organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o515-o516

2-[(E)-2-(4-Eth­­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate monohydrate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

(Received 5 December 2010; accepted 21 December 2010; online 29 January 2011)

In the title compound, C16H18NO+·C6H4ClO3S·H2O, the cation exists in an E configuration with respect to the ethenyl bond and is slightly twisted with a dihedral angle of 9.85 (5)° between the pyridinium and the benzene rings. The anion is inclined to the cation with the dihedral angles between the benzene ring of the anion and the pyridinium and benzene rings of the cation of 78.33 (6) and 68.73 (6)°, respectively. In the crystal, the cations and anions are arranged alternately into head-to-head ribbons along the c axis, with the cationic ribbons stacked along the b axis. The crystal is consolidated by O—H⋯O hydrogen bonds, weak C—H⋯O and C—H⋯π inter­actions. ππ inter­actions with centroid–centroid distances of 3.6111 (7) and 3.6466 (7) Å are also observed.

Related literature

For background to and the biological activity of quaternary ammonium compounds, see: Armitage et al. (1929[Armitage, G., Gordon, J., Cohen, J. B. & Ellingworth, S. (1929). Lancet, 2, 968-971.]); Browning et al. (1922[Browning, C. H., Cohen, J. B. & Gulbransen, R. (1922). Br. Med. J. 1, 514-515.]); Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Chantrapromma et al. (2010[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975-o1976.]); Wainwright & Kristiansen (2003[Wainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Ag. 22, 479-486.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2010). Acta Cryst. E66, o305-o306.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18NO+·C6H4ClO3S·H2O

  • Mr = 449.94

  • Monoclinic, P 21 /c

  • a = 9.7568 (5) Å

  • b = 6.5284 (3) Å

  • c = 34.6568 (15) Å

  • β = 104.784 (1)°

  • V = 2134.43 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.45 × 0.32 × 0.13 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.962

  • 30082 measured reflections

  • 7670 independent reflections

  • 6483 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.141

  • S = 1.11

  • 7670 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C8–C13 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O4i 0.91 1.95 2.8148 (16) 158
O1W—H2W1⋯O2 0.82 2.11 2.9265 (14) 173
C1—H1A⋯O1Wii 0.93 2.23 3.1544 (17) 176
C2—H2A⋯O1Wiii 0.93 2.44 3.2200 (17) 142
C4—H4A⋯O2i 0.93 2.50 3.3768 (17) 158
C6—H6A⋯O3iv 0.93 2.56 3.4308 (17) 155
C13—H13A⋯O3iv 0.93 2.51 3.3859 (17) 157
C16—H16A⋯O4v 0.96 2.57 3.3766 (18) 142
C16—H16B⋯O3iv 0.96 2.50 3.1307 (17) 124
C22—H22A⋯O4 0.93 2.56 2.9246 (17) 104
C9—H9ACg3i 0.93 2.90 3.5924 (13) 132
C12—H12ACg3iv 0.93 2.96 3.7431 (13) 143
C15—H15CCg2vi 0.96 2.87 3.6918 (14) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) -x+2, -y+1, -z+1; (v) -x+2, -y+2, -z+1; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various quaternary ammonium compounds, such as styryl pyridinium derivatives, exhibit antiseptic properties (Armitage et al., 1929; Browning et al., 1922; Wainwright & Kristiansen, 2003). From our previous investigation on bioactive styryl pyridinium compounds, we found that dimethylaminostyryl pyridinium 4-substituted-benzenesulfonates possess high activity against both susceptible and methicillin-resistant Staphylococcus aureus (MRSA) (Chanawanno et al., 2010). In continuing our on-going research on biologically-active quaternary ammonium compounds (Chanawanno et al., 2010; Chantrapromma et al., 2010), the title pyridinium derivative (I) was synthesized. Our results show that (I) is moderately active against the MRSA with the MIC value = 75 µg/ml, whereas it is inactive against susceptible Staphylococcus aureus. Herein we report the crystal structure of (I).

In the title compound (Fig. 1), the cation exists in an E configuration with respect to the ethenyl bond [torsion angle C5—C6—C7—C8 = 179.53 (11)°]. The cation is slightly twisted with a dihedral angle between the N1/C1–C5 pyridinium and C8–C13 benzene rings of 9.85 (5)°. The ethoxy group is slightly twisted from the mean plane of the attached benzene ring with the torsion angle C11–O1–C14–C15 = -174.84 (10)°. The 4-chlorobenzenesulfonate anion is inclined to the cation as indicated by the dihedral angles between the benzene ring of the anion and the pyridinium and benzene rings of the cation of 78.33 (6) and 68.73 (6)°, respectively. The water molecule forms an O—H···O hydrogen bond with the anion (Table 1). Bond distances in (I) have normal values (Allen et al., 1987) and are comparable to those observed in a related structure (Fun et al., 2010).

In the crystal (Fig. 2), cations and anions are arranged alternatively into head-to-head ribbons along the c axis, with the cationic ribbons stacked along the b axis. The water molecules are linked to the anions by O—H···O hydrogen bonds and to the cations by C—H···O weak interactions. The crystal is consolidated by O—H···O hydrogen bonds, weak C—H···O and C—H···π interactions (Table 1). ππ interactions with distances Cg1···Cg1 = 3.6466 (7) Å (symmetry code; 2-x, 2-y, 1-z) and Cg1···Cg2 = 3.6466 (7) Å (symmetry code; x, 1+y, z) are observed (Cg1, Cg2 and Cg3 are the centroids of N1/C1–C5, C8–C13 and C17–C22 rings, respectively).

Related literature top

For background to and the biological activity of quaternary ammonium compounds, see: Armitage et al. (1929); Browning et al. (1922); Chanawanno et al. (2010); Chantrapromma et al. (2010); Wainwright & Kristiansen (2003). For related structures, see: Fun et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared according to our reported procedure (Chanawanno et al., 2010). Yellow block-shaped single crystal of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks. M. p. 458-459 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O-H) = 0.82 and 0.91 Å, d(C-H) = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.60 Å from atom C4 and the deepest hole is located at 0.53 Å from atom S1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond was shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. Hydrogen bonds were shown as dashed lines.
2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate monohydrate top
Crystal data top
C16H18NO+·C6H4ClO3S·H2OF(000) = 944
Mr = 449.94Dx = 1.400 Mg m3
Monoclinic, P21/cMelting point = 458–459 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.7568 (5) ÅCell parameters from 7670 reflections
b = 6.5284 (3) Åθ = 2.7–32.5°
c = 34.6568 (15) ŵ = 0.31 mm1
β = 104.784 (1)°T = 100 K
V = 2134.43 (17) Å3Block, yellow
Z = 40.45 × 0.32 × 0.13 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7670 independent reflections
Radiation source: sealed tube6483 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.873, Tmax = 0.962k = 99
30082 measured reflectionsl = 5252
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0825P)2 + 0.5425P]
where P = (Fo2 + 2Fc2)/3
7670 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C16H18NO+·C6H4ClO3S·H2OV = 2134.43 (17) Å3
Mr = 449.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7568 (5) ŵ = 0.31 mm1
b = 6.5284 (3) ÅT = 100 K
c = 34.6568 (15) Å0.45 × 0.32 × 0.13 mm
β = 104.784 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7670 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6483 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.962Rint = 0.036
30082 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.11Δρmax = 0.54 e Å3
7670 reflectionsΔρmin = 0.60 e Å3
273 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.61088 (4)1.16478 (6)0.733973 (10)0.02817 (10)
S10.57932 (3)0.55765 (5)0.591654 (9)0.01591 (8)
O10.90170 (9)0.18011 (14)0.30285 (3)0.01455 (17)
O20.44294 (10)0.45645 (16)0.58702 (3)0.02007 (19)
O30.69824 (11)0.41862 (18)0.60401 (3)0.0256 (2)
O40.58242 (13)0.68270 (18)0.55696 (3)0.0281 (2)
N11.05293 (11)0.97676 (16)0.44598 (3)0.01308 (18)
C11.03405 (14)1.15606 (19)0.46387 (3)0.0154 (2)
H1A1.11251.23640.47550.018*
C20.90154 (14)1.2210 (2)0.46519 (3)0.0167 (2)
H2A0.88951.34450.47730.020*
C30.78515 (14)1.0976 (2)0.44795 (4)0.0172 (2)
H3A0.69431.13770.44860.021*
C40.80564 (13)0.9157 (2)0.42988 (4)0.0156 (2)
H4A0.72800.83330.41860.019*
C50.94160 (12)0.85327 (18)0.42827 (3)0.0125 (2)
C60.96936 (13)0.66430 (18)0.40911 (3)0.0135 (2)
H6A1.06270.62050.41320.016*
C70.86537 (13)0.55033 (19)0.38569 (3)0.0141 (2)
H7A0.77300.59720.38230.017*
C80.88342 (12)0.36117 (18)0.36522 (3)0.01223 (19)
C90.76163 (12)0.2621 (2)0.34228 (3)0.0150 (2)
H9A0.67290.31890.34060.018*
C100.77130 (12)0.0822 (2)0.32213 (4)0.0148 (2)
H10A0.68940.01860.30730.018*
C110.90392 (12)0.00427 (18)0.32398 (3)0.01176 (19)
C121.02673 (12)0.09169 (19)0.34644 (3)0.0131 (2)
H12A1.11530.03510.34780.016*
C131.01532 (12)0.27234 (19)0.36666 (3)0.0131 (2)
H13A1.09730.33570.38150.016*
C141.03411 (12)0.28231 (19)0.30496 (3)0.0143 (2)
H14A1.07520.33210.33180.017*
H14B1.10080.18930.29770.017*
C151.00046 (14)0.4587 (2)0.27591 (4)0.0183 (2)
H15A1.08600.53170.27610.028*
H15B0.95930.40710.24960.028*
H15C0.93470.54950.28360.028*
C161.20000 (13)0.9193 (2)0.44648 (4)0.0182 (2)
H16A1.26351.02620.45900.027*
H16B1.20730.90000.41960.027*
H16C1.22470.79420.46120.027*
C170.59473 (12)0.7331 (2)0.63174 (3)0.0141 (2)
C180.63847 (13)0.6617 (2)0.67086 (4)0.0172 (2)
H18A0.66370.52500.67570.021*
C190.64444 (13)0.7944 (2)0.70261 (4)0.0186 (2)
H19A0.67390.74800.72880.022*
C200.60549 (13)0.9978 (2)0.69447 (4)0.0178 (2)
C210.56337 (14)1.0721 (2)0.65572 (4)0.0183 (2)
H21A0.53851.20900.65090.022*
C220.55904 (13)0.9387 (2)0.62424 (4)0.0168 (2)
H22A0.53230.98650.59810.020*
O1W0.28876 (11)0.44954 (18)0.50268 (3)0.0249 (2)
H1W10.34250.38480.48860.037*
H2W10.33820.44990.52570.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03033 (18)0.0307 (2)0.02448 (16)0.00245 (14)0.00880 (13)0.01471 (13)
S10.01448 (13)0.01772 (15)0.01687 (14)0.00511 (10)0.00646 (10)0.00574 (10)
O10.0143 (4)0.0133 (4)0.0160 (4)0.0007 (3)0.0037 (3)0.0052 (3)
O20.0146 (4)0.0231 (5)0.0224 (4)0.0076 (3)0.0045 (3)0.0059 (4)
O30.0161 (4)0.0260 (5)0.0345 (5)0.0022 (4)0.0063 (4)0.0133 (4)
O40.0444 (6)0.0246 (5)0.0195 (4)0.0121 (5)0.0161 (4)0.0056 (4)
N10.0164 (4)0.0110 (4)0.0123 (4)0.0023 (4)0.0045 (3)0.0013 (3)
C10.0217 (5)0.0119 (5)0.0127 (4)0.0028 (4)0.0049 (4)0.0019 (4)
C20.0238 (6)0.0132 (5)0.0136 (5)0.0003 (4)0.0057 (4)0.0017 (4)
C30.0198 (5)0.0167 (5)0.0152 (5)0.0019 (4)0.0049 (4)0.0024 (4)
C40.0158 (5)0.0155 (5)0.0157 (5)0.0008 (4)0.0043 (4)0.0031 (4)
C50.0158 (5)0.0114 (5)0.0109 (4)0.0016 (4)0.0044 (4)0.0008 (4)
C60.0158 (5)0.0114 (5)0.0138 (4)0.0014 (4)0.0049 (4)0.0018 (4)
C70.0153 (5)0.0135 (5)0.0146 (5)0.0012 (4)0.0056 (4)0.0022 (4)
C80.0143 (4)0.0115 (5)0.0116 (4)0.0016 (4)0.0045 (3)0.0017 (4)
C90.0126 (4)0.0167 (5)0.0165 (5)0.0007 (4)0.0050 (4)0.0044 (4)
C100.0122 (4)0.0164 (5)0.0156 (5)0.0026 (4)0.0032 (4)0.0042 (4)
C110.0139 (4)0.0111 (5)0.0105 (4)0.0013 (4)0.0036 (3)0.0016 (4)
C120.0126 (4)0.0128 (5)0.0138 (4)0.0005 (4)0.0031 (4)0.0018 (4)
C130.0133 (4)0.0124 (5)0.0132 (4)0.0024 (4)0.0025 (4)0.0020 (4)
C140.0162 (5)0.0125 (5)0.0143 (4)0.0021 (4)0.0042 (4)0.0008 (4)
C150.0225 (6)0.0149 (5)0.0172 (5)0.0032 (4)0.0043 (4)0.0032 (4)
C160.0156 (5)0.0181 (6)0.0216 (5)0.0030 (4)0.0057 (4)0.0040 (4)
C170.0114 (4)0.0163 (5)0.0153 (5)0.0029 (4)0.0046 (4)0.0035 (4)
C180.0157 (5)0.0174 (6)0.0180 (5)0.0009 (4)0.0032 (4)0.0019 (4)
C190.0169 (5)0.0232 (6)0.0151 (5)0.0020 (5)0.0030 (4)0.0022 (4)
C200.0149 (5)0.0206 (6)0.0184 (5)0.0027 (4)0.0052 (4)0.0079 (5)
C210.0174 (5)0.0155 (6)0.0220 (5)0.0015 (4)0.0051 (4)0.0038 (4)
C220.0158 (5)0.0179 (6)0.0169 (5)0.0028 (4)0.0045 (4)0.0015 (4)
O1W0.0202 (4)0.0337 (6)0.0203 (4)0.0034 (4)0.0042 (4)0.0082 (4)
Geometric parameters (Å, º) top
Cl1—C201.7405 (13)C10—C111.3982 (16)
S1—O31.4491 (11)C10—H10A0.9300
S1—O21.4573 (10)C11—C121.3994 (16)
S1—O41.4599 (11)C12—C131.3906 (16)
S1—C171.7772 (12)C12—H12A0.9300
O1—C111.3587 (14)C13—H13A0.9300
O1—C141.4392 (14)C14—C151.5096 (17)
N1—C11.3589 (16)C14—H14A0.9700
N1—C51.3662 (15)C14—H14B0.9700
N1—C161.4791 (16)C15—H15A0.9600
C1—C21.3724 (18)C15—H15B0.9600
C1—H1A0.9300C15—H15C0.9600
C2—C31.3960 (18)C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.3808 (18)C16—H16C0.9600
C3—H3A0.9300C17—C181.3939 (17)
C4—C51.4025 (17)C17—C221.3938 (18)
C4—H4A0.9300C18—C191.3899 (18)
C5—C61.4587 (16)C18—H18A0.9300
C6—C71.3496 (16)C19—C201.390 (2)
C6—H6A0.9300C19—H19A0.9300
C7—C81.4570 (16)C20—C211.3878 (19)
C7—H7A0.9300C21—C221.3886 (18)
C8—C131.4008 (16)C21—H21A0.9300
C8—C91.4071 (16)C22—H22A0.9300
C9—C101.3820 (17)O1W—H1W10.9078
C9—H9A0.9300O1W—H2W10.8195
O3—S1—O2112.85 (7)C13—C12—C11119.52 (11)
O3—S1—O4114.23 (7)C13—C12—H12A120.2
O2—S1—O4111.89 (7)C11—C12—H12A120.2
O3—S1—C17105.73 (6)C12—C13—C8121.61 (10)
O2—S1—C17105.74 (5)C12—C13—H13A119.2
O4—S1—C17105.53 (6)C8—C13—H13A119.2
C11—O1—C14118.27 (9)O1—C14—C15106.27 (10)
C1—N1—C5121.91 (10)O1—C14—H14A110.5
C1—N1—C16117.21 (10)C15—C14—H14A110.5
C5—N1—C16120.88 (10)O1—C14—H14B110.5
N1—C1—C2121.32 (11)C15—C14—H14B110.5
N1—C1—H1A119.3H14A—C14—H14B108.7
C2—C1—H1A119.3C14—C15—H15A109.5
C1—C2—C3118.55 (12)C14—C15—H15B109.5
C1—C2—H2A120.7H15A—C15—H15B109.5
C3—C2—H2A120.7C14—C15—H15C109.5
C4—C3—C2119.62 (12)H15A—C15—H15C109.5
C4—C3—H3A120.2H15B—C15—H15C109.5
C2—C3—H3A120.2N1—C16—H16A109.5
C3—C4—C5121.07 (11)N1—C16—H16B109.5
C3—C4—H4A119.5H16A—C16—H16B109.5
C5—C4—H4A119.5N1—C16—H16C109.5
N1—C5—C4117.53 (11)H16A—C16—H16C109.5
N1—C5—C6119.01 (10)H16B—C16—H16C109.5
C4—C5—C6123.46 (11)C18—C17—C22120.23 (11)
C7—C6—C5122.79 (11)C18—C17—S1119.24 (10)
C7—C6—H6A118.6C22—C17—S1120.49 (9)
C5—C6—H6A118.6C19—C18—C17120.14 (12)
C6—C7—C8126.46 (11)C19—C18—H18A119.9
C6—C7—H7A116.8C17—C18—H18A119.9
C8—C7—H7A116.8C20—C19—C18118.72 (12)
C13—C8—C9117.74 (11)C20—C19—H19A120.6
C13—C8—C7123.90 (10)C18—C19—H19A120.6
C9—C8—C7118.35 (10)C21—C20—C19121.92 (12)
C10—C9—C8121.29 (11)C21—C20—Cl1118.95 (11)
C10—C9—H9A119.4C19—C20—Cl1119.13 (10)
C8—C9—H9A119.4C20—C21—C22118.88 (12)
C9—C10—C11120.12 (11)C20—C21—H21A120.6
C9—C10—H10A119.9C22—C21—H21A120.6
C11—C10—H10A119.9C21—C22—C17120.08 (12)
O1—C11—C10115.42 (10)C21—C22—H22A120.0
O1—C11—C12124.87 (10)C17—C22—H22A120.0
C10—C11—C12119.72 (11)H1W1—O1W—H2W1104.3
C5—N1—C1—C20.44 (17)O1—C11—C12—C13179.64 (11)
C16—N1—C1—C2179.42 (11)C10—C11—C12—C130.06 (17)
N1—C1—C2—C30.53 (18)C11—C12—C13—C80.17 (18)
C1—C2—C3—C40.49 (18)C9—C8—C13—C120.45 (17)
C2—C3—C4—C50.49 (19)C7—C8—C13—C12179.79 (11)
C1—N1—C5—C41.39 (16)C11—O1—C14—C15174.84 (10)
C16—N1—C5—C4178.46 (11)O3—S1—C17—C1838.98 (11)
C1—N1—C5—C6179.12 (10)O2—S1—C17—C1880.92 (11)
C16—N1—C5—C61.03 (16)O4—S1—C17—C18160.37 (10)
C3—C4—C5—N11.41 (17)O3—S1—C17—C22143.13 (10)
C3—C4—C5—C6179.12 (11)O2—S1—C17—C2296.96 (11)
N1—C5—C6—C7169.32 (11)O4—S1—C17—C2221.75 (11)
C4—C5—C6—C711.22 (18)C22—C17—C18—C191.09 (18)
C5—C6—C7—C8179.53 (11)S1—C17—C18—C19176.80 (9)
C6—C7—C8—C131.26 (19)C17—C18—C19—C200.29 (18)
C6—C7—C8—C9179.40 (12)C18—C19—C20—C211.11 (19)
C13—C8—C9—C100.64 (18)C18—C19—C20—Cl1179.38 (10)
C7—C8—C9—C10179.99 (11)C19—C20—C21—C220.52 (19)
C8—C9—C10—C110.54 (19)Cl1—C20—C21—C22179.97 (10)
C14—O1—C11—C10177.17 (10)C20—C21—C22—C170.88 (18)
C14—O1—C11—C123.12 (17)C18—C17—C22—C211.69 (18)
C9—C10—C11—O1179.49 (11)S1—C17—C22—C21176.17 (9)
C9—C10—C11—C120.24 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.911.952.8148 (16)158
O1W—H2W1···O20.822.112.9265 (14)173
C1—H1A···O1Wii0.932.233.1544 (17)176
C2—H2A···O1Wiii0.932.443.2200 (17)142
C4—H4A···O2i0.932.503.3768 (17)158
C6—H6A···O3iv0.932.563.4308 (17)155
C13—H13A···O3iv0.932.513.3859 (17)157
C16—H16A···O4v0.962.573.3766 (18)142
C16—H16B···O3iv0.962.503.1307 (17)124
C22—H22A···O40.932.562.9246 (17)104
C9—H9A···Cg3i0.932.903.5924 (13)132
C12—H12A···Cg3iv0.932.963.7431 (13)143
C15—H15C···Cg2vi0.962.873.6918 (14)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H18NO+·C6H4ClO3S·H2O
Mr449.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7568 (5), 6.5284 (3), 34.6568 (15)
β (°) 104.784 (1)
V3)2134.43 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.45 × 0.32 × 0.13
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.873, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
30082, 7670, 6483
Rint0.036
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.141, 1.11
No. of reflections7670
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C8–C13 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.911.952.8148 (16)158
O1W—H2W1···O20.822.112.9265 (14)173
C1—H1A···O1Wii0.932.233.1544 (17)176
C2—H2A···O1Wiii0.932.443.2200 (17)142
C4—H4A···O2i0.932.503.3768 (17)158
C6—H6A···O3iv0.932.563.4308 (17)155
C13—H13A···O3iv0.932.513.3859 (17)157
C16—H16A···O4v0.962.573.3766 (18)142
C16—H16B···O3iv0.962.503.1307 (17)124
C22—H22A···O40.932.562.9246 (17)104
C9—H9A···Cg3i0.932.903.5924 (13)132
C12—H12A···Cg3iv0.932.963.7431 (13)143
C15—H15C···Cg2vi0.962.873.6918 (14)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y1, z.
 

Footnotes

This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) on the occasion of his 83th Birthday Anniversary which fell on December 5th, 2010.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Prince of Songkla University for a research grant. They also thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArmitage, G., Gordon, J., Cohen, J. B. & Ellingworth, S. (1929). Lancet, 2, 968–971.  CrossRef Google Scholar
First citationBrowning, C. H., Cohen, J. B. & Gulbransen, R. (1922). Br. Med. J. 1, 514–515.  CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K. & Chantrapromma, S. (2010). Acta Cryst. E66, o305–o306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWainwright, M. & Kristiansen, J. E. (2003). Int. J. Antimicrob. Ag. 22, 479–486.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o515-o516
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds