organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-[(Hydrazinyl­­idene)meth­yl]-4-methyl-2-oxo-2H-chromen-7-yl 4-methyl­benzene­sulfonate

aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749, Republic of Korea, bInstitute of Structural Biology and Biophysics-2: Molecular Biophysics, Research Centre Jülich, D-52425 Jülich, Germany, cDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, and dDepartment of Chemistry, B. K. College, Belgaum 590 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 15 December 2010; accepted 29 December 2010; online 12 January 2011)

In the title compound, C18H16N2O5S, the coumarin ring system is nearly planar, with a maximum out-of-plane deviation of 0.078 (1) Å (r.m.s. deviation = 0.046 Å). The dihedral angle between the coumarin ring system and the toluene ring (r.m.s. deviation = 0.004 Å) is 2.77 (1)°. The crystal packing is stabilized by C—H⋯O and N—H⋯O inter­molecular hydrogen bonds generating C(8), C(9) and C(11) chains and R22(14), R22(23) and R43(13) ring graph sets.

Related literature

For the biological activity of coumarins, see: Kulkarni et al. (2006[Kulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795-2818.]); Kalkhambkar et al. (2008[Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. B. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178-2188.]); Laakso et al. (1994[Laakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod. 57, 128-133.]); Nofal et al. (2000[Nofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99-113.]). For related structures, see: Kokila et al. (1995[Kokila, M. K., Jain, A., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1995). Acta Cryst. C51, 2585-2586.]); Vasudevan et al. (1990[Vasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1990). Acta Cryst. C46, 2129-2131.]). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N2O5S

  • Mr = 372.39

  • Monoclinic, P 21 /n

  • a = 9.1947 (3) Å

  • b = 16.1867 (4) Å

  • c = 11.6538 (3) Å

  • β = 99.670 (1)°

  • V = 1709.81 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.2 × 0.19 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 26334 measured reflections

  • 4260 independent reflections

  • 3285 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.04

  • 4260 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 2.59 3.303 (2) 141
N2—H2B⋯O1ii 0.86 2.27 3.045 (2) 150
C10—H10⋯O4iii 0.93 2.55 3.469 (2) 169
C16—H16A⋯O4ii 0.96 2.55 3.405 (3) 149
C18—H18⋯O1iv 0.93 2.53 3.166 (2) 126
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Coumarins represent a group of naturally occurring lactones, whose potential as anti-inflammatory, anti-microbial, anticancer and protease inhibiting agents has recently been reviewed (Kulkarni et al., 2006). Coumarin derivatives with various substituents at the C-4 position with their biological activities have been reported from our laboratory (Kalkhambkar et al., 2008). Many natural coumarins are reported for their wide range of biological and antitumor properties (Nofal et al., 2000). Solid-state conformations of 4-aryloxymethyl and 4-aryl aminomethyl coumarins have been found to be significantly different. The former exhibits a centro-symmetric nature (Vasudevan et al., 1990) in the solid state, whereas the latter have been found to exhibit a layer like structure stabilized by inter molecular hydrogen bonds (Kokila et al., 1995). In view of biological importance of coumarin we synthesized the title compound and report here its structure.

The molecular structure of the title compound is shown in Fig.1. The coumarin ring system is nearly planar with a maximum out-of-plane deviation of 0.078 (1) Å (r.m.s. deviation = 0.046 Å). The dihedral angle between the coumarin ring system and the toluene ring (r.m.s. deviation = 0.004 Å) is 2.77 (1)°. Atoms O1 and C4 lie 0.066 (2) and 0.005 (2) Å, respectively, below the least-squares plane of the atoms (C1/C2/C3/C5/C6/O2). Atom C16 lies -0.008 (2) Å from the least-squares plane of the ring to which it is attached. Torsion angle C8—C7—C11—N1 (-15.2 (2)°) indicates slight deviation of hydrazonomethyl group from the plane of benzo-ring in coumarin moeity.

The crystal packing is stabilized by N—H···O and C—H···O intermolecular hydrogen bonds. N2—H2A···O5i, C18—H18···O1iv; N2—H2B···O1ii, C16—H16A···O4ii generate chains of C(9), C(11) {along [010]}; C(9), C(8) {along [100]}, respectively. These intermolecular hydrogen bonds, in turn, generate R22(14), R22(23) and R43(13) graph sets (Bernstein et al., 1995) (Table 1, Fig. 2). The crystal packing is further stabilized by C10—H10···O4iii intermolecular hydrogen bond generating C(8) chain along ac plane. The glide plane symmetry operation and translation along the a axis link the molecules into a three-dimensional network via intermolecular hydrogen bonds (Fig. 3).

Related literature top

For the biological activity of coumarins, see: Kulkarni et al. (2006); Kalkhambkar et al. (2008); Laakso et al. (1994); Nofal et al. (2000). For related structures, see: Kokila et al. (1995); Vasudevan et al. (1990). For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995).

For related literature, see:

Experimental top

A mixture of toluene-4-sulfonicacid-8-formyl-4-methyl-2-oxo-2H-chromen- 7-ylester (6 mmol), and hydrazine hydrate (6 mmol) in 20 ml of ethanol- acetic acid mixture (2:1) was refluxed on water bath for 6 h. Once the reaction was over, the excess of solvent was removed under reduced pressure and filtered the separated solids. The solids were then washed with excess of cold water, dried and crystallized from ethanol and dioxan mixture. Yield: 78%; Colorless crystalline solid (ethanol); mp 160–162 °C; Rf 0.66 (benzene); IR (KBr) cm-1 3405, 1724, 1627, 1341; 1H NMR (CDCl3 + TFA) δ 2.37 (3H, s), 2.54 (3H, s), 6.47 (1H, s), 7.34 (2H, s), 7.47 (6H, m), 8.68 (1H, s); Anal.Calc.for C18H16N2O5S: C, 58.05; H, 4.33; N, 7.52; Found: C, 57.91; H, 4.20; N, 7.27.

Refinement top

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic CH, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 and 0.86 Å, Uiso = 1.2Ueq (N) for NH2 atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I) showing the ring graph sets generated by N—H···O and C—H···O intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
[Figure 3] Fig. 3. The molecular packing of (I) showing C10—H10···O4 intermolecular interaction. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted.
8-[(Hydrazinylidene)methyl]-4-methyl-2-oxo-2H-chromen-7-yl 4-methylbenzenesulfonate top
Crystal data top
C18H16N2O5SF(000) = 776
Mr = 372.39Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7131 reflections
a = 9.1947 (3) Åθ = 2.2–27.3°
b = 16.1867 (4) ŵ = 0.22 mm1
c = 11.6538 (3) ÅT = 293 K
β = 99.670 (1)°Plate, colorless
V = 1709.81 (8) Å30.2 × 0.19 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3285 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 28.3°, θmin = 2.2°
phi and ω scansh = 1212
26334 measured reflectionsk = 2121
4260 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.5733P]
where P = (Fo2 + 2Fc2)/3
4260 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C18H16N2O5SV = 1709.81 (8) Å3
Mr = 372.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1947 (3) ŵ = 0.22 mm1
b = 16.1867 (4) ÅT = 293 K
c = 11.6538 (3) Å0.2 × 0.19 × 0.19 mm
β = 99.670 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3285 reflections with I > 2σ(I)
26334 measured reflectionsRint = 0.033
4260 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4260 reflectionsΔρmin = 0.40 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87241 (5)0.20073 (3)0.74789 (4)0.04805 (14)
O20.40215 (11)0.02903 (6)0.69872 (10)0.0400 (3)
O30.83056 (11)0.12613 (6)0.65832 (10)0.0381 (3)
O10.21065 (13)0.09419 (7)0.74469 (14)0.0591 (4)
O40.78108 (16)0.19431 (11)0.83435 (14)0.0793 (5)
O50.86864 (16)0.27548 (8)0.68331 (17)0.0777 (5)
C110.70098 (16)0.02353 (9)0.74255 (14)0.0371 (3)
H110.65080.05990.78370.045*
C70.61790 (16)0.04122 (9)0.67270 (13)0.0330 (3)
C80.67779 (16)0.11089 (9)0.62748 (13)0.0357 (3)
C50.37380 (16)0.09308 (9)0.57881 (13)0.0355 (3)
C60.46285 (16)0.03608 (9)0.64762 (13)0.0331 (3)
C121.05418 (18)0.17468 (10)0.80513 (14)0.0409 (4)
C171.3108 (2)0.20553 (11)0.83220 (17)0.0488 (4)
H171.38760.23920.81750.059*
C20.15966 (17)0.02146 (10)0.62033 (15)0.0416 (4)
H20.05780.01610.61270.050*
C90.59404 (19)0.16704 (11)0.55527 (15)0.0457 (4)
H90.63940.21070.52340.055*
C10.25173 (17)0.03775 (10)0.69100 (16)0.0417 (4)
C40.11620 (19)0.14562 (12)0.49470 (15)0.0484 (4)
H4A0.01500.13160.49580.073*
H4B0.13420.14510.41590.073*
H4C0.13630.19970.52720.073*
C30.21464 (17)0.08395 (10)0.56514 (14)0.0377 (3)
C100.44325 (19)0.15798 (11)0.53077 (15)0.0460 (4)
H100.38700.19550.48170.055*
C181.16766 (19)0.22511 (11)0.78238 (16)0.0453 (4)
H181.14800.27120.73460.054*
C141.2259 (2)0.08804 (12)0.92495 (17)0.0524 (4)
H141.24540.04190.97250.063*
C131.0825 (2)0.10645 (12)0.87741 (16)0.0500 (4)
H131.00540.07360.89350.060*
C151.34283 (19)0.13723 (11)0.90328 (16)0.0468 (4)
C161.4988 (2)0.11716 (14)0.9572 (2)0.0643 (5)
H16A1.56400.15830.93510.096*
H16B1.52510.06400.93060.096*
H16C1.50700.11641.04040.096*
N10.83982 (14)0.03170 (8)0.74886 (13)0.0411 (3)
N20.90695 (16)0.09370 (10)0.81607 (14)0.0519 (4)
H2A0.85590.12580.85260.062*
H2B1.00060.10090.82220.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0384 (2)0.0402 (2)0.0663 (3)0.00432 (16)0.01104 (19)0.01826 (19)
O20.0273 (5)0.0324 (5)0.0604 (7)0.0000 (4)0.0079 (5)0.0048 (5)
O30.0329 (5)0.0358 (6)0.0473 (6)0.0059 (4)0.0112 (4)0.0073 (5)
O10.0357 (6)0.0406 (7)0.1039 (11)0.0001 (5)0.0202 (7)0.0154 (7)
O40.0507 (8)0.1124 (13)0.0803 (10)0.0143 (8)0.0272 (8)0.0508 (10)
O50.0566 (9)0.0329 (7)0.1361 (15)0.0016 (6)0.0055 (9)0.0022 (8)
C110.0309 (7)0.0354 (8)0.0459 (8)0.0009 (6)0.0084 (6)0.0008 (6)
C70.0311 (7)0.0332 (7)0.0355 (7)0.0003 (5)0.0076 (6)0.0050 (6)
C80.0311 (7)0.0372 (7)0.0397 (8)0.0035 (6)0.0084 (6)0.0034 (6)
C50.0339 (7)0.0374 (8)0.0352 (7)0.0020 (6)0.0052 (6)0.0027 (6)
C60.0322 (7)0.0306 (7)0.0374 (7)0.0006 (5)0.0085 (6)0.0039 (6)
C120.0398 (8)0.0394 (8)0.0445 (8)0.0087 (6)0.0099 (7)0.0108 (7)
C170.0415 (9)0.0480 (9)0.0580 (10)0.0150 (7)0.0116 (8)0.0064 (8)
C20.0280 (7)0.0410 (8)0.0547 (10)0.0021 (6)0.0036 (7)0.0080 (7)
C90.0455 (9)0.0460 (9)0.0467 (9)0.0046 (7)0.0107 (7)0.0116 (7)
C10.0297 (7)0.0334 (8)0.0632 (10)0.0006 (6)0.0113 (7)0.0047 (7)
C40.0412 (9)0.0561 (10)0.0459 (9)0.0102 (8)0.0012 (7)0.0019 (8)
C30.0340 (7)0.0396 (8)0.0381 (8)0.0050 (6)0.0024 (6)0.0083 (6)
C100.0442 (9)0.0485 (10)0.0442 (9)0.0033 (7)0.0040 (7)0.0109 (7)
C180.0466 (9)0.0379 (8)0.0518 (10)0.0106 (7)0.0093 (7)0.0047 (7)
C140.0549 (11)0.0502 (10)0.0505 (10)0.0092 (8)0.0040 (8)0.0042 (8)
C130.0498 (10)0.0508 (10)0.0505 (10)0.0173 (8)0.0116 (8)0.0010 (8)
C150.0433 (9)0.0492 (10)0.0481 (9)0.0063 (7)0.0079 (7)0.0097 (7)
C160.0479 (11)0.0686 (13)0.0739 (14)0.0012 (9)0.0030 (10)0.0027 (11)
N10.0321 (6)0.0398 (7)0.0513 (8)0.0020 (5)0.0070 (6)0.0035 (6)
N20.0338 (7)0.0548 (9)0.0668 (10)0.0064 (6)0.0074 (7)0.0177 (7)
Geometric parameters (Å, º) top
S1—O41.4197 (15)C2—C31.342 (2)
S1—O51.4222 (16)C2—C11.442 (2)
S1—O31.6003 (11)C2—H20.9300
S1—C121.7441 (17)C9—C101.376 (2)
O2—C61.3742 (18)C9—H90.9300
O2—C11.3781 (18)C4—C31.497 (2)
O3—C81.4119 (18)C4—H4A0.9600
O1—C11.203 (2)C4—H4B0.9600
C11—N11.2732 (19)C4—H4C0.9600
C11—C71.461 (2)C10—H100.9300
C11—H110.9300C18—H180.9300
C7—C81.397 (2)C14—C131.374 (3)
C7—C61.409 (2)C14—C151.395 (2)
C8—C91.382 (2)C14—H140.9300
C5—C61.394 (2)C13—H130.9300
C5—C101.395 (2)C15—C161.501 (3)
C5—C31.453 (2)C16—H16A0.9600
C12—C181.385 (2)C16—H16B0.9600
C12—C131.387 (2)C16—H16C0.9600
C17—C151.383 (3)N1—N21.3561 (19)
C17—C181.384 (3)N2—H2A0.8600
C17—H170.9300N2—H2B0.8600
O4—S1—O5118.24 (11)O1—C1—C2126.59 (15)
O4—S1—O3107.55 (8)O2—C1—C2117.10 (14)
O5—S1—O3108.36 (9)C3—C4—H4A109.5
O4—S1—C12110.73 (10)C3—C4—H4B109.5
O5—S1—C12110.17 (9)H4A—C4—H4B109.5
O3—S1—C12100.20 (7)C3—C4—H4C109.5
C6—O2—C1121.77 (12)H4A—C4—H4C109.5
C8—O3—S1114.70 (9)H4B—C4—H4C109.5
N1—C11—C7122.14 (14)C2—C3—C5118.53 (14)
N1—C11—H11118.9C2—C3—C4121.58 (15)
C7—C11—H11118.9C5—C3—C4119.84 (15)
C8—C7—C6114.76 (13)C9—C10—C5120.70 (15)
C8—C7—C11125.94 (13)C9—C10—H10119.7
C6—C7—C11119.30 (13)C5—C10—H10119.7
C9—C8—C7123.11 (14)C17—C18—C12118.61 (17)
C9—C8—O3117.97 (13)C17—C18—H18120.7
C7—C8—O3118.91 (13)C12—C18—H18120.7
C6—C5—C10117.71 (14)C13—C14—C15121.31 (18)
C6—C5—C3118.63 (14)C13—C14—H14119.3
C10—C5—C3123.60 (14)C15—C14—H14119.3
O2—C6—C5120.98 (13)C14—C13—C12119.15 (16)
O2—C6—C7115.20 (13)C14—C13—H13120.4
C5—C6—C7123.80 (14)C12—C13—H13120.4
C18—C12—C13121.00 (16)C17—C15—C14118.17 (17)
C18—C12—S1119.25 (14)C17—C15—C16121.05 (17)
C13—C12—S1119.67 (13)C14—C15—C16120.78 (18)
C15—C17—C18121.75 (16)C15—C16—H16A109.5
C15—C17—H17119.1C15—C16—H16B109.5
C18—C17—H17119.1H16A—C16—H16B109.5
C3—C2—C1122.85 (14)C15—C16—H16C109.5
C3—C2—H2118.6H16A—C16—H16C109.5
C1—C2—H2118.6H16B—C16—H16C109.5
C10—C9—C8119.70 (15)C11—N1—N2117.71 (14)
C10—C9—H9120.2N1—N2—H2A120.0
C8—C9—H9120.2N1—N2—H2B120.0
O1—C1—O2116.30 (15)H2A—N2—H2B120.0
O4—S1—O3—C842.38 (14)C7—C8—C9—C103.9 (3)
O5—S1—O3—C886.51 (12)O3—C8—C9—C10174.80 (15)
C12—S1—O3—C8158.10 (11)C6—O2—C1—O1175.70 (15)
N1—C11—C7—C815.2 (2)C6—O2—C1—C24.0 (2)
N1—C11—C7—C6165.64 (15)C3—C2—C1—O1178.45 (18)
C6—C7—C8—C95.4 (2)C3—C2—C1—O21.2 (2)
C11—C7—C8—C9175.39 (15)C1—C2—C3—C51.0 (2)
C6—C7—C8—O3173.29 (13)C1—C2—C3—C4178.52 (15)
C11—C7—C8—O35.9 (2)C6—C5—C3—C20.7 (2)
S1—O3—C8—C972.10 (16)C10—C5—C3—C2176.51 (16)
S1—O3—C8—C7106.67 (13)C6—C5—C3—C4178.20 (14)
C1—O2—C6—C54.5 (2)C10—C5—C3—C41.0 (2)
C1—O2—C6—C7173.91 (13)C8—C9—C10—C50.5 (3)
C10—C5—C6—O2179.38 (14)C6—C5—C10—C92.9 (2)
C3—C5—C6—O22.0 (2)C3—C5—C10—C9174.32 (16)
C10—C5—C6—C71.1 (2)C15—C17—C18—C120.2 (3)
C3—C5—C6—C7176.24 (14)C13—C12—C18—C170.8 (3)
C8—C7—C6—O2175.49 (13)S1—C12—C18—C17177.42 (13)
C11—C7—C6—O23.8 (2)C15—C14—C13—C121.0 (3)
C8—C7—C6—C52.9 (2)C18—C12—C13—C141.3 (3)
C11—C7—C6—C5177.88 (14)S1—C12—C13—C14177.96 (14)
O4—S1—C12—C18133.39 (14)C18—C17—C15—C140.5 (3)
O5—S1—C12—C180.71 (17)C18—C17—C15—C16179.64 (18)
O3—S1—C12—C18113.30 (14)C13—C14—C15—C170.0 (3)
O4—S1—C12—C1343.30 (17)C13—C14—C15—C16179.07 (19)
O5—S1—C12—C13175.97 (14)C7—C11—N1—N2179.96 (14)
O3—S1—C12—C1370.01 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.593.303 (2)141
N2—H2B···O1ii0.862.273.045 (2)150
C10—H10···O4iii0.932.553.469 (2)169
C16—H16A···O4ii0.962.553.405 (3)149
C18—H18···O1iv0.932.533.166 (2)126
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H16N2O5S
Mr372.39
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.1947 (3), 16.1867 (4), 11.6538 (3)
β (°) 99.670 (1)
V3)1709.81 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.2 × 0.19 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26334, 4260, 3285
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.04
No. of reflections4260
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.593.303 (2)141
N2—H2B···O1ii0.862.273.045 (2)150
C10—H10···O4iii0.932.553.469 (2)169
C16—H16A···O4ii0.962.553.405 (3)149
C18—H18···O1iv0.932.533.166 (2)126
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

HY acknowledges Yeungnam University for the oppor­tunity to work as a Full-Time Foreign Instructor.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. B. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKokila, M. K., Jain, A., Puttaraja, Kulkarni, M. V. & Shivaprakash, N. C. (1995). Acta Cryst. C51, 2585–2586.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKulkarni, M. V., Kulkarni, G. M., Lin, C. H. & Sun, C. M. (2006). Curr. Med. Chem. 13, 2795–2818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaakso, J. A., Narske, E. D., Gloer, J. B., Wicklow, D. T. & Dowd, P. F. (1994). J. Nat. Prod. 57, 128–133.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNofal, Z. M., El-Zahar, M. & Abd El-Karim, S. (2000). Molecules, 5, 99–113.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVasudevan, K. T., Puttaraja, & Kulkarni, M. V. (1990). Acta Cryst. C46, 2129–2131.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds