metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m231-m232

(1-Ferrocenyl-4,4,4-tri­fluoro­butane-1,3-dionato-κ2O,O)bis­­(tri­phenyl­phosphane)copper(I)

aTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl für Anorganische Chemie, Strasse der Nationen 62, 09111 Chemnitz, Germany, and bDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa
*Correspondence e-mail: heinrich.lang@chemie.tu-chemnitz.de

(Received 3 November 2010; accepted 12 January 2011; online 22 January 2011)

In the title mononuclear coordination complex, [CuFe(C5H5)(C9H5F3O2)(C18H15P)2], the CuI ion is coordinated by the chelating β-diketonate 1-ferrocenyl-4,4,4-trifluoro­butane-1,3-dione ligand through two O atoms and the two datively bonded triphenyl­phosphane ligands resulting in a distorted tetra­hedral coordination sphere. The CuI ion, together with its chelating butane-1,3-dione group, is mutually coplanar [greatest displacement of an atom from this plane = 0.037 (1) Å], and the CuI ion lies slightly above [0.013 (1) Å] the plane. The overall geometry, including the bond distances and angles within the complex, corresponds to those of other reported copper(I) β-diketon­ates featuring organic groups at the β-diketonate ligand.

Related literature

For β-diketone chelates in lanthanide coordination chemistry, see: Tsukube et al. (2002[Tsukube, H., Shinoda, S. & Tamiaki, H. (2002). Coord. Chem. Rev. 226, 227-234.]); Kaizaki (2006[Kaizaki, S. (2006). Coord. Chem. Rev. 250, 1804-1818.]). For the chemistry of platina-β-diketones, see: Steinborn (2005[Steinborn, D. (2005). Dalton Trans. pp. 2664-2671.]). For the structure of Cu(II)-β-diketones, see: Gromilov & Baidina (2004[Gromilov, S. A. & Baidina, I. A. (2004). J. Struct. Chem. 45, 1031-1081.]). For the preparation of volatile Cu(I)-β-diketones and their chemistry, see: Shin et al. (1991[Shin, H.-K., Hampden-Smith, M. J., Duesler, E. N. & Kodas, T. T. (1991). Polyhedron, 10, 645-647.]); Chi et al. (1992[Chi, K.-M., Farkas, J., Hampden-Smith, M. J., Kodas, T. T. & Duesler, E. N. (1992). J. Chem. Soc. Dalton Trans. pp. 3111-3117.]) and for the application of volatile Cu(I)-β-diketones in CVD processes (CVD = chemical vapour deposition), see: Fahlman (2006[Fahlman, B. D. (2006). Curr. Org. Chem. 10, 1021-1033.]); Tiitta & Niinistou (1997[Tiitta, M. & Niinistou, L. (1997). Chem. Vap. Deposition, 3, 167-182.]); Chen et al. (2001[Chen, T.-Y., Vaissermann, J. & Doppelt, P. (2001). Inorg. Chem. 40, 6167-6171.]); Doppelt (1997[Doppelt, P. (1997). Microelectron. Eng. 37/38, 89-95.]). For photoelectron spectroscopy and electronic structure studies of metal-β-diketones, see: Vovna et al. (1998[Vovna, V. I., Lvov, I. B., Slabzhennikov, S. N. & Ustinov, A. Y. (1998). J. Electron Spectrosc. 88-91, 109-117.]). For the application of Cu(I)-β-diketones in ALD processes (ALD = atomic layer deposition), see: Waechtler et al. (2009[Waechtler, T., Roth, N., Mothes, R., Schulze, S., Schulz, S. E., Gessner, T., Lang, H. & Hietschold, M. (2009). J. Electrochem. Soc. Trans. 25, 277-287.]). For applications of Cu(I)-hexa­fluoro­acetonates, see: Pampaloni et al. (2005[Pampaloni, G., Peloso, R., Graiff, C. & Tiripicchio, A. (2005). Organometallics, 24, 819-825.]); Doyle et al. (1985[Doyle, G., Eriksen, K. A. & Van Engen, D. (1985). Organometallics, 4, 830-835.]). For other copper(I) β-diketonate derivatives, see: Yang et al. (2001[Yang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585-590.]); Marchetti et al. (2000[Marchetti, F., Pettinari, C., Pettinari, R., Cingolani, A., Camalli, M. & Spagna, R. (2000). Inorg. Chim. Acta, 299, 65-79.]); Croxtall et al. (2003[Croxtall, B., Fawcett, J., Hope, E. G. & Stuart, A. M. (2003). J. Fluorine Chem. 119, 65-73.]); Herberhold et al. (2004[Herberhold, H., Milius, W. & Akkus, N. (2004). Z. Naturforsch. Teil B, 59, 843-849.]). For a related ferrocenyl derivative of the title compound, see: du Plessis et al. (1999[Plessis, W. C. du, Erasmus, J. J. C., Lamprecht, G. J., Conradie, J., Cameron, T. S., Aquino, M. A. S. & Swarts, J. C. (1999). Can. J. Chem. 77, 378-386.]).

[Scheme 1]

Experimental

Crystal data
  • [CuFe(C5H5)(C9H5F3O2)(C18H15P)2]

  • Mr = 911.15

  • Monoclinic, P 21

  • a = 11.02755 (13) Å

  • b = 16.8178 (2) Å

  • c = 12.50787 (14) Å

  • β = 115.2456 (14)°

  • V = 2098.15 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 120 K

  • 0.56 × 0.48 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.943, Tmax = 1.000

  • 21096 measured reflections

  • 8248 independent reflections

  • 7761 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.052

  • S = 1.03

  • 8248 reflections

  • 532 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3945 Friedel pairs

  • Flack parameter: −0.010 (6)

Table 1
Selected bond lengths (Å)

O1—Cu1 2.0821 (12)
O2—Cu1 2.0783 (11)
Cu1—P2 2.2405 (5)
Cu1—P1 2.2529 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Well known coordination compounds in transition metal chemistry are metal β-diketonates and Lewis-base metal β-diketonates, see: Gromilov & Baidina (2004); Steinborn (2005); Tsukube et al. (2002); Kaizaki (2006); Vovna et al. (1998). A multitude of diverse derivatives have been prepared to date using different synthesis methodologies with copper(I) β-diketonates and Lewis-base copper(I) β-diketonates being one family of compounds. These molecules are, for example, very well suited as volatile CVD (= Chemical Vapor Deposition), see: (Fahlman (2006); Tiitta & Niinistou, (1997); Chen et al. (2001); Doppelt (1997), and ALD (= Atomic Layer Deposition), see: Waechtler et al. (2009) precursors in the deposition of highly pure and thin copper layers on different substrates, i. e. TiN-coated silicon oxide substrate materials.

The title coordination compound is a derivative of the family of transition metal β-diketonates in which the copper(I) center possesses a pseudo-tetrahedral environment set-up by the chelate-bonded organometallic 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione (see: du Plessis et al. (1999)) unit and the two datively-bonded triphenylphosphino ligands. The coordination geometry around copper(I) is best described as a distorted tetrahedron that resembles other complexes including (hfac)Cu(1,5-COD), see: Pampaloni et al. (2005); Doyle et al. (1985), or (Me3P)2Cu(acac), see: Shin et al. (1991); Chi et al. (1992). The bond distances Cu–P, Cu–O, Fe–D1 (1.6401 (9) Å) and Fe–D2 (1.6466 (9) Å) (D1 = centroid of C1 - C5; D2 = centroid of C6 - C10) as well as the bond angles P2–Cu1–P1, P2–Cu1–O1, P2–Cu1–O2, P1–Cu1–O1, P1–Cu1–O2, O2–Cu1–O1 are similar to those ones found for other copper(I) β-diketonate derivatives, see, for example: Yang et al. (2001); Marchetti et al. (2000); Croxtall et al. (2003); Herberhold et al. (2004). The atoms Cu1, O1, O2, and C11 - C13 are, as expected, in plane bound (r. m. s. d. of a calculated mean plane = 0.024 Å).

Related literature top

For β-diketone chelates in lanthanide coordination chemistry, see: Tsukube et al. (2002); Kaizaki (2006). For the chemistry of platina-β-diketones, see: Steinborn (2005). For the structure of Cu(II)-β-diketones, see: Gromilov & Baidina (2004). For the preparation of volatile Cu(I)-β-diketones and their chemistry, see: Shin et al. (1991); Chi et al. (1992) and for the application of volatile Cu(I)-β-diketones in CVD processes (CVD = chemical vapour deposition), see: Fahlman (2006); Tiitta & Niinistou (1997); Chen et al. (2001); Doppelt (1997). For photoelectron spectroscopy and electronic structure studies of metal-β-diketones, see: Vovna et al. (1998). For the application of Cu(I)-β-diketones in ALD processes (ALD = atomic layer deposition), see: Waechtler et al. (2009). For applications of Cu(I)-hexafluoroacetonates, see: Pampaloni et al. (2005); Doyle et al. (1985). For other copper(I) β-diketonate derivatives, see: Yang et al. (2001); Marchetti et al. (2000); Croxtall et al. (2003); Herberhold et al. (2004). For a related ferrocenyl derivative of the title compound, see: du Plessis et al. (1999).

Experimental top

The title complex was synthesized by the consecutive reaction of 100 mg (0.31 mmol) of 1-ferrocenyl-4,4,4-trifluorobutane-1,3-dione (see: du Plessis et al. (1999)) with 40 mg (0.36 mmol) of potassium t-butanolate (diethyl ether, 298 K, 4 h) followed by addition of 180 mg (0.29 mmol) of [(Ph3P)2CuCl] (diethyl ether, 298 K, 12 h). After filtration of the reaction mixture through a pad of Celite and removal of all volatile materials in oil-pump vacuum gave the title complex as an orange solid in a yield of 120 mg (0.13 mmol, 45%) based on [(Ph3P)2CuCl]). This complex is stable in air and light over a period of days. It nicely dissolves in common organic solvents.

Refinement top

R(F2 > 2 s(F2)) = 0.0204 wR(F2) = 0.0501 S = 1.028 8248 reflections 532 parameters 1 restraints Drmax = 0.37 e Å-3 Drmin = -0.25 e Å-3

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Atom F2 is claimed to have a suspicious ADP max/min ratio, indicating further disorder. It is checked, that the introduction of a disorder will give non-reasonable occupation factors of ca 98 percent to ca 2 percent. Furthermore, Ueq of C14 are claimed. C14 is the pivot atom of a CF3 group. PLAT242 ALERT 2 C does already indicate, that false alarms occur for terminal groups such as the tert-butyl moiety. As a CF3 group is structurally related to a tert-butyl moiety we account this error message as a false alarm.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. All hydrogen atoms have been omitted. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the title compound showing displacement ellipsoids at the 50% probability level.
(1-Ferrocenyl-4,4,4-trifluorobutane-1,3-dionato- κ2O,O)bis(triphenylphosphane)copper(I) top
Crystal data top
[CuFe(C5H5)(C9H5F3O2)(C18H15P)2]F(000) = 936
Mr = 911.15Dx = 1.442 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 21328 reflections
a = 11.02755 (13) Åθ = 3.0–26.0°
b = 16.8178 (2) ŵ = 0.98 mm1
c = 12.50787 (14) ÅT = 120 K
β = 115.2456 (14)°Plate, red
V = 2098.15 (5) Å30.56 × 0.48 × 0.18 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S
diffractometer
7761 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 26.1°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 2020
Tmin = 0.943, Tmax = 1.000l = 1515
21096 measured reflections2 standard reflections every 50 reflections
8248 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0348P)2 + 0.2178P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8248 reflectionsΔρmax = 0.37 e Å3
532 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 3945 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (6)
Crystal data top
[CuFe(C5H5)(C9H5F3O2)(C18H15P)2]V = 2098.15 (5) Å3
Mr = 911.15Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.02755 (13) ŵ = 0.98 mm1
b = 16.8178 (2) ÅT = 120 K
c = 12.50787 (14) Å0.56 × 0.48 × 0.18 mm
β = 115.2456 (14)°
Data collection top
Oxford Diffraction Gemini S
diffractometer
7761 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Rint = 0.015
Tmin = 0.943, Tmax = 1.0002 standard reflections every 50 reflections
21096 measured reflections intensity decay: none
8248 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.37 e Å3
S = 1.03Δρmin = 0.25 e Å3
8248 reflectionsAbsolute structure: Flack (1983), 3945 Friedel pairs
532 parametersAbsolute structure parameter: 0.010 (6)
1 restraint
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.31.7 (release 18-10-2006 CrysAlis171 .NET) (compiled Oct 18 2006,16:28:17) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50411 (2)0.687238 (16)0.77772 (2)0.01723 (6)
C10.55309 (18)0.61747 (11)0.67027 (16)0.0192 (4)
C20.41629 (18)0.64086 (12)0.61092 (17)0.0224 (4)
H20.37780.66900.54030.027*
C30.3491 (2)0.61353 (13)0.67863 (19)0.0292 (5)
H30.25890.62130.66050.035*
C40.4422 (2)0.57250 (12)0.7782 (2)0.0298 (5)
H40.42340.54810.83610.036*
C50.5693 (2)0.57469 (11)0.77517 (18)0.0239 (4)
H50.64850.55260.83070.029*
C60.6210 (2)0.78630 (13)0.8155 (2)0.0320 (5)
H60.68540.79760.78820.038*
C70.4845 (2)0.80751 (12)0.75945 (19)0.0319 (5)
H70.44260.83500.68850.038*
C80.4232 (2)0.77953 (13)0.8301 (2)0.0368 (5)
H80.33320.78550.81400.044*
C90.5199 (3)0.74116 (13)0.9286 (2)0.0412 (6)
H90.50550.71720.98920.049*
C100.6428 (2)0.74513 (13)0.92001 (19)0.0381 (6)
H100.72410.72430.97380.046*
C110.65726 (18)0.63909 (10)0.63003 (16)0.0173 (4)
C120.79289 (18)0.64258 (12)0.71616 (15)0.0194 (4)
H120.81010.62810.79310.023*
O10.61771 (12)0.65478 (7)0.52235 (10)0.0180 (3)
C130.90114 (17)0.66556 (10)0.69532 (15)0.0164 (4)
O20.90944 (10)0.68040 (9)0.59961 (9)0.0173 (2)
C141.03239 (17)0.68183 (14)0.80476 (14)0.0239 (4)
F11.05023 (15)0.76028 (9)0.82422 (14)0.0599 (5)
F21.03981 (12)0.64954 (12)0.90381 (11)0.0592 (5)
F31.13983 (10)0.65709 (8)0.79243 (10)0.0322 (3)
Cu10.739975 (18)0.684267 (12)0.439354 (15)0.01426 (5)
P10.68543 (4)0.81153 (3)0.38321 (4)0.01503 (9)
C150.69285 (18)0.87771 (11)0.50199 (15)0.0167 (4)
C160.79584 (19)0.86499 (11)0.61432 (16)0.0217 (4)
H160.85770.82460.62580.026*
C170.8066 (2)0.91201 (11)0.70884 (17)0.0258 (4)
H170.87610.90360.78320.031*
C180.7137 (2)0.97155 (12)0.69227 (17)0.0239 (4)
H180.71941.00230.75610.029*
C190.6127 (2)0.98539 (12)0.58141 (18)0.0262 (4)
H190.55131.02600.57050.031*
C200.60201 (19)0.93914 (11)0.48613 (17)0.0227 (4)
H200.53410.94910.41150.027*
C210.51264 (17)0.82467 (10)0.27141 (15)0.0175 (4)
C220.41049 (18)0.79132 (11)0.29527 (16)0.0217 (4)
H220.43170.76450.36610.026*
C230.27808 (19)0.79811 (12)0.21380 (18)0.0271 (4)
H230.21030.77670.23050.033*
C240.2460 (2)0.83704 (13)0.10670 (18)0.0319 (5)
H240.15700.84130.05180.038*
C250.3461 (2)0.86903 (14)0.08236 (18)0.0315 (5)
H250.32480.89450.01060.038*
C260.4793 (2)0.86349 (12)0.16467 (16)0.0233 (4)
H260.54640.88600.14800.028*
C270.78703 (17)0.86077 (11)0.31957 (15)0.0171 (4)
C280.83982 (19)0.93685 (11)0.35301 (18)0.0205 (4)
H280.82070.96550.40760.025*
C290.92108 (19)0.97008 (12)0.30491 (18)0.0270 (4)
H290.95761.02040.32860.032*
C300.9476 (2)0.92845 (14)0.22210 (19)0.0299 (5)
H301.00110.95100.18950.036*
C310.8945 (2)0.85300 (14)0.18751 (18)0.0291 (5)
H310.91160.82530.13110.035*
C320.81588 (19)0.81881 (12)0.23713 (16)0.0235 (4)
H320.78230.76770.21530.028*
P20.74219 (4)0.58095 (3)0.32711 (4)0.01338 (9)
C330.58003 (17)0.56047 (10)0.20405 (14)0.0152 (3)
C340.48442 (18)0.62093 (11)0.16773 (16)0.0189 (4)
H340.50540.67010.20520.023*
C350.35846 (19)0.60869 (12)0.07654 (17)0.0226 (4)
H350.29620.64980.05210.027*
C360.32545 (18)0.53494 (12)0.02181 (16)0.0211 (4)
H360.24090.52640.03910.025*
C370.41859 (19)0.47433 (11)0.05821 (16)0.0214 (4)
H370.39630.42480.02190.026*
C380.54539 (19)0.48666 (11)0.14861 (16)0.0185 (4)
H380.60750.44540.17230.022*
C390.85824 (18)0.59304 (10)0.25901 (16)0.0157 (3)
C400.82338 (19)0.58266 (12)0.14010 (16)0.0235 (4)
H400.73650.56740.08980.028*
C410.9178 (2)0.59497 (14)0.09486 (18)0.0300 (5)
H410.89390.58760.01470.036*
C421.0463 (2)0.61803 (13)0.16866 (18)0.0275 (4)
H421.10910.62630.13840.033*
C431.08173 (19)0.62878 (12)0.28778 (18)0.0256 (4)
H431.16880.64390.33780.031*
C440.98851 (18)0.61721 (12)0.33301 (17)0.0228 (4)
H441.01260.62560.41300.027*
C450.78856 (17)0.48377 (10)0.39829 (15)0.0164 (4)
C460.86044 (19)0.42620 (12)0.36963 (18)0.0214 (4)
H460.89280.43730.31370.026*
C470.88416 (19)0.35203 (12)0.42434 (18)0.0257 (4)
H470.93310.31400.40540.031*
C480.8353 (2)0.33470 (12)0.50661 (17)0.0275 (4)
H480.85030.28490.54210.033*
C490.7642 (2)0.39143 (13)0.53613 (17)0.0267 (4)
H490.73150.37970.59170.032*
C500.74123 (19)0.46598 (12)0.48307 (17)0.0220 (4)
H500.69430.50420.50400.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02191 (12)0.01476 (11)0.01945 (12)0.00333 (12)0.01308 (10)0.00184 (12)
C10.0255 (10)0.0168 (9)0.0188 (9)0.0054 (8)0.0129 (8)0.0051 (7)
C20.0197 (9)0.0266 (10)0.0221 (9)0.0084 (8)0.0100 (8)0.0086 (8)
C30.0273 (10)0.0311 (11)0.0379 (11)0.0130 (9)0.0223 (9)0.0137 (9)
C40.0483 (13)0.0197 (10)0.0386 (12)0.0148 (9)0.0350 (11)0.0089 (9)
C50.0379 (12)0.0140 (9)0.0288 (11)0.0015 (8)0.0230 (9)0.0014 (8)
C60.0369 (12)0.0237 (11)0.0456 (13)0.0142 (9)0.0274 (11)0.0147 (10)
C70.0493 (14)0.0142 (9)0.0289 (10)0.0011 (9)0.0134 (10)0.0002 (9)
C80.0300 (11)0.0281 (11)0.0588 (15)0.0044 (10)0.0251 (11)0.0213 (11)
C90.086 (2)0.0218 (10)0.0316 (12)0.0108 (12)0.0404 (13)0.0089 (9)
C100.0408 (13)0.0249 (11)0.0297 (12)0.0070 (10)0.0031 (10)0.0088 (9)
C110.0220 (9)0.0128 (8)0.0200 (9)0.0015 (7)0.0118 (7)0.0024 (7)
C120.0203 (9)0.0255 (10)0.0147 (8)0.0031 (8)0.0096 (7)0.0022 (7)
O10.0179 (6)0.0223 (6)0.0155 (6)0.0020 (5)0.0087 (5)0.0001 (5)
C130.0177 (8)0.0159 (9)0.0137 (8)0.0049 (6)0.0049 (7)0.0002 (6)
O20.0148 (5)0.0233 (6)0.0141 (5)0.0004 (6)0.0063 (4)0.0002 (6)
C140.0196 (8)0.0339 (10)0.0171 (8)0.0068 (10)0.0070 (7)0.0007 (10)
F10.0446 (8)0.0393 (8)0.0544 (9)0.0092 (6)0.0186 (7)0.0251 (7)
F20.0206 (6)0.1344 (16)0.0184 (6)0.0019 (7)0.0043 (5)0.0227 (8)
F30.0146 (5)0.0511 (8)0.0286 (6)0.0020 (5)0.0072 (5)0.0039 (5)
Cu10.01684 (9)0.01395 (9)0.01240 (9)0.00004 (10)0.00663 (7)0.00008 (9)
P10.0172 (2)0.0135 (2)0.0147 (2)0.00031 (17)0.00705 (17)0.00035 (17)
C150.0208 (9)0.0144 (8)0.0174 (8)0.0036 (7)0.0105 (7)0.0013 (7)
C160.0250 (10)0.0164 (9)0.0222 (9)0.0014 (8)0.0089 (8)0.0002 (7)
C170.0306 (11)0.0240 (10)0.0184 (9)0.0033 (8)0.0061 (8)0.0021 (8)
C180.0326 (11)0.0210 (10)0.0246 (10)0.0077 (8)0.0183 (9)0.0074 (8)
C190.0249 (10)0.0233 (10)0.0339 (11)0.0002 (8)0.0159 (9)0.0051 (9)
C200.0232 (10)0.0199 (9)0.0228 (9)0.0014 (8)0.0076 (8)0.0023 (8)
C210.0198 (9)0.0137 (9)0.0186 (9)0.0002 (7)0.0078 (7)0.0055 (7)
C220.0242 (9)0.0198 (9)0.0225 (9)0.0010 (8)0.0114 (8)0.0044 (8)
C230.0210 (9)0.0272 (11)0.0352 (11)0.0054 (8)0.0139 (8)0.0116 (9)
C240.0208 (10)0.0375 (12)0.0290 (11)0.0029 (9)0.0027 (8)0.0125 (9)
C250.0305 (11)0.0378 (12)0.0206 (10)0.0051 (9)0.0055 (9)0.0014 (9)
C260.0246 (10)0.0237 (10)0.0215 (9)0.0001 (8)0.0096 (8)0.0009 (8)
C270.0155 (9)0.0185 (9)0.0164 (8)0.0011 (7)0.0058 (7)0.0043 (7)
C280.0195 (9)0.0165 (9)0.0231 (10)0.0041 (8)0.0068 (8)0.0039 (8)
C290.0204 (10)0.0233 (10)0.0335 (11)0.0016 (8)0.0079 (9)0.0099 (9)
C300.0214 (10)0.0374 (12)0.0315 (11)0.0021 (9)0.0119 (9)0.0152 (9)
C310.0265 (10)0.0403 (12)0.0243 (10)0.0003 (9)0.0145 (8)0.0010 (9)
C320.0239 (10)0.0228 (10)0.0224 (9)0.0025 (8)0.0087 (8)0.0002 (8)
P20.0143 (2)0.0134 (2)0.0123 (2)0.00083 (17)0.00556 (17)0.00071 (16)
C330.0160 (8)0.0185 (9)0.0125 (8)0.0003 (7)0.0075 (7)0.0025 (7)
C340.0202 (9)0.0158 (9)0.0197 (9)0.0010 (7)0.0074 (7)0.0017 (7)
C350.0202 (9)0.0232 (10)0.0221 (9)0.0045 (8)0.0068 (8)0.0030 (8)
C360.0181 (9)0.0267 (10)0.0153 (8)0.0060 (8)0.0041 (7)0.0007 (8)
C370.0274 (10)0.0184 (9)0.0187 (9)0.0068 (8)0.0101 (8)0.0049 (7)
C380.0215 (9)0.0152 (9)0.0179 (9)0.0022 (7)0.0074 (7)0.0016 (7)
C390.0184 (9)0.0111 (8)0.0189 (9)0.0029 (7)0.0092 (7)0.0025 (7)
C400.0162 (9)0.0333 (11)0.0201 (9)0.0010 (8)0.0067 (7)0.0009 (8)
C410.0295 (11)0.0450 (13)0.0189 (9)0.0028 (9)0.0135 (8)0.0057 (9)
C420.0226 (10)0.0335 (11)0.0332 (11)0.0029 (9)0.0186 (9)0.0072 (9)
C430.0178 (9)0.0292 (10)0.0299 (10)0.0035 (8)0.0102 (8)0.0017 (9)
C440.0209 (9)0.0260 (10)0.0212 (9)0.0019 (8)0.0085 (8)0.0029 (8)
C450.0138 (8)0.0158 (8)0.0164 (8)0.0008 (7)0.0034 (7)0.0015 (7)
C460.0192 (9)0.0192 (9)0.0246 (10)0.0013 (8)0.0082 (8)0.0012 (8)
C470.0209 (10)0.0188 (9)0.0318 (10)0.0053 (7)0.0058 (8)0.0021 (8)
C480.0241 (10)0.0173 (9)0.0288 (10)0.0028 (8)0.0005 (8)0.0085 (8)
C490.0284 (11)0.0263 (10)0.0253 (10)0.0034 (9)0.0114 (9)0.0092 (8)
C500.0229 (10)0.0217 (10)0.0210 (9)0.0002 (8)0.0091 (8)0.0033 (8)
Geometric parameters (Å, º) top
Fe1—C12.0233 (18)C21—C221.400 (3)
Fe1—C52.0300 (19)C22—C231.384 (3)
Fe1—C102.033 (2)C22—H220.9300
Fe1—C82.033 (2)C23—C241.394 (3)
Fe1—C92.034 (2)C23—H230.9300
Fe1—C62.035 (2)C24—C251.374 (3)
Fe1—C72.037 (2)C24—H240.9300
Fe1—C22.0434 (18)C25—C261.391 (3)
Fe1—C32.047 (2)C25—H250.9300
Fe1—C42.048 (2)C26—H260.9300
C1—C21.423 (3)C27—C321.394 (3)
C1—C51.439 (3)C27—C281.394 (3)
C1—C111.483 (3)C28—C291.392 (3)
C2—C31.419 (3)C28—H280.9300
C2—H20.9300C29—C301.381 (3)
C3—C41.411 (3)C29—H290.9300
C3—H30.9300C30—C311.387 (3)
C4—C51.419 (3)C30—H300.9300
C4—H40.9300C31—C321.388 (3)
C5—H50.9300C31—H310.9300
C6—C101.406 (3)C32—H320.9300
C6—C71.409 (3)P2—C391.8261 (18)
C6—H60.9300P2—C451.8266 (18)
C7—C81.403 (3)P2—C331.8270 (17)
C7—H70.9300C33—C381.394 (3)
C8—C91.397 (4)C33—C341.394 (2)
C8—H80.9300C34—C351.386 (3)
C9—C101.407 (3)C34—H340.9300
C9—H90.9300C35—C361.388 (3)
C10—H100.9300C35—H350.9300
C11—O11.254 (2)C36—C371.379 (3)
C11—C121.424 (3)C36—H360.9300
C12—C131.381 (3)C37—C381.389 (3)
C12—H120.9300C37—H370.9300
O1—Cu12.0821 (12)C38—H380.9300
C13—O21.264 (2)C39—C401.379 (3)
C13—C141.534 (2)C39—C441.397 (3)
O2—Cu12.0783 (11)C40—C411.397 (3)
C14—F21.323 (2)C40—H400.9300
C14—F31.325 (2)C41—C421.376 (3)
C14—F11.341 (3)C41—H410.9300
Cu1—P22.2405 (5)C42—C431.382 (3)
Cu1—P12.2529 (5)C42—H420.9300
P1—C271.8264 (18)C43—C441.382 (3)
P1—C151.8300 (17)C43—H430.9300
P1—C211.8336 (18)C44—H440.9300
C15—C201.393 (3)C45—C461.392 (3)
C15—C161.396 (3)C45—C501.400 (3)
C16—C171.385 (3)C46—C471.393 (3)
C16—H160.9300C46—H460.9300
C17—C181.384 (3)C47—C481.381 (3)
C17—H170.9300C47—H470.9300
C18—C191.378 (3)C48—C491.382 (3)
C18—H180.9300C48—H480.9300
C19—C201.385 (3)C49—C501.390 (3)
C19—H190.9300C49—H490.9300
C20—H200.9300C50—H500.9300
C21—C261.387 (3)
C1—Fe1—C541.59 (8)O1—Cu1—P2108.07 (4)
C1—Fe1—C10123.01 (9)O2—Cu1—P1109.94 (4)
C5—Fe1—C10108.72 (9)O1—Cu1—P1103.77 (4)
C1—Fe1—C8159.22 (9)P2—Cu1—P1127.900 (17)
C5—Fe1—C8157.54 (9)C27—P1—C15104.76 (8)
C10—Fe1—C867.80 (9)C27—P1—C21104.13 (8)
C1—Fe1—C9159.03 (10)C15—P1—C21102.59 (8)
C5—Fe1—C9122.67 (9)C27—P1—Cu1115.77 (6)
C10—Fe1—C940.48 (10)C15—P1—Cu1114.28 (6)
C8—Fe1—C940.18 (10)C21—P1—Cu1113.87 (6)
C1—Fe1—C6107.89 (8)C20—C15—C16118.94 (16)
C5—Fe1—C6125.00 (9)C20—C15—P1123.71 (14)
C10—Fe1—C640.44 (9)C16—C15—P1117.35 (14)
C8—Fe1—C667.76 (9)C17—C16—C15120.58 (18)
C9—Fe1—C667.93 (9)C17—C16—H16119.7
C1—Fe1—C7123.17 (8)C15—C16—H16119.7
C5—Fe1—C7161.03 (9)C18—C17—C16119.79 (18)
C10—Fe1—C768.09 (9)C18—C17—H17120.1
C8—Fe1—C740.33 (9)C16—C17—H17120.1
C9—Fe1—C767.92 (9)C19—C18—C17120.14 (17)
C6—Fe1—C740.49 (9)C19—C18—H18119.9
C1—Fe1—C240.97 (8)C17—C18—H18119.9
C5—Fe1—C269.20 (8)C18—C19—C20120.40 (18)
C10—Fe1—C2158.22 (9)C18—C19—H19119.8
C8—Fe1—C2122.57 (9)C20—C19—H19119.8
C9—Fe1—C2158.99 (10)C19—C20—C15120.12 (18)
C6—Fe1—C2121.82 (8)C19—C20—H20119.9
C7—Fe1—C2106.45 (8)C15—C20—H20119.9
C1—Fe1—C368.73 (8)C26—C21—C22119.10 (17)
C5—Fe1—C368.65 (9)C26—C21—P1123.61 (14)
C10—Fe1—C3160.49 (10)C22—C21—P1117.26 (13)
C8—Fe1—C3106.82 (9)C23—C22—C21120.16 (18)
C9—Fe1—C3123.42 (9)C23—C22—H22119.9
C6—Fe1—C3156.84 (10)C21—C22—H22119.9
C7—Fe1—C3120.80 (9)C22—C23—C24120.12 (19)
C2—Fe1—C340.60 (8)C22—C23—H23119.9
C1—Fe1—C468.84 (8)C24—C23—H23119.9
C5—Fe1—C440.73 (8)C25—C24—C23119.90 (19)
C10—Fe1—C4125.19 (9)C25—C24—H24120.0
C8—Fe1—C4121.73 (9)C23—C24—H24120.0
C9—Fe1—C4108.32 (9)C24—C25—C26120.26 (19)
C6—Fe1—C4161.77 (10)C24—C25—H25119.9
C7—Fe1—C4156.43 (10)C26—C25—H25119.9
C2—Fe1—C468.26 (8)C21—C26—C25120.45 (18)
C3—Fe1—C440.31 (9)C21—C26—H26119.8
C2—C1—C5107.81 (17)C25—C26—H26119.8
C2—C1—C11123.88 (17)C32—C27—C28119.27 (17)
C5—C1—C11128.23 (17)C32—C27—P1117.97 (14)
C2—C1—Fe170.27 (10)C28—C27—P1122.73 (14)
C5—C1—Fe169.45 (10)C29—C28—C27120.15 (19)
C11—C1—Fe1123.25 (13)C29—C28—H28119.9
C3—C2—C1107.85 (18)C27—C28—H28119.9
C3—C2—Fe169.82 (11)C30—C29—C28120.12 (19)
C1—C2—Fe168.76 (10)C30—C29—H29119.9
C3—C2—H2126.1C28—C29—H29119.9
C1—C2—H2126.1C29—C30—C31120.12 (19)
Fe1—C2—H2126.9C29—C30—H30119.9
C4—C3—C2108.42 (18)C31—C30—H30119.9
C4—C3—Fe169.89 (12)C30—C31—C32120.02 (19)
C2—C3—Fe169.58 (11)C30—C31—H31120.0
C4—C3—H3125.8C32—C31—H31120.0
C2—C3—H3125.8C31—C32—C27120.29 (18)
Fe1—C3—H3126.3C31—C32—H32119.9
C3—C4—C5108.64 (18)C27—C32—H32119.9
C3—C4—Fe169.80 (12)C39—P2—C45102.75 (8)
C5—C4—Fe168.97 (11)C39—P2—C33104.88 (8)
C3—C4—H4125.7C45—P2—C33102.24 (8)
C5—C4—H4125.7C39—P2—Cu1113.77 (6)
Fe1—C4—H4127.1C45—P2—Cu1117.65 (6)
C4—C5—C1107.27 (19)C33—P2—Cu1113.94 (6)
C4—C5—Fe170.31 (12)C38—C33—C34118.62 (16)
C1—C5—Fe168.96 (11)C38—C33—P2123.31 (13)
C4—C5—H5126.4C34—C33—P2118.01 (13)
C1—C5—H5126.4C35—C34—C33120.86 (17)
Fe1—C5—H5125.9C35—C34—H34119.6
C10—C6—C7108.1 (2)C33—C34—H34119.6
C10—C6—Fe169.72 (12)C34—C35—C36119.91 (17)
C7—C6—Fe169.83 (12)C34—C35—H35120.0
C10—C6—H6125.9C36—C35—H35120.0
C7—C6—H6125.9C37—C36—C35119.72 (17)
Fe1—C6—H6126.1C37—C36—H36120.1
C8—C7—C6107.5 (2)C35—C36—H36120.1
C8—C7—Fe169.70 (12)C36—C37—C38120.52 (17)
C6—C7—Fe169.68 (12)C36—C37—H37119.7
C8—C7—H7126.2C38—C37—H37119.7
C6—C7—H7126.2C37—C38—C33120.35 (17)
Fe1—C7—H7126.0C37—C38—H38119.8
C9—C8—C7108.6 (2)C33—C38—H38119.8
C9—C8—Fe169.92 (12)C40—C39—C44119.09 (17)
C7—C8—Fe169.98 (12)C40—C39—P2124.09 (14)
C9—C8—H8125.7C44—C39—P2116.78 (13)
C7—C8—H8125.7C39—C40—C41120.34 (18)
Fe1—C8—H8126.0C39—C40—H40119.8
C8—C9—C10107.97 (19)C41—C40—H40119.8
C8—C9—Fe169.89 (12)C42—C41—C40120.16 (19)
C10—C9—Fe169.74 (12)C42—C41—H41119.9
C8—C9—H9126.0C40—C41—H41119.9
C10—C9—H9126.0C41—C42—C43119.79 (18)
Fe1—C9—H9125.9C41—C42—H42120.1
C6—C10—C9107.8 (2)C43—C42—H42120.1
C6—C10—Fe169.84 (12)C42—C43—C44120.36 (18)
C9—C10—Fe169.78 (13)C42—C43—H43119.8
C6—C10—H10126.1C44—C43—H43119.8
C9—C10—H10126.1C43—C44—C39120.26 (17)
Fe1—C10—H10125.9C43—C44—H44119.9
O1—C11—C12125.16 (16)C39—C44—H44119.9
O1—C11—C1116.83 (16)C46—C45—C50118.94 (17)
C12—C11—C1117.99 (16)C46—C45—P2124.66 (14)
C13—C12—C11125.61 (16)C50—C45—P2116.31 (14)
C13—C12—H12117.2C45—C46—C47120.32 (19)
C11—C12—H12117.2C45—C46—H46119.8
C11—O1—Cu1125.67 (11)C47—C46—H46119.8
O2—C13—C12130.66 (16)C48—C47—C46120.26 (19)
O2—C13—C14112.84 (15)C48—C47—H47119.9
C12—C13—C14116.35 (15)C46—C47—H47119.9
C13—O2—Cu1121.41 (10)C47—C48—C49119.98 (18)
F2—C14—F3106.19 (16)C47—C48—H48120.0
F2—C14—F1106.75 (17)C49—C48—H48120.0
F3—C14—F1105.12 (17)C48—C49—C50120.23 (18)
F2—C14—C13114.86 (16)C48—C49—H49119.9
F3—C14—C13112.97 (14)C50—C49—H49119.9
F1—C14—C13110.30 (16)C49—C50—C45120.25 (19)
O2—Cu1—O191.08 (4)C49—C50—H50119.9
O2—Cu1—P2109.54 (4)C45—C50—H50119.9
C5—Fe1—C1—C2118.78 (16)C5—Fe1—C9—C8160.41 (13)
C10—Fe1—C1—C2160.17 (12)C10—Fe1—C9—C8119.03 (19)
C8—Fe1—C1—C243.9 (3)C6—Fe1—C9—C881.21 (14)
C9—Fe1—C1—C2166.9 (2)C7—Fe1—C9—C837.36 (14)
C6—Fe1—C1—C2118.24 (12)C2—Fe1—C9—C840.9 (3)
C7—Fe1—C1—C276.30 (14)C3—Fe1—C9—C875.87 (16)
C3—Fe1—C1—C237.41 (12)C4—Fe1—C9—C8117.81 (14)
C4—Fe1—C1—C280.79 (13)C1—Fe1—C9—C1044.6 (3)
C10—Fe1—C1—C581.05 (14)C5—Fe1—C9—C1080.55 (15)
C8—Fe1—C1—C5162.7 (2)C8—Fe1—C9—C10119.03 (19)
C9—Fe1—C1—C548.1 (3)C6—Fe1—C9—C1037.82 (14)
C6—Fe1—C1—C5122.98 (13)C7—Fe1—C9—C1081.67 (14)
C7—Fe1—C1—C5164.92 (13)C2—Fe1—C9—C10159.9 (2)
C2—Fe1—C1—C5118.78 (16)C3—Fe1—C9—C10165.10 (14)
C3—Fe1—C1—C581.37 (13)C4—Fe1—C9—C10123.16 (14)
C4—Fe1—C1—C537.98 (13)C7—C6—C10—C90.2 (2)
C5—Fe1—C1—C11123.0 (2)Fe1—C6—C10—C959.70 (15)
C10—Fe1—C1—C1141.94 (19)C7—C6—C10—Fe159.50 (14)
C8—Fe1—C1—C1174.3 (3)C8—C9—C10—C60.1 (2)
C9—Fe1—C1—C1174.9 (3)Fe1—C9—C10—C659.74 (15)
C6—Fe1—C1—C110.01 (18)C8—C9—C10—Fe159.67 (15)
C7—Fe1—C1—C1141.93 (19)C1—Fe1—C10—C678.60 (15)
C2—Fe1—C1—C11118.2 (2)C5—Fe1—C10—C6122.41 (13)
C3—Fe1—C1—C11155.64 (18)C8—Fe1—C10—C681.30 (14)
C4—Fe1—C1—C11160.98 (18)C9—Fe1—C10—C6118.83 (19)
C5—C1—C2—C30.5 (2)C7—Fe1—C10—C637.63 (13)
C11—C1—C2—C3176.50 (17)C2—Fe1—C10—C641.8 (3)
Fe1—C1—C2—C359.07 (13)C3—Fe1—C10—C6158.8 (2)
C5—C1—C2—Fe159.55 (13)C4—Fe1—C10—C6164.67 (13)
C11—C1—C2—Fe1117.43 (17)C1—Fe1—C10—C9162.57 (13)
C1—Fe1—C2—C3119.55 (17)C5—Fe1—C10—C9118.75 (14)
C5—Fe1—C2—C381.07 (13)C8—Fe1—C10—C937.54 (14)
C10—Fe1—C2—C3169.6 (2)C6—Fe1—C10—C9118.83 (19)
C8—Fe1—C2—C377.43 (15)C7—Fe1—C10—C981.20 (15)
C9—Fe1—C2—C347.4 (3)C2—Fe1—C10—C9160.6 (2)
C6—Fe1—C2—C3159.83 (13)C3—Fe1—C10—C940.0 (3)
C7—Fe1—C2—C3118.43 (14)C4—Fe1—C10—C976.49 (16)
C4—Fe1—C2—C337.23 (13)C2—C1—C11—O124.3 (3)
C5—Fe1—C2—C138.49 (11)C5—C1—C11—O1159.41 (18)
C10—Fe1—C2—C150.1 (3)Fe1—C1—C11—O1111.61 (17)
C8—Fe1—C2—C1163.02 (12)C2—C1—C11—C12154.08 (17)
C9—Fe1—C2—C1166.9 (2)C5—C1—C11—C1222.3 (3)
C6—Fe1—C2—C180.61 (14)Fe1—C1—C11—C1266.7 (2)
C7—Fe1—C2—C1122.01 (12)O1—C11—C12—C131.7 (3)
C3—Fe1—C2—C1119.55 (17)C1—C11—C12—C13176.47 (17)
C4—Fe1—C2—C182.33 (12)C12—C11—O1—Cu13.4 (2)
C1—C2—C3—C40.9 (2)C1—C11—O1—Cu1178.44 (11)
Fe1—C2—C3—C459.28 (14)C11—C12—C13—O27.8 (3)
C1—C2—C3—Fe158.40 (13)C11—C12—C13—C14167.41 (18)
C1—Fe1—C3—C481.96 (12)C12—C13—O2—Cu16.8 (3)
C5—Fe1—C3—C437.16 (12)C14—C13—O2—Cu1168.52 (12)
C10—Fe1—C3—C448.7 (3)O2—C13—C14—F2164.16 (17)
C8—Fe1—C3—C4119.53 (14)C12—C13—C14—F219.8 (3)
C9—Fe1—C3—C478.72 (15)O2—C13—C14—F342.2 (2)
C6—Fe1—C3—C4167.84 (19)C12—C13—C14—F3141.79 (18)
C7—Fe1—C3—C4161.20 (13)O2—C13—C14—F175.17 (19)
C2—Fe1—C3—C4119.70 (17)C12—C13—C14—F1100.89 (19)
C1—Fe1—C3—C237.74 (12)C13—O2—Cu1—O11.56 (14)
C5—Fe1—C3—C282.54 (13)C13—O2—Cu1—P2111.18 (13)
C10—Fe1—C3—C2168.4 (2)C13—O2—Cu1—P1103.52 (13)
C8—Fe1—C3—C2120.76 (13)C11—O1—Cu1—O23.09 (14)
C9—Fe1—C3—C2161.58 (13)C11—O1—Cu1—P2107.88 (14)
C6—Fe1—C3—C248.1 (3)C11—O1—Cu1—P1113.94 (14)
C7—Fe1—C3—C279.10 (14)O2—Cu1—P1—C2777.72 (7)
C4—Fe1—C3—C2119.70 (17)O1—Cu1—P1—C27174.00 (7)
C2—C3—C4—C50.9 (2)P2—Cu1—P1—C2759.45 (7)
Fe1—C3—C4—C558.15 (14)O2—Cu1—P1—C1544.16 (7)
C2—C3—C4—Fe159.09 (14)O1—Cu1—P1—C1552.12 (7)
C1—Fe1—C4—C381.66 (12)P2—Cu1—P1—C15178.67 (6)
C5—Fe1—C4—C3120.42 (17)O2—Cu1—P1—C21161.62 (7)
C10—Fe1—C4—C3162.11 (13)O1—Cu1—P1—C2165.34 (7)
C8—Fe1—C4—C378.29 (15)P2—Cu1—P1—C2161.21 (7)
C9—Fe1—C4—C3120.43 (14)C27—P1—C15—C2089.84 (17)
C6—Fe1—C4—C3164.6 (2)C21—P1—C15—C2018.67 (18)
C7—Fe1—C4—C343.8 (3)Cu1—P1—C15—C20142.42 (14)
C2—Fe1—C4—C337.48 (12)C27—P1—C15—C1690.27 (15)
C1—Fe1—C4—C538.77 (12)C21—P1—C15—C16161.22 (14)
C10—Fe1—C4—C577.46 (15)Cu1—P1—C15—C1637.46 (16)
C8—Fe1—C4—C5161.29 (13)C20—C15—C16—C170.8 (3)
C9—Fe1—C4—C5119.14 (14)P1—C15—C16—C17179.08 (15)
C6—Fe1—C4—C544.2 (3)C15—C16—C17—C180.8 (3)
C7—Fe1—C4—C5164.22 (19)C16—C17—C18—C191.7 (3)
C2—Fe1—C4—C582.94 (13)C17—C18—C19—C201.0 (3)
C3—Fe1—C4—C5120.42 (17)C18—C19—C20—C150.6 (3)
C3—C4—C5—C10.6 (2)C16—C15—C20—C191.5 (3)
Fe1—C4—C5—C159.30 (13)P1—C15—C20—C19178.40 (14)
C3—C4—C5—Fe158.66 (14)C27—P1—C21—C260.86 (17)
C2—C1—C5—C40.1 (2)C15—P1—C21—C26109.86 (16)
C11—C1—C5—C4176.90 (18)Cu1—P1—C21—C26126.12 (14)
Fe1—C1—C5—C460.16 (13)C27—P1—C21—C22178.99 (14)
C2—C1—C5—Fe160.06 (13)C15—P1—C21—C2272.02 (15)
C11—C1—C5—Fe1116.75 (19)Cu1—P1—C21—C2252.01 (15)
C1—Fe1—C5—C4118.39 (18)C26—C21—C22—C230.9 (3)
C10—Fe1—C5—C4122.61 (14)P1—C21—C22—C23179.06 (14)
C8—Fe1—C5—C445.6 (3)C21—C22—C23—C241.1 (3)
C9—Fe1—C5—C480.06 (16)C22—C23—C24—C250.3 (3)
C6—Fe1—C5—C4164.56 (13)C23—C24—C25—C260.7 (3)
C7—Fe1—C5—C4160.5 (2)C22—C21—C26—C250.1 (3)
C2—Fe1—C5—C480.45 (13)P1—C21—C26—C25177.94 (15)
C3—Fe1—C5—C436.80 (13)C24—C25—C26—C210.9 (3)
C10—Fe1—C5—C1119.00 (13)C15—P1—C27—C32171.14 (14)
C8—Fe1—C5—C1164.0 (2)C21—P1—C27—C3281.48 (15)
C9—Fe1—C5—C1161.55 (12)Cu1—P1—C27—C3244.31 (16)
C6—Fe1—C5—C177.05 (15)C15—P1—C27—C286.69 (17)
C7—Fe1—C5—C142.1 (3)C21—P1—C27—C28100.69 (16)
C2—Fe1—C5—C137.94 (11)Cu1—P1—C27—C28133.52 (14)
C3—Fe1—C5—C181.59 (12)C32—C27—C28—C290.4 (3)
C4—Fe1—C5—C1118.39 (18)P1—C27—C28—C29177.39 (14)
C1—Fe1—C6—C10120.26 (13)C27—C28—C29—C301.3 (3)
C5—Fe1—C6—C1077.43 (15)C28—C29—C30—C310.7 (3)
C8—Fe1—C6—C1081.40 (15)C29—C30—C31—C320.7 (3)
C9—Fe1—C6—C1037.86 (14)C30—C31—C32—C271.6 (3)
C7—Fe1—C6—C10119.25 (19)C28—C27—C32—C311.0 (3)
C2—Fe1—C6—C10163.09 (13)P1—C27—C32—C31178.94 (15)
C3—Fe1—C6—C10162.1 (2)O2—Cu1—P2—C3976.44 (7)
C4—Fe1—C6—C1043.7 (3)O1—Cu1—P2—C39174.30 (7)
C1—Fe1—C6—C7120.49 (13)P1—Cu1—P2—C3960.86 (7)
C5—Fe1—C6—C7163.32 (12)O2—Cu1—P2—C4543.76 (8)
C10—Fe1—C6—C7119.25 (19)O1—Cu1—P2—C4554.10 (7)
C8—Fe1—C6—C737.85 (13)P1—Cu1—P2—C45178.94 (6)
C9—Fe1—C6—C781.39 (15)O2—Cu1—P2—C33163.39 (7)
C2—Fe1—C6—C777.66 (14)O1—Cu1—P2—C3365.53 (7)
C3—Fe1—C6—C742.9 (3)P1—Cu1—P2—C3359.31 (6)
C4—Fe1—C6—C7162.9 (2)C39—P2—C33—C3877.40 (16)
C10—C6—C7—C80.2 (2)C45—P2—C33—C3829.54 (16)
Fe1—C6—C7—C859.68 (15)Cu1—P2—C33—C38157.55 (13)
C10—C6—C7—Fe159.43 (15)C39—P2—C33—C34105.59 (14)
C1—Fe1—C7—C8162.93 (13)C45—P2—C33—C34147.47 (14)
C5—Fe1—C7—C8165.0 (2)Cu1—P2—C33—C3419.46 (15)
C10—Fe1—C7—C881.05 (15)C38—C33—C34—C351.5 (3)
C9—Fe1—C7—C837.23 (14)P2—C33—C34—C35178.64 (14)
C6—Fe1—C7—C8118.64 (19)C33—C34—C35—C361.3 (3)
C2—Fe1—C7—C8121.31 (13)C34—C35—C36—C370.3 (3)
C3—Fe1—C7—C879.52 (15)C35—C36—C37—C380.4 (3)
C4—Fe1—C7—C848.1 (3)C36—C37—C38—C330.2 (3)
C1—Fe1—C7—C678.43 (14)C34—C33—C38—C370.7 (3)
C5—Fe1—C7—C646.3 (3)P2—C33—C38—C37177.72 (14)
C10—Fe1—C7—C637.59 (14)C45—P2—C39—C40102.87 (17)
C8—Fe1—C7—C6118.64 (19)C33—P2—C39—C403.69 (18)
C9—Fe1—C7—C681.40 (15)Cu1—P2—C39—C40128.84 (15)
C2—Fe1—C7—C6120.06 (13)C45—P2—C39—C4479.61 (15)
C3—Fe1—C7—C6161.84 (12)C33—P2—C39—C44173.83 (14)
C4—Fe1—C7—C6166.74 (19)Cu1—P2—C39—C4448.68 (15)
C6—C7—C8—C90.2 (2)C44—C39—C40—C411.0 (3)
Fe1—C7—C8—C959.46 (15)P2—C39—C40—C41178.47 (16)
C6—C7—C8—Fe159.66 (14)C39—C40—C41—C420.4 (3)
C1—Fe1—C8—C9163.5 (2)C40—C41—C42—C430.2 (3)
C5—Fe1—C8—C947.6 (3)C41—C42—C43—C440.6 (3)
C10—Fe1—C8—C937.81 (14)C42—C43—C44—C391.2 (3)
C6—Fe1—C8—C981.66 (15)C40—C39—C44—C431.4 (3)
C7—Fe1—C8—C9119.66 (19)P2—C39—C44—C43179.08 (15)
C2—Fe1—C8—C9163.84 (13)C39—P2—C45—C4619.17 (18)
C3—Fe1—C8—C9122.27 (14)C33—P2—C45—C4689.41 (17)
C4—Fe1—C8—C980.83 (16)Cu1—P2—C45—C46144.98 (14)
C1—Fe1—C8—C743.8 (3)C39—P2—C45—C50164.25 (14)
C5—Fe1—C8—C7167.3 (2)C33—P2—C45—C5087.17 (15)
C10—Fe1—C8—C781.84 (15)Cu1—P2—C45—C5038.44 (16)
C9—Fe1—C8—C7119.66 (19)C50—C45—C46—C470.3 (3)
C6—Fe1—C8—C738.00 (13)P2—C45—C46—C47176.24 (15)
C2—Fe1—C8—C776.50 (15)C45—C46—C47—C480.7 (3)
C3—Fe1—C8—C7118.07 (14)C46—C47—C48—C490.9 (3)
C4—Fe1—C8—C7159.51 (13)C47—C48—C49—C500.2 (3)
C7—C8—C9—C100.1 (2)C48—C49—C50—C450.8 (3)
Fe1—C8—C9—C1059.58 (15)C46—C45—C50—C491.0 (3)
C7—C8—C9—Fe159.49 (15)P2—C45—C50—C49175.78 (15)
C1—Fe1—C9—C8163.6 (2)

Experimental details

Crystal data
Chemical formula[CuFe(C5H5)(C9H5F3O2)(C18H15P)2]
Mr911.15
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)11.02755 (13), 16.8178 (2), 12.50787 (14)
β (°) 115.2456 (14)
V3)2098.15 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.56 × 0.48 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.943, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21096, 8248, 7761
Rint0.015
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.052, 1.03
No. of reflections8248
No. of parameters532
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25
Absolute structureFlack (1983), 3945 Friedel pairs
Absolute structure parameter0.010 (6)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O1—Cu12.0821 (12)Cu1—P22.2405 (5)
O2—Cu12.0783 (11)Cu1—P12.2529 (5)
 

Acknowledgements

Financial assistance from the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the South African NRF and the University of the Free State is gratefully acknowledged.

References

First citationChen, T.-Y., Vaissermann, J. & Doppelt, P. (2001). Inorg. Chem. 40, 6167–6171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChi, K.-M., Farkas, J., Hampden-Smith, M. J., Kodas, T. T. & Duesler, E. N. (1992). J. Chem. Soc. Dalton Trans. pp. 3111–3117.  CSD CrossRef Web of Science Google Scholar
First citationCroxtall, B., Fawcett, J., Hope, E. G. & Stuart, A. M. (2003). J. Fluorine Chem. 119, 65–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationDoppelt, P. (1997). Microelectron. Eng. 37/38, 89–95.  Web of Science CrossRef CAS Google Scholar
First citationDoyle, G., Eriksen, K. A. & Van Engen, D. (1985). Organometallics, 4, 830–835.  CSD CrossRef CAS Web of Science Google Scholar
First citationFahlman, B. D. (2006). Curr. Org. Chem. 10, 1021–1033.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGromilov, S. A. & Baidina, I. A. (2004). J. Struct. Chem. 45, 1031–1081.  Web of Science CrossRef CAS Google Scholar
First citationHerberhold, H., Milius, W. & Akkus, N. (2004). Z. Naturforsch. Teil B, 59, 843–849.  CAS Google Scholar
First citationKaizaki, S. (2006). Coord. Chem. Rev. 250, 1804–1818.  Web of Science CrossRef CAS Google Scholar
First citationMarchetti, F., Pettinari, C., Pettinari, R., Cingolani, A., Camalli, M. & Spagna, R. (2000). Inorg. Chim. Acta, 299, 65–79.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPampaloni, G., Peloso, R., Graiff, C. & Tiripicchio, A. (2005). Organometallics, 24, 819–825.  Web of Science CSD CrossRef CAS Google Scholar
First citationPlessis, W. C. du, Erasmus, J. J. C., Lamprecht, G. J., Conradie, J., Cameron, T. S., Aquino, M. A. S. & Swarts, J. C. (1999). Can. J. Chem. 77, 378–386.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, H.-K., Hampden-Smith, M. J., Duesler, E. N. & Kodas, T. T. (1991). Polyhedron, 10, 645–647.  CSD CrossRef CAS Web of Science Google Scholar
First citationSteinborn, D. (2005). Dalton Trans. pp. 2664–2671.  Web of Science CrossRef Google Scholar
First citationTiitta, M. & Niinistou, L. (1997). Chem. Vap. Deposition, 3, 167–182.  CrossRef CAS Web of Science Google Scholar
First citationTsukube, H., Shinoda, S. & Tamiaki, H. (2002). Coord. Chem. Rev. 226, 227–234.  Web of Science CrossRef CAS Google Scholar
First citationVovna, V. I., Lvov, I. B., Slabzhennikov, S. N. & Ustinov, A. Y. (1998). J. Electron Spectrosc. 88–91, 109–117.  CrossRef CAS Google Scholar
First citationWaechtler, T., Roth, N., Mothes, R., Schulze, S., Schulz, S. E., Gessner, T., Lang, H. & Hietschold, M. (2009). J. Electrochem. Soc. Trans. 25, 277–287.  CAS Google Scholar
First citationYang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585–590.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m231-m232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds