metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-phenyl­seleninato-κ2O:O′]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn.

(Received 16 December 2010; accepted 25 December 2010; online 12 January 2011)

In the title polymeric coordination compound, [Sn(CH3)3(C6H5O2Se)]n, the SnIV atom has a distorted trigonal–bipyramidal geometry, with two O atoms of two symmetry-related bridging phenyl­seleninate anions in axial positions and three methyl groups in equatorial positions. In the crystal, the complex exhibits a chain structure parallel to the b axis.

Related literature

For the applications and biological activity of organotin compounds, see: Dubey & Roy (2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]). For a related structure, see: Chandrasekhar et al. (1992[Chandrasekhar, V., Muralidhara, M. G., Thomas, K. R. J. & Tiekink, E. R. T. (1992). Inorg. Chem. 31 4707-4708.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C6H5O2Se)]

  • Mr = 351.85

  • Orthorhombic, P b c a

  • a = 13.0352 (12) Å

  • b = 10.0882 (13) Å

  • c = 18.709 (2) Å

  • V = 2460.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.01 mm−1

  • T = 298 K

  • 0.42 × 0.33 × 0.29 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.228, Tmax = 0.325

  • 9382 measured reflections

  • 2164 independent reflections

  • 1681 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.06

  • 2164 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, organotin compounds have been attracting more and more attention due to their wide range of industrial applications and biological activities (Dubey & Roy, 2003). As a part of our ongoing investigations in this field, we have synthesized the title compound and present its crystal structure here.

The asymmetric unit of the title compound is shown in Fig. 1. An extended one-dimensional zigzag chain structure running parallel to the b axis is formed by the bridging role of the phenylseleninato anions (Fig. 2). The Sn—O bond distances in the compound (Sn1—O1 = 2.243 (3) Å; Sn1—O2i = 2.258 (3) Å; symmetry code: (i): -x, y-1/2, -z+1/2) are comparable to those found in a related organotin compound (Chandrasekhar et al., 1992). The Sn atom is five-coordinate in a slightly distorted trigonal-bipyramidal coordination geometry, provided by the methyl groups in the equatorial positions and two O atoms of symmetry related phenylseleninato groups in the axial positions.

Related literature top

For the applications and biological activity of organotin compounds, see: Dubey et al. (2003). For a related structure, see: Chandrasekhar et al. (1992).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Benzeneseleninic acid (1 mmol) and sodium ethoxide (1 mmol) were added to a stirred solution of methanol (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from a solution of ether to yield colourless block crystals of the title compound (yield 65%). Anal. Calcd (%) for C9H14O2Sn1Se1 (Mr = 351.85): C, 30.72; H, 4.01. Found (%): C, 30.93; H, 3.85.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for the methyl groups.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination geometry of the tin metal centre in the title compound, showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. [Symmetry code: (A) -x, -1/2+y, 1/2-z]
[Figure 2] Fig. 2. View of the one-dimensional zigzag chain structure running parallel to the b axis in the title compound.
catena-Poly[[trimethyltin(IV)]-µ-phenylseleninato- κ2O:O'] top
Crystal data top
[Sn(CH3)3(C6H5O2Se)]F(000) = 1344
Mr = 351.85Dx = 1.900 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3552 reflections
a = 13.0352 (12) Åθ = 2.7–26.4°
b = 10.0882 (13) ŵ = 5.01 mm1
c = 18.709 (2) ÅT = 298 K
V = 2460.3 (5) Å3Block, colourless
Z = 80.42 × 0.33 × 0.29 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2164 independent reflections
Radiation source: fine-focus sealed tube1681 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 815
Tmin = 0.228, Tmax = 0.325k = 1211
9382 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.1006P]
where P = (Fo2 + 2Fc2)/3
2164 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sn(CH3)3(C6H5O2Se)]V = 2460.3 (5) Å3
Mr = 351.85Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0352 (12) ŵ = 5.01 mm1
b = 10.0882 (13) ÅT = 298 K
c = 18.709 (2) Å0.42 × 0.33 × 0.29 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1681 reflections with I > 2σ(I)
Tmin = 0.228, Tmax = 0.325Rint = 0.048
9382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
2164 reflectionsΔρmin = 0.45 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.06314 (2)0.18100 (3)0.263140 (17)0.03827 (12)
Se10.03615 (4)0.46755 (5)0.37539 (2)0.03951 (15)
O10.1012 (2)0.3364 (3)0.34469 (17)0.0485 (8)
O20.0495 (3)0.5076 (3)0.31255 (19)0.0568 (9)
C10.0573 (4)0.3775 (5)0.4398 (2)0.0401 (11)
C20.0239 (5)0.2699 (6)0.4774 (3)0.0612 (15)
H20.04330.24040.47240.073*
C30.0902 (6)0.2054 (6)0.5228 (3)0.078 (2)
H30.06800.13150.54820.094*
C40.1899 (6)0.2502 (7)0.5309 (3)0.075 (2)
H40.23450.20700.56190.090*
C50.2223 (5)0.3571 (7)0.4933 (3)0.0740 (18)
H50.28930.38730.49860.089*
C60.1567 (4)0.4208 (6)0.4477 (3)0.0552 (14)
H60.17950.49370.42180.066*
C70.1262 (5)0.2998 (5)0.1810 (3)0.0647 (16)
H7A0.18060.35320.20020.097*
H7B0.15280.24380.14390.097*
H7C0.07380.35620.16160.097*
C80.0976 (4)0.1852 (6)0.2800 (3)0.0678 (17)
H8A0.12950.11620.25250.102*
H8B0.11190.17160.32980.102*
H8C0.12430.26960.26540.102*
C90.1570 (4)0.0505 (5)0.3233 (3)0.0614 (15)
H9A0.19830.10080.35600.092*
H9B0.11440.01000.34960.092*
H9C0.20070.00160.29160.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03808 (19)0.0389 (2)0.0379 (2)0.00017 (15)0.00099 (14)0.00287 (15)
Se10.0485 (3)0.0345 (3)0.0356 (3)0.0079 (2)0.0021 (2)0.0026 (2)
O10.0439 (18)0.050 (2)0.052 (2)0.0053 (16)0.0044 (16)0.0186 (16)
O20.068 (2)0.048 (2)0.054 (2)0.0072 (17)0.0061 (19)0.0209 (17)
C10.051 (3)0.040 (3)0.029 (2)0.006 (2)0.001 (2)0.000 (2)
C20.062 (4)0.064 (4)0.058 (4)0.000 (3)0.006 (3)0.013 (3)
C30.115 (6)0.065 (4)0.056 (4)0.016 (4)0.009 (4)0.025 (3)
C40.087 (5)0.086 (5)0.052 (4)0.041 (4)0.016 (3)0.003 (4)
C50.054 (4)0.109 (6)0.059 (4)0.012 (3)0.014 (3)0.004 (4)
C60.056 (3)0.068 (4)0.042 (3)0.002 (3)0.003 (3)0.002 (3)
C70.085 (4)0.061 (4)0.048 (3)0.004 (3)0.003 (3)0.009 (3)
C80.038 (3)0.068 (4)0.097 (5)0.012 (3)0.006 (3)0.028 (3)
C90.076 (4)0.056 (4)0.052 (3)0.006 (3)0.010 (3)0.004 (3)
Geometric parameters (Å, º) top
Sn1—C72.115 (5)C4—C51.355 (9)
Sn1—C82.119 (5)C4—H40.9300
Sn1—C92.121 (5)C5—C61.368 (7)
Sn1—O12.243 (3)C5—H50.9300
Sn1—O2i2.258 (3)C6—H60.9300
Se1—O21.671 (3)C7—H7A0.9600
Se1—O11.673 (3)C7—H7B0.9600
Se1—C11.940 (5)C7—H7C0.9600
O2—Sn1ii2.258 (3)C8—H8A0.9600
C1—C21.365 (7)C8—H8B0.9600
C1—C61.375 (7)C8—H8C0.9600
C2—C31.376 (8)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—C41.384 (9)C9—H9C0.9600
C3—H30.9300
C7—Sn1—C8118.8 (3)C3—C4—H4120.1
C7—Sn1—C9120.9 (2)C4—C5—C6120.2 (6)
C8—Sn1—C9120.2 (2)C4—C5—H5119.9
C7—Sn1—O190.72 (18)C6—C5—H5119.9
C8—Sn1—O195.92 (17)C5—C6—C1120.4 (6)
C9—Sn1—O186.86 (17)C5—C6—H6119.8
C7—Sn1—O2i90.78 (18)C1—C6—H6119.8
C8—Sn1—O2i91.79 (18)Sn1—C7—H7A109.5
C9—Sn1—O2i84.11 (17)Sn1—C7—H7B109.5
O1—Sn1—O2i170.25 (12)H7A—C7—H7B109.5
O2—Se1—O1106.75 (18)Sn1—C7—H7C109.5
O2—Se1—C197.51 (18)H7A—C7—H7C109.5
O1—Se1—C199.28 (18)H7B—C7—H7C109.5
Se1—O1—Sn1132.40 (18)Sn1—C8—H8A109.5
Se1—O2—Sn1ii132.94 (18)Sn1—C8—H8B109.5
C2—C1—C6119.9 (5)H8A—C8—H8B109.5
C2—C1—Se1119.5 (4)Sn1—C8—H8C109.5
C6—C1—Se1120.7 (4)H8A—C8—H8C109.5
C1—C2—C3119.6 (6)H8B—C8—H8C109.5
C1—C2—H2120.2Sn1—C9—H9A109.5
C3—C2—H2120.2Sn1—C9—H9B109.5
C2—C3—C4120.2 (6)H9A—C9—H9B109.5
C2—C3—H3119.9Sn1—C9—H9C109.5
C4—C3—H3119.9H9A—C9—H9C109.5
C5—C4—C3119.7 (6)H9B—C9—H9C109.5
C5—C4—H4120.1
O2—Se1—O1—Sn122.8 (3)O1—Se1—C1—C6143.5 (4)
C1—Se1—O1—Sn178.0 (3)C6—C1—C2—C30.2 (8)
C7—Sn1—O1—Se189.2 (3)Se1—C1—C2—C3179.6 (4)
C8—Sn1—O1—Se129.8 (3)C1—C2—C3—C40.7 (9)
C9—Sn1—O1—Se1149.9 (3)C2—C3—C4—C50.6 (10)
O1—Se1—O2—Sn1ii110.1 (3)C3—C4—C5—C60.1 (9)
C1—Se1—O2—Sn1ii147.8 (3)C4—C5—C6—C10.4 (8)
O2—Se1—C1—C2144.7 (4)C2—C1—C6—C50.4 (8)
O1—Se1—C1—C236.2 (4)Se1—C1—C6—C5179.8 (4)
O2—Se1—C1—C635.1 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C6H5O2Se)]
Mr351.85
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)13.0352 (12), 10.0882 (13), 18.709 (2)
V3)2460.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.01
Crystal size (mm)0.42 × 0.33 × 0.29
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.228, 0.325
No. of measured, independent and
observed [I > 2σ(I)] reflections
9382, 2164, 1681
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.06
No. of reflections2164
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (20971096) for financial support.

References

First citationChandrasekhar, V., Muralidhara, M. G., Thomas, K. R. J. & Tiekink, E. R. T. (1992). Inorg. Chem. 31 4707–4708.  CSD CrossRef CAS Web of Science Google Scholar
First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds