.25 × 0.20 mm
β = 99.009 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4630 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3530 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.840Rint = 0.035
13181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.58 e Å3
4630 reflectionsΔρmin = 0.35 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.409198 (18)0.55218 (5)0.588284 (12)0.04797 (15)
Si10.37709 (4)0.69888 (11)0.68265 (3)0.0512 (2)
Cl10.44296 (5)0.76779 (12)0.54620 (3)0.0749 (3)
N10.35134 (11)0.6003 (3)0.63160 (8)0.0499 (6)
N20.32211 (13)0.8549 (4)0.69276 (8)0.0615 (7)
N30.48921 (13)0.3793 (4)0.60883 (10)0.0685 (7)
N40.37541 (12)0.3566 (3)0.53954 (8)0.0561 (6)
C10.28473 (13)0.5721 (4)0.61545 (10)0.0514 (7)
C20.25669 (16)0.6353 (5)0.57293 (11)0.0669 (9)
H2A0.28180.70030.55580.080*
C30.1910 (2)0.6013 (6)0.55597 (15)0.0862 (13)
H3A0.17330.64300.52750.103*
C40.15266 (19)0.5085 (6)0.5803 (2)0.0968 (16)
H4A0.10920.48590.56850.116*
C50.17918 (19)0.4492 (5)0.62229 (17)0.0860 (12)
H5A0.15320.38710.63940.103*
C60.24433 (16)0.4799 (5)0.63991 (13)0.0668 (9)
H6A0.26120.43800.66860.080*
C70.45913 (16)0.7966 (5)0.67824 (12)0.0706 (9)
H7A0.45510.87250.65250.106*
H7B0.48970.70580.67470.106*
H7C0.47450.86120.70530.106*
C80.3881 (2)0.5524 (5)0.73357 (12)0.0802 (11)
H8A0.34680.50240.73710.120*
H8B0.40480.61820.76020.120*
H8C0.41840.46170.72940.120*
C90.3114 (2)0.9125 (5)0.73794 (13)0.0838 (11)
H9A0.31720.81420.75850.101*
H9B0.26650.95150.73600.101*
C100.3563 (3)1.0566 (7)0.75764 (17)0.134 (2)
H10A0.34661.08730.78700.201*
H10B0.35011.15580.73800.201*
H10C0.40091.01830.76040.201*
C110.29799 (18)0.9767 (5)0.65620 (12)0.0687 (9)
H11A0.31440.94160.62890.082*
H11B0.31531.09120.66450.082*
C120.2238 (2)0.9869 (6)0.64612 (17)0.1019 (14)
H12A0.21101.06830.62200.153*
H12B0.20721.02420.67280.153*
H12C0.20630.87460.63720.153*
C130.4960 (2)0.3208 (6)0.65667 (14)0.1036 (15)
H13A0.53290.24430.66310.155*
H13B0.45710.26060.66140.155*
H13C0.50250.41960.67640.155*
C140.55074 (19)0.4609 (7)0.6014 (2)0.1199 (19)
H14A0.58640.38260.61060.180*
H14B0.55750.56560.61890.180*
H14C0.54860.48780.56980.180*
C150.4741 (2)0.2226 (5)0.57985 (15)0.0912 (13)
H15A0.51470.16580.57590.109*
H15B0.44880.14180.59500.109*
C160.43702 (18)0.2672 (5)0.53474 (13)0.0784 (11)
H16A0.46340.34170.51870.094*
H16B0.42730.16220.51710.094*
C170.3459 (2)0.4245 (5)0.49423 (11)0.0786 (10)
H17A0.33190.32920.47440.118*
H17B0.37790.49160.48170.118*
H17C0.30910.49640.49740.118*
C180.32867 (18)0.2356 (5)0.55483 (13)0.0760 (10)
H18A0.31530.15160.53150.114*
H18B0.29110.29860.56120.114*
H18C0.34900.17750.58180.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0462 (2)0.0454 (2)0.0532 (2)0.00471 (16)0.01055 (16)0.00056 (16)
Si10.0552 (5)0.0527 (5)0.0444 (4)0.0009 (4)0.0040 (3)0.0029 (3)
Cl10.0905 (6)0.0578 (5)0.0813 (6)0.0065 (4)0.0282 (5)0.0086 (4)
N10.0457 (12)0.0546 (14)0.0501 (13)0.0050 (11)0.0091 (10)0.0031 (11)
N20.0739 (17)0.0605 (17)0.0522 (14)0.0004 (13)0.0162 (13)0.0043 (12)
N30.0522 (15)0.0673 (18)0.0827 (19)0.0155 (13)0.0004 (14)0.0027 (15)
N40.0575 (15)0.0519 (15)0.0607 (14)0.0012 (12)0.0146 (12)0.0068 (12)
C10.0471 (15)0.0502 (17)0.0565 (16)0.0123 (13)0.0072 (13)0.0146 (13)
C20.066 (2)0.070 (2)0.0608 (18)0.0201 (17)0.0009 (16)0.0090 (16)
C30.076 (2)0.082 (3)0.089 (3)0.035 (2)0.024 (2)0.032 (2)
C40.049 (2)0.091 (3)0.143 (4)0.015 (2)0.006 (3)0.061 (3)
C50.058 (2)0.083 (3)0.120 (3)0.0094 (19)0.024 (2)0.039 (3)
C60.0573 (18)0.065 (2)0.080 (2)0.0011 (16)0.0160 (17)0.0139 (17)
C70.066 (2)0.073 (2)0.071 (2)0.0095 (18)0.0050 (17)0.0026 (18)
C80.100 (3)0.075 (3)0.061 (2)0.001 (2)0.0007 (19)0.0179 (18)
C90.110 (3)0.079 (3)0.069 (2)0.004 (2)0.033 (2)0.0084 (19)
C100.208 (7)0.112 (4)0.084 (3)0.037 (4)0.032 (4)0.038 (3)
C110.082 (2)0.057 (2)0.067 (2)0.0101 (17)0.0106 (18)0.0003 (16)
C120.091 (3)0.093 (3)0.116 (3)0.031 (3)0.000 (3)0.007 (3)
C130.114 (3)0.088 (3)0.097 (3)0.037 (3)0.019 (3)0.013 (2)
C140.048 (2)0.122 (4)0.189 (6)0.014 (2)0.018 (3)0.004 (4)
C150.079 (3)0.069 (3)0.123 (4)0.032 (2)0.009 (2)0.016 (2)
C160.073 (2)0.075 (3)0.091 (3)0.0126 (19)0.024 (2)0.021 (2)
C170.096 (3)0.082 (3)0.0575 (19)0.002 (2)0.0097 (18)0.0130 (18)
C180.085 (2)0.060 (2)0.086 (2)0.0138 (18)0.022 (2)0.0144 (18)
Geometric parameters (Å, º) top
Co1—N11.931 (2)C8—H8B0.9600
Co1—N42.136 (2)C8—H8C0.9600
Co1—N32.140 (3)C9—C101.508 (6)
Co1—Cl12.2595 (9)C9—H9A0.9700
Si1—N11.711 (2)C9—H9B0.9700
Si1—N21.715 (3)C10—H10A0.9600
Si1—C81.878 (3)C10—H10B0.9600
Si1—C71.882 (3)C10—H10C0.9600
N1—C11.405 (4)C11—C121.521 (5)
N2—C111.467 (4)C11—H11A0.9700
N2—C91.469 (4)C11—H11B0.9700
N3—C141.469 (5)C12—H12A0.9600
N3—C131.483 (5)C12—H12B0.9600
N3—C151.491 (5)C12—H12C0.9600
N4—C181.468 (4)C13—H13A0.9600
N4—C161.477 (4)C13—H13B0.9600
N4—C171.489 (4)C13—H13C0.9600
C1—C61.389 (5)C14—H14A0.9600
C1—C21.398 (4)C14—H14B0.9600
C2—C31.399 (5)C14—H14C0.9600
C2—H2A0.9300C15—C161.482 (5)
C3—C41.360 (7)C15—H15A0.9700
C3—H3A0.9300C15—H15B0.9700
C4—C51.367 (7)C16—H16A0.9700
C4—H4A0.9300C16—H16B0.9700
C5—C61.390 (5)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—H6A0.9300C17—H17C0.9600
C7—H7A0.9600C18—H18A0.9600
C7—H7B0.9600C18—H18B0.9600
C7—H7C0.9600C18—H18C0.9600
C8—H8A0.9600
N1—Co1—N4114.84 (10)N2—C9—C10114.1 (3)
N1—Co1—N3117.50 (11)N2—C9—H9A108.7
N4—Co1—N384.94 (10)C10—C9—H9A108.7
N1—Co1—Cl1120.61 (8)N2—C9—H9B108.7
N4—Co1—Cl1103.76 (7)C10—C9—H9B108.7
N3—Co1—Cl1108.92 (9)H9A—C9—H9B107.6
N1—Si1—N2110.18 (12)C9—C10—H10A109.5
N1—Si1—C8115.75 (16)C9—C10—H10B109.5
N2—Si1—C8106.22 (16)H10A—C10—H10B109.5
N1—Si1—C7105.93 (14)C9—C10—H10C109.5
N2—Si1—C7111.30 (16)H10A—C10—H10C109.5
C8—Si1—C7107.49 (18)H10B—C10—H10C109.5
C1—N1—Si1121.77 (18)N2—C11—C12113.3 (3)
C1—N1—Co1114.80 (18)N2—C11—H11A108.9
Si1—N1—Co1122.79 (13)C12—C11—H11A108.9
C11—N2—C9114.0 (3)N2—C11—H11B108.9
C11—N2—Si1118.4 (2)C12—C11—H11B108.9
C9—N2—Si1125.0 (3)H11A—C11—H11B107.7
C14—N3—C13108.7 (4)C11—C12—H12A109.5
C14—N3—C15111.6 (3)C11—C12—H12B109.5
C13—N3—C15107.0 (3)H12A—C12—H12B109.5
C14—N3—Co1110.0 (3)C11—C12—H12C109.5
C13—N3—Co1114.7 (2)H12A—C12—H12C109.5
C15—N3—Co1104.9 (2)H12B—C12—H12C109.5
C18—N4—C16110.8 (3)N3—C13—H13A109.5
C18—N4—C17108.0 (3)N3—C13—H13B109.5
C16—N4—C17108.3 (3)H13A—C13—H13B109.5
C18—N4—Co1113.51 (19)N3—C13—H13C109.5
C16—N4—Co1101.5 (2)H13A—C13—H13C109.5
C17—N4—Co1114.5 (2)H13B—C13—H13C109.5
C6—C1—C2117.2 (3)N3—C14—H14A109.5
C6—C1—N1122.6 (3)N3—C14—H14B109.5
C2—C1—N1120.2 (3)H14A—C14—H14B109.5
C1—C2—C3120.3 (4)N3—C14—H14C109.5
C1—C2—H2A119.8H14A—C14—H14C109.5
C3—C2—H2A119.8H14B—C14—H14C109.5
C4—C3—C2121.4 (4)C16—C15—N3111.7 (3)
C4—C3—H3A119.3C16—C15—H15A109.3
C2—C3—H3A119.3N3—C15—H15A109.3
C3—C4—C5118.7 (4)C16—C15—H15B109.3
C3—C4—H4A120.6N3—C15—H15B109.3
C5—C4—H4A120.6H15A—C15—H15B107.9
C4—C5—C6121.1 (4)N4—C16—C15110.7 (3)
C4—C5—H5A119.4N4—C16—H16A109.5
C6—C5—H5A119.4C15—C16—H16A109.5
C1—C6—C5121.2 (4)N4—C16—H16B109.5
C1—C6—H6A119.4C15—C16—H16B109.5
C5—C6—H6A119.4H16A—C16—H16B108.1
Si1—C7—H7A109.5N4—C17—H17A109.5
Si1—C7—H7B109.5N4—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
Si1—C7—H7C109.5N4—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
Si1—C8—H8A109.5N4—C18—H18A109.5
Si1—C8—H8B109.5N4—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
Si1—C8—H8C109.5N4—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
N2—Si1—N1—C134.7 (3)N1—Co1—N4—C16142.6 (2)
C8—Si1—N1—C185.8 (3)N3—Co1—N4—C1624.6 (2)
C7—Si1—N1—C1155.2 (2)Cl1—Co1—N4—C1683.7 (2)
N2—Si1—N1—Co1135.65 (16)N1—Co1—N4—C17101.0 (2)
C8—Si1—N1—Co1103.8 (2)N3—Co1—N4—C17141.0 (2)
C7—Si1—N1—Co115.2 (2)Cl1—Co1—N4—C1732.7 (2)
N4—Co1—N1—C129.3 (2)Si1—N1—C1—C656.6 (4)
N3—Co1—N1—C1126.8 (2)Co1—N1—C1—C6132.4 (2)
Cl1—Co1—N1—C196.0 (2)Si1—N1—C1—C2124.4 (3)
N4—Co1—N1—Si1159.74 (14)Co1—N1—C1—C246.6 (3)
N3—Co1—N1—Si162.2 (2)C6—C1—C2—C31.7 (4)
Cl1—Co1—N1—Si174.92 (17)N1—C1—C2—C3177.3 (3)
N1—Si1—N2—C1146.8 (3)C1—C2—C3—C40.8 (5)
C8—Si1—N2—C11172.9 (3)C2—C3—C4—C50.5 (6)
C7—Si1—N2—C1170.4 (3)C3—C4—C5—C61.0 (6)
N1—Si1—N2—C9152.6 (3)C2—C1—C6—C51.3 (5)
C8—Si1—N2—C926.5 (3)N1—C1—C6—C5177.7 (3)
C7—Si1—N2—C990.2 (3)C4—C5—C6—C10.1 (5)
N1—Co1—N3—C14127.3 (3)C11—N2—C9—C1074.0 (5)
N4—Co1—N3—C14117.3 (3)Si1—N2—C9—C1087.3 (5)
Cl1—Co1—N3—C1414.5 (3)C9—N2—C11—C1269.9 (4)
N1—Co1—N3—C134.4 (3)Si1—N2—C11—C12127.4 (3)
N4—Co1—N3—C13119.8 (3)C14—N3—C15—C1687.8 (4)
Cl1—Co1—N3—C13137.4 (3)C13—N3—C15—C16153.4 (3)
N1—Co1—N3—C15112.6 (3)Co1—N3—C15—C1631.2 (4)
N4—Co1—N3—C152.8 (3)C18—N4—C16—C1571.2 (4)
Cl1—Co1—N3—C15105.6 (2)C17—N4—C16—C15170.5 (3)
N1—Co1—N4—C1823.7 (3)Co1—N4—C16—C1549.7 (4)
N3—Co1—N4—C1894.3 (2)N3—C15—C16—N458.0 (5)
Cl1—Co1—N4—C18157.4 (2)

Experimental details

Crystal data
Chemical formula[Co(C12H21N2Si)Cl(C6H16N2)]
Mr431.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)20.711 (2), 7.7110 (8), 29.844 (3)
β (°) 99.009 (2)
V3)4707.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.774, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
13181, 4630, 3530
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.05
No. of reflections4630
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. (2008). Acta Cryst. E64, m938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, J. (2009). Acta Cryst. E65, m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGibson, V. C., Kimberley, B. S., White, A. J. P., Williams, D. J. & Howard, P. (1998). Chem. Commun. pp. 313–314.  Web of Science CSD CrossRef Google Scholar
First citationHill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258–3262.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolm, R. H., Kenneppohl, P. & Solomon, E. I. (1996). Chem. Rev. 96, 2239–2314.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.  CrossRef CAS Google Scholar
First citationSchumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085–2092.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds