organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-(4-fluoro­phen­yl)-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 January 2011; accepted 20 January 2011; online 26 January 2011)

In the title compound, C20H12ClFO2S, the O atom and the phenyl ring of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the phenyl ring is almost perpendicular to this plane [82.44 (5)°]. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 20.83 (6)°.

Related literature

For the biological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For our previous structural studies of related 5-halo-2-phenyl-3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1809.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1958.],c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009c). Acta Cryst. E65, o2609.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12ClFO2S

  • Mr = 370.81

  • Triclinic, [P \overline 1]

  • a = 8.2551 (2) Å

  • b = 9.4707 (3) Å

  • c = 11.4914 (3) Å

  • α = 71.403 (2)°

  • β = 81.707 (2)°

  • γ = 71.909 (2)°

  • V = 808.39 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.17 × 0.15 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.935, Tmax = 0.978

  • 14335 measured reflections

  • 3722 independent reflections

  • 2943 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 3722 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds having a benzofuran ring system have attracted much attention owing to their pharmacological properties such as antifungal, antimicrobial, antitumor and antiviral activities (Aslam et al., 2006; Galal et al., 2009; Khan et al., 2005). These compounds occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As part of our ongoing program of the substituent effect on the solid state structures of 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b,c), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (1) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring makes a dihedral angle of 82.44 (5)° with the mean plane of the benzofuran fragment. The dihedral angle formed by the mean plane of the benzofuran fragment and the 4-fluorophenyl ring is 20.83 (6)°.

Related literature top

For the biological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For our previous structural studies of related 5-halo-2-phenyl-3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b,c).

Experimental top

77% 3-chloroperoxybenzoic acid (179 mg, 0.8 mmol) was added in small portions to a stirred solution of 5-chloro-2-(4-fluorophenyl)-3-phenylsulfanyl-1-benzofuran (284 mg, 0.8 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl ace tate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 480-481 K; Rf = 0.68 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl H atoms. Uiso(H) = 1.2Ueq(C) for aryl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
5-Chloro-2-(4-fluorophenyl)-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C20H12ClFO2SZ = 2
Mr = 370.81F(000) = 380
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2551 (2) ÅCell parameters from 5406 reflections
b = 9.4707 (3) Åθ = 2.6–27.3°
c = 11.4914 (3) ŵ = 0.39 mm1
α = 71.403 (2)°T = 173 K
β = 81.707 (2)°Block, colourless
γ = 71.909 (2)°0.17 × 0.15 × 0.06 mm
V = 808.39 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3722 independent reflections
Radiation source: rotating anode2943 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.7°, θmin = 1.9°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.935, Tmax = 0.978l = 1514
14335 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.1974P]
where P = (Fo2 + 2Fc2)/3
3722 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H12ClFO2Sγ = 71.909 (2)°
Mr = 370.81V = 808.39 (4) Å3
Triclinic, P1Z = 2
a = 8.2551 (2) ÅMo Kα radiation
b = 9.4707 (3) ŵ = 0.39 mm1
c = 11.4914 (3) ÅT = 173 K
α = 71.403 (2)°0.17 × 0.15 × 0.06 mm
β = 81.707 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3722 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2943 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.978Rint = 0.031
14335 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.37 e Å3
3722 reflectionsΔρmin = 0.35 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03501 (6)0.73080 (5)0.38102 (4)0.04197 (14)
S10.62029 (5)0.60069 (5)0.86187 (4)0.03045 (12)
F10.03640 (16)1.10463 (14)1.14539 (11)0.0571 (3)
O10.52873 (15)1.05149 (12)0.68603 (10)0.0308 (3)
O20.79096 (15)0.50153 (14)0.83462 (13)0.0435 (3)
C10.6061 (2)0.79137 (18)0.76450 (15)0.0268 (3)
C20.6984 (2)0.82981 (18)0.64745 (15)0.0273 (3)
C30.8176 (2)0.74611 (19)0.57773 (15)0.0293 (4)
H30.85420.63580.60370.035*
C40.8803 (2)0.8308 (2)0.46888 (16)0.0314 (4)
C50.8269 (2)0.9928 (2)0.42678 (16)0.0352 (4)
H50.87341.04590.35100.042*
C60.7069 (2)1.0758 (2)0.49497 (16)0.0338 (4)
H60.66791.18600.46790.041*
C70.6461 (2)0.99115 (18)0.60439 (15)0.0279 (3)
C80.5071 (2)0.92768 (18)0.78381 (15)0.0278 (3)
C90.3831 (2)0.97013 (19)0.88009 (15)0.0283 (4)
C100.2638 (2)1.1155 (2)0.85298 (17)0.0378 (4)
H100.26321.18420.77200.045*
C110.1463 (2)1.1617 (2)0.94148 (18)0.0434 (5)
H110.06511.26110.92270.052*
C120.1501 (2)1.0603 (2)1.05693 (17)0.0388 (4)
C130.2645 (2)0.9155 (2)1.08844 (17)0.0391 (4)
H130.26340.84791.16970.047*
C140.3814 (2)0.8707 (2)0.99897 (16)0.0347 (4)
H140.46160.77081.01880.042*
C150.4679 (2)0.56305 (17)0.78808 (15)0.0274 (3)
C160.2970 (2)0.6120 (2)0.82334 (17)0.0340 (4)
H160.26210.66600.88370.041*
C170.1781 (2)0.5810 (2)0.7692 (2)0.0449 (5)
H170.06020.61430.79190.054*
C180.2304 (3)0.5017 (2)0.6824 (2)0.0478 (5)
H180.14810.48090.64520.057*
C190.4007 (3)0.4522 (2)0.64904 (19)0.0470 (5)
H190.43550.39700.58950.056*
C200.5211 (2)0.48253 (19)0.70198 (17)0.0371 (4)
H200.63890.44850.67940.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0389 (3)0.0426 (3)0.0377 (3)0.0065 (2)0.01078 (19)0.0129 (2)
S10.0269 (2)0.0251 (2)0.0310 (2)0.00523 (17)0.00234 (17)0.00144 (17)
F10.0572 (8)0.0530 (7)0.0476 (7)0.0058 (6)0.0243 (6)0.0174 (6)
O10.0347 (6)0.0239 (6)0.0285 (6)0.0075 (5)0.0045 (5)0.0038 (5)
O20.0259 (6)0.0327 (7)0.0566 (9)0.0006 (5)0.0028 (6)0.0010 (6)
C10.0249 (8)0.0252 (8)0.0264 (8)0.0072 (6)0.0010 (6)0.0022 (6)
C20.0248 (8)0.0263 (8)0.0282 (8)0.0087 (7)0.0020 (6)0.0027 (7)
C30.0259 (8)0.0259 (8)0.0325 (9)0.0060 (7)0.0008 (7)0.0053 (7)
C40.0275 (8)0.0349 (9)0.0301 (9)0.0072 (7)0.0023 (7)0.0101 (7)
C50.0367 (9)0.0359 (9)0.0288 (9)0.0132 (8)0.0055 (7)0.0040 (7)
C60.0378 (10)0.0268 (8)0.0314 (9)0.0097 (7)0.0020 (7)0.0023 (7)
C70.0281 (8)0.0253 (8)0.0279 (8)0.0072 (7)0.0006 (7)0.0061 (7)
C80.0274 (8)0.0262 (8)0.0261 (8)0.0096 (7)0.0009 (7)0.0010 (6)
C90.0263 (8)0.0285 (8)0.0296 (9)0.0094 (7)0.0009 (7)0.0074 (7)
C100.0354 (9)0.0332 (9)0.0343 (10)0.0046 (8)0.0026 (8)0.0025 (8)
C110.0384 (10)0.0351 (10)0.0450 (11)0.0021 (8)0.0072 (9)0.0078 (9)
C120.0358 (10)0.0411 (10)0.0389 (10)0.0118 (8)0.0117 (8)0.0160 (8)
C130.0444 (11)0.0379 (10)0.0296 (9)0.0132 (8)0.0057 (8)0.0045 (8)
C140.0364 (9)0.0284 (9)0.0329 (9)0.0055 (7)0.0013 (7)0.0051 (7)
C150.0277 (8)0.0194 (7)0.0286 (8)0.0054 (6)0.0018 (7)0.0008 (6)
C160.0289 (9)0.0309 (9)0.0382 (10)0.0064 (7)0.0030 (7)0.0089 (8)
C170.0298 (9)0.0388 (11)0.0615 (13)0.0084 (8)0.0043 (9)0.0089 (10)
C180.0532 (13)0.0326 (10)0.0604 (13)0.0146 (9)0.0191 (11)0.0078 (9)
C190.0673 (14)0.0312 (10)0.0445 (11)0.0142 (10)0.0020 (10)0.0136 (9)
C200.0381 (10)0.0257 (9)0.0415 (10)0.0064 (8)0.0075 (8)0.0084 (8)
Geometric parameters (Å, º) top
Cl1—C41.7422 (17)C9—C101.391 (2)
S1—O21.4845 (13)C10—C111.379 (3)
S1—C11.7732 (16)C10—H100.9500
S1—C151.7911 (17)C11—C121.365 (3)
F1—C121.358 (2)C11—H110.9500
O1—C71.3717 (19)C12—C131.371 (3)
O1—C81.3788 (19)C13—C141.381 (2)
C1—C81.363 (2)C13—H130.9500
C1—C21.445 (2)C14—H140.9500
C2—C31.390 (2)C15—C201.379 (2)
C2—C71.391 (2)C15—C161.385 (2)
C3—C41.381 (2)C16—C171.381 (3)
C3—H30.9500C16—H160.9500
C4—C51.396 (2)C17—C181.379 (3)
C5—C61.378 (2)C17—H170.9500
C5—H50.9500C18—C191.376 (3)
C6—C71.379 (2)C18—H180.9500
C6—H60.9500C19—C201.380 (3)
C8—C91.461 (2)C19—H190.9500
C9—C141.391 (2)C20—H200.9500
O2—S1—C1106.64 (7)C11—C10—H10119.4
O2—S1—C15107.22 (8)C9—C10—H10119.4
C1—S1—C1596.93 (7)C12—C11—C10118.01 (17)
C7—O1—C8106.94 (12)C12—C11—H11121.0
C8—C1—C2107.22 (14)C10—C11—H11121.0
C8—C1—S1127.42 (13)F1—C12—C11118.74 (17)
C2—C1—S1125.36 (12)F1—C12—C13118.13 (17)
C3—C2—C7119.50 (15)C11—C12—C13123.13 (17)
C3—C2—C1135.44 (15)C12—C13—C14118.27 (17)
C7—C2—C1105.05 (14)C12—C13—H13120.9
C4—C3—C2116.85 (15)C14—C13—H13120.9
C4—C3—H3121.6C13—C14—C9120.76 (16)
C2—C3—H3121.6C13—C14—H14119.6
C3—C4—C5123.08 (16)C9—C14—H14119.6
C3—C4—Cl1118.37 (13)C20—C15—C16121.39 (17)
C5—C4—Cl1118.54 (13)C20—C15—S1120.46 (13)
C6—C5—C4120.11 (16)C16—C15—S1118.11 (13)
C6—C5—H5119.9C17—C16—C15118.85 (17)
C4—C5—H5119.9C17—C16—H16120.6
C5—C6—C7116.72 (15)C15—C16—H16120.6
C5—C6—H6121.6C18—C17—C16120.02 (19)
C7—C6—H6121.6C18—C17—H17120.0
O1—C7—C6125.76 (14)C16—C17—H17120.0
O1—C7—C2110.51 (14)C19—C18—C17120.58 (19)
C6—C7—C2123.72 (16)C19—C18—H18119.7
C1—C8—O1110.27 (14)C17—C18—H18119.7
C1—C8—C9135.02 (15)C18—C19—C20120.14 (19)
O1—C8—C9114.67 (14)C18—C19—H19119.9
C14—C9—C10118.60 (16)C20—C19—H19119.9
C14—C9—C8122.21 (15)C15—C20—C19119.01 (18)
C10—C9—C8119.19 (15)C15—C20—H20120.5
C11—C10—C9121.23 (17)C19—C20—H20120.5
O2—S1—C1—C8154.59 (15)C7—O1—C8—C9179.06 (13)
C15—S1—C1—C895.06 (16)C1—C8—C9—C1422.4 (3)
O2—S1—C1—C226.14 (16)O1—C8—C9—C14160.06 (15)
C15—S1—C1—C284.21 (15)C1—C8—C9—C10158.49 (19)
C8—C1—C2—C3179.31 (18)O1—C8—C9—C1019.1 (2)
S1—C1—C2—C31.3 (3)C14—C9—C10—C110.4 (3)
C8—C1—C2—C70.04 (18)C8—C9—C10—C11178.78 (17)
S1—C1—C2—C7179.44 (12)C9—C10—C11—C120.1 (3)
C7—C2—C3—C41.3 (2)C10—C11—C12—F1179.39 (17)
C1—C2—C3—C4177.90 (17)C10—C11—C12—C130.1 (3)
C2—C3—C4—C51.2 (3)F1—C12—C13—C14179.41 (16)
C2—C3—C4—Cl1177.97 (12)C11—C12—C13—C140.1 (3)
C3—C4—C5—C60.3 (3)C12—C13—C14—C90.1 (3)
Cl1—C4—C5—C6178.87 (14)C10—C9—C14—C130.4 (3)
C4—C5—C6—C70.5 (3)C8—C9—C14—C13178.74 (16)
C8—O1—C7—C6178.57 (16)O2—S1—C15—C2013.01 (16)
C8—O1—C7—C20.94 (18)C1—S1—C15—C2096.85 (14)
C5—C6—C7—O1179.02 (16)O2—S1—C15—C16164.67 (12)
C5—C6—C7—C20.4 (3)C1—S1—C15—C1685.46 (14)
C3—C2—C7—O1179.98 (14)C20—C15—C16—C171.0 (2)
C1—C2—C7—O10.61 (18)S1—C15—C16—C17178.63 (14)
C3—C2—C7—C60.5 (3)C15—C16—C17—C180.4 (3)
C1—C2—C7—C6178.91 (16)C16—C17—C18—C190.3 (3)
C2—C1—C8—O10.54 (18)C17—C18—C19—C200.4 (3)
S1—C1—C8—O1178.84 (11)C16—C15—C20—C190.8 (3)
C2—C1—C8—C9178.16 (17)S1—C15—C20—C19178.43 (14)
S1—C1—C8—C91.2 (3)C18—C19—C20—C150.1 (3)
C7—O1—C8—C10.91 (18)

Experimental details

Crystal data
Chemical formulaC20H12ClFO2S
Mr370.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.2551 (2), 9.4707 (3), 11.4914 (3)
α, β, γ (°)71.403 (2), 81.707 (2), 71.909 (2)
V3)808.39 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.17 × 0.15 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.935, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
14335, 3722, 2943
Rint0.031
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections3722
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2. SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o1809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o1958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009c). Acta Cryst. E65, o2609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds