inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages i13-i14

Disodium calcium dinickel(II) bis­­[diphosphate(V)] deca­hydrate

aDepartment of Chemistry, Jilin Normal University, Siping, Jilin 136000, People's Republic of China
*Correspondence e-mail: yunchengc63@163.com

(Received 24 December 2010; accepted 4 January 2011; online 15 January 2011)

In the title compound, Na2CaNi2(P2O7)2(H2O)10, there are two distinct P-atom sites, each tetra­hedrally coordinated by four O atoms. The resulting phosphate tetra­hedra link through a common O atom, forming a [P2O7]4− diphosphate unit. The Ni—O coordination is square pyramidal with four O atoms from two diphosphate groups in equatorial positions and the vertex occupied by a water O atom. The (P2O7)(H2O) units link the Ni atoms, forming a chain of pyramids and tetra­hedra. As a result of the d-glide and twofold-axis symmetry of space group Fdd2, the chains propagate along [101] and [10[\overline{1}]], and chains in adjacent layers are mutually orthogonal. The Ca cation, located on a rotation axis, and the Na cation are each octa­hedrally coordinated by four O atoms and two waters. The Ni-chain arrangement is stabilized by Ca and Na coordination and a network of O—H⋯O hydrogen bonds.

Related literature

For the isotypic copper(II)–diphosphate mineral wooldridge­ite, see: Cooper & Hawthorne (1999[Cooper, M. A. & Hawthorne, F. C. (1999). Can. Mineral. 37, 73-81.]). For the structure and magnetic properties of a diphosphate-bridged CuII complex, see: Kruger et al. (2001[Kruger, P. E., Doyle, R. P., Julve, M., Lloret, F. & Nieuwenhuyzen, M. (2001). Inorg. Chem. 40,1726-1727.]). For two other rare examples of NiII and CoII coordination complexes with diphosphate ligands, see: Ikotun et al. (2007[Ikotun, O. F., Armatus, N. G., Julve, M., Kruger, P. E., Lloret, F., Nieuvenhuyzen, M. & Doyle, R. P. (2007). Inorg. Chem. 46, 6668-6674.]); Marino et al. (2008[Marino, N., Mastropietro, T. F., Armentano, D., De Munno, G., Doyle, R. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 5152-5154.]). Geometric calculatios and checking were performed with PLATON (Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Experimental

Crystal data
  • Na2CaNi2(P2O7)2(H2O)10

  • Mr = 731.48

  • Orthorhombic, F d d 2

  • a = 11.9340 (11) Å

  • b = 32.774 (4) Å

  • c = 10.9860 (11) Å

  • V = 4296.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 290 K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.705, Tmax = 0.772

  • 5540 measured reflections

  • 2085 independent reflections

  • 1999 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.07

  • 2085 reflections

  • 150 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 974 Friedel pairs

  • Flack parameter: −0.011 (12)

Table 1
Selected bond lengths (Å)

Ca1—O8 2.254 (2)
Ca1—O8i 2.254 (2)
Ca1—O6ii 2.309 (2)
Ca1—O6iii 2.309 (2)
Ca1—O10 2.428 (2)
Ca1—O10i 2.428 (2)
Ni1—O4 1.933 (2)
Ni1—O3 1.951 (2)
Ni1—O1 1.957 (2)
Ni1—O2 1.970 (2)
Ni1—O5 2.353 (3)
Na1—O3 2.342 (3)
Na1—O2 2.353 (2)
Na1—O9iv 2.423 (3)
Na1—O10 2.450 (3)
Na1—O9 2.489 (4)
Na1—O11 2.902 (3)
Symmetry codes: (i) -x+1, -y, z; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 4}}, -y+{\script{1\over 4}}, z+{\script{1\over 4}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H52⋯O11 0.94 1.89 2.803 (4) 163
O5—H51⋯O12v 0.98 1.96 2.846 (4) 150
O9—H92⋯O4iii 0.86 2.14 2.819 (4) 136
O9—H91⋯O11vi 0.88 2.35 2.904 (4) 122
O10—H102⋯O1iii 0.95 1.75 2.687 (3) 170
O10—H101⋯O12vii 0.90 1.89 2.776 (3) 168
O11—H112⋯O8v 0.99 1.85 2.834 (3) 175
O11—H111⋯O7ii 0.92 2.04 2.953 (3) 173
O12—H122⋯O5viii 0.90 2.35 3.121 (4) 143
O12—H121⋯O6 0.93 1.87 2.772 (3) 162
Symmetry codes: (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 4}}, -y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (vii) x, y, z+1; (viii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of pyrophosphate-bridged coordination compounds have drawn considerable attention due to its ability to mediate electronic interactions between paramagnetic metal centers. The structure and magnetic properties of a pyrophosphate-bridged Cu(II) complex has been reported by Kruger et al. (2001). Two other rare examples of NiII (MnII) and CoII coordination complexes with pyrophosphate ligands and their magnetic properties have been described by Ikotun et al. (2007) and Marino et al. (2008).

Wooldridgeite is a hydrated sodium-calcium-copper pyrophosphate mineral, Na2CaCu2+2(P2O7)2(H2O)10, which is isotypic with the Ni2+ title pyrophosphate, described from the Judkins quarry, Nuneaton, Warwickshire, England (Cooper & Hawthorne, 1999). The geometric parameters of the copper mineral and the nickel title hydrate are very similar due to same space group and similar unit cell parameters. The vertex distances in the Wooldridgeite mineral (Cu—O4 and Cu—O4a) are described as 2.37 (2) Å and 3.39 (2) Å, respectively. Those for the nickel isotype are observed as Ni1—O5 = 2.353 (3) Å and Ni1—O5a = 3.355 (3) Å [calculated with PLATON (Spek, 2009)]. Relevant M—O distances (M = Ni, Ca, Na) of the title structure are presented in Table 1.

As shown in Fig. 1, there is one crystallographic NiII site surrounded by five O atoms in a square pyramidal or strongly distorted (4 + 1 + 1) octahedral arrangement, with Ni—O distances in the range of 1.933 (2) to 2.353 (3) Å, the long Ni—O distance is 3.355 (3) Å. Each Ni octahedron links through one trans pair of symmetry related vertices to other Ni octahedra to form a chain, this chain is decorated by [P2O7] groups to form a chain of octahedra and tetrahedra [Ni(P2O7)H2O]n (Fig. 2). These chains extend along [1 0 1] and [1 0 - 1] and linked into sheets by Na and Ca octahedra, the pattern of chains extending along [1 0 1] (Fig. 3). Together with the coordinated Ca and Na cations, a three-dimensional framework is generated by ten intermolecular O—H···O hydrogen bonds with water and phosphate oxygen atoms as acceptors (Table 2).

Related literature top

For the isotypic copper(II)–pyrophosphate mineral Wooldridgeite, see: Cooper & Hawthorne (1999). For the structure and magnetic properties of a pyrophosphate-bridged CuII complex, see: Kruger et al. (2001). For two other rare examples of NiII and CoII coordination complexes with pyrophosphate ligands, see: Ikotun et al. (2007); Marino et al. (2008). Geometric calculatios and checking were performed with PLATON (Spek 2009).

Experimental top

A mixture of Na4P2O7 (0.4476 g, 1.0 mmol), Ni(CH3COO)2 (0.2441 g, 0.98 mmol), Ca(CH3COO)2.H2O (0.1763 g, 1.0 mmol), 2,2-Bipyridyl (0.1502 g, 0.96 mmol) and water (15 ml) was adjusted to pH 3.49 with H2SO4 (1 mol/L) solution. The filtration was allowed to stand over several days to give green block single crystals in 42% yield. Elementary Analysis calculated for Na2CaNi2(P2O7)2(H2O)10: H 2.76, Ca 5.47, Na 6.29, Ni 16.05, O 52.50, P 16.94%; found: H 2.74, Ca 5.48, Na 6.28, Ni 16.07, O 52.52, P 16.95%.

Refinement top

H atoms of water molecules were located from difference Fourier maps and treated as riding mode with O—H distances in the range of 0.86 to 0.98 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(O)]

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The local coordination feature of the title compound. Displacement ellipsoids are drawn at the 30% probability level (symmetry code: a = -1/4 + x, 1/4 + y, -1/4 + z, b = 1/4 + x, 1/4 - y, 1/4 + z).
[Figure 2] Fig. 2. A view of chain construct of the title compound. H, Ca, Na, and O12 atoms are omitted for clarity.
[Figure 3] Fig. 3. A view of a section of the three-dimensional structure of the title compound. H-bonds are drawn as black dashed lines.
Disodium calcium dinickel(II) bis[diphosphate(V)] decahydrate top
Crystal data top
Na2CaNi2(P2O7)2(H2O)10F(000) = 2960
Mr = 731.48Dx = 2.261 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 937 reflections
a = 11.9340 (11) Åθ = 1.8–26.5°
b = 32.774 (4) ŵ = 2.44 mm1
c = 10.9860 (11) ÅT = 290 K
V = 4296.9 (8) Å3Block, green
Z = 80.15 × 0.13 × 0.11 mm
Data collection top
Bruker CCD APEXII
diffractometer
2085 independent reflections
Radiation source: fine-focus sealed tube1999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 914
Tmin = 0.705, Tmax = 0.772k = 4040
5540 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2085 reflectionsΔρmax = 0.22 e Å3
150 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), 974 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
Na2CaNi2(P2O7)2(H2O)10V = 4296.9 (8) Å3
Mr = 731.48Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 11.9340 (11) ŵ = 2.44 mm1
b = 32.774 (4) ÅT = 290 K
c = 10.9860 (11) Å0.15 × 0.13 × 0.11 mm
Data collection top
Bruker CCD APEXII
diffractometer
2085 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1999 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.772Rint = 0.030
5540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049Δρmax = 0.22 e Å3
S = 1.07Δρmin = 0.29 e Å3
2085 reflectionsAbsolute structure: Flack (1983), 974 Friedel pairs
150 parametersAbsolute structure parameter: 0.011 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50000.00000.62448 (8)0.01385 (17)
Ni10.86875 (3)0.110744 (11)0.47330 (3)0.01615 (10)
Na10.71250 (14)0.09782 (5)0.71990 (15)0.0492 (4)
P10.64133 (7)0.07042 (2)0.42464 (7)0.01640 (16)
P20.79550 (6)0.06891 (2)0.22939 (7)0.01653 (16)
O10.88590 (18)0.08175 (6)0.3187 (2)0.0249 (5)
O20.73480 (18)0.07854 (7)0.51498 (19)0.0238 (5)
O30.8414 (2)0.14096 (6)0.6234 (2)0.0296 (5)
O50.9793 (3)0.06393 (10)0.5826 (3)0.0684 (11)
H511.05450.05530.55900.082*
H520.95770.05810.66320.082*
O40.9895 (2)0.14533 (6)0.4175 (2)0.0305 (5)
O60.83644 (18)0.03723 (6)0.14145 (19)0.0221 (5)
O70.69943 (17)0.04685 (6)0.31024 (19)0.0180 (4)
O80.55500 (18)0.04126 (6)0.4715 (2)0.0246 (5)
O90.5427 (3)0.13839 (8)0.6683 (3)0.0494 (8)
H910.53080.16480.67330.059*
H920.49900.13170.72740.059*
O100.58195 (19)0.04368 (6)0.7792 (2)0.0275 (5)
H1010.61510.03510.84780.033*
H1020.51750.05950.79800.033*
O110.8778 (2)0.03869 (7)0.8000 (3)0.0375 (6)
H1110.85440.01200.79600.045*
H1120.94250.03870.85640.045*
O120.6562 (2)0.01268 (7)0.0001 (2)0.0369 (6)
H1210.71930.01510.04910.044*
H1220.62690.01240.01170.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0133 (4)0.0136 (4)0.0147 (4)0.0007 (3)0.0000.000
Ni10.01661 (18)0.01719 (17)0.01464 (17)0.00632 (16)0.00368 (16)0.00529 (14)
Na10.0593 (10)0.0601 (9)0.0283 (7)0.0349 (9)0.0115 (8)0.0071 (8)
P10.0166 (4)0.0160 (3)0.0166 (4)0.0011 (3)0.0018 (3)0.0013 (3)
P20.0168 (4)0.0169 (3)0.0159 (3)0.0026 (3)0.0006 (3)0.0005 (3)
O10.0189 (12)0.0328 (12)0.0230 (12)0.0051 (10)0.0009 (10)0.0112 (10)
O20.0220 (12)0.0326 (11)0.0169 (11)0.0081 (10)0.0014 (9)0.0028 (9)
O30.0385 (14)0.0263 (11)0.0241 (12)0.0140 (11)0.0132 (11)0.0087 (10)
O50.0506 (19)0.108 (3)0.0462 (18)0.042 (2)0.0165 (15)0.0406 (18)
O40.0346 (14)0.0267 (11)0.0301 (13)0.0153 (11)0.0136 (12)0.0113 (10)
O60.0208 (11)0.0243 (10)0.0212 (11)0.0050 (10)0.0013 (9)0.0080 (9)
O70.0182 (11)0.0160 (9)0.0198 (10)0.0015 (9)0.0020 (9)0.0029 (8)
O80.0219 (11)0.0281 (11)0.0238 (11)0.0075 (10)0.0015 (10)0.0040 (10)
O90.066 (2)0.0474 (16)0.0347 (14)0.0080 (15)0.0152 (14)0.0011 (12)
O100.0240 (12)0.0317 (12)0.0269 (13)0.0031 (11)0.0025 (10)0.0016 (10)
O110.0377 (15)0.0262 (11)0.0487 (17)0.0059 (11)0.0046 (12)0.0052 (12)
O120.0335 (15)0.0386 (13)0.0385 (16)0.0031 (12)0.0104 (11)0.0029 (12)
Geometric parameters (Å, º) top
Ca1—O82.254 (2)Na1—O9iv2.423 (3)
Ca1—O8i2.254 (2)Na1—O102.450 (3)
Ca1—O6ii2.309 (2)Na1—O92.489 (4)
Ca1—O6iii2.309 (2)Na1—O112.902 (3)
Ca1—O102.428 (2)P1—O81.497 (2)
Ca1—O10i2.428 (2)P1—O3v1.508 (2)
Ca1—P2iii3.5191 (8)P1—O21.517 (2)
Ca1—P2ii3.5191 (8)P1—O71.630 (2)
Ca1—Na14.2200 (15)P2—O61.500 (2)
Ca1—Na1i4.2200 (15)P2—O4v1.511 (2)
Ni1—O41.933 (2)P2—O11.518 (2)
Ni1—O31.951 (2)P2—O71.621 (2)
Ni1—O11.957 (2)P2—Ca1vi3.5191 (8)
Ni1—O21.970 (2)O3—P1iv1.508 (2)
Ni1—O52.353 (3)O4—P2iv1.511 (2)
Ni1—Na13.3160 (16)O6—Ca1vi2.309 (2)
Na1—O32.342 (3)O9—Na1v2.423 (3)
Na1—O22.353 (2)
O8—Ca1—O8i83.63 (12)O5—Ni1—Na179.34 (8)
O8—Ca1—O6ii97.52 (8)O3—Na1—O269.82 (9)
O8i—Ca1—O6ii89.39 (8)O3—Na1—O9iv92.02 (10)
O8—Ca1—O6iii89.39 (8)O2—Na1—O9iv150.00 (11)
O8i—Ca1—O6iii97.52 (8)O3—Na1—O10167.19 (11)
O6ii—Ca1—O6iii170.74 (11)O2—Na1—O1097.58 (9)
O8—Ca1—O1092.92 (7)O9iv—Na1—O1098.45 (10)
O8i—Ca1—O10173.07 (8)O3—Na1—O996.27 (10)
O6ii—Ca1—O1085.10 (8)O2—Na1—O991.02 (10)
O6iii—Ca1—O1088.42 (7)O9iv—Na1—O9115.25 (10)
O8—Ca1—O10i173.07 (8)O10—Na1—O985.97 (9)
O8i—Ca1—O10i92.92 (7)O3—Na1—O1195.40 (10)
O6ii—Ca1—O10i88.42 (7)O2—Na1—O1191.94 (9)
O6iii—Ca1—O10i85.10 (8)O9iv—Na1—O1165.37 (9)
O10—Ca1—O10i91.12 (11)O10—Na1—O1182.41 (8)
O8—Ca1—P2iii93.50 (5)O9—Na1—O11168.28 (10)
O8i—Ca1—P2iii115.28 (6)O3—Na1—Ni135.32 (6)
O6ii—Ca1—P2iii153.99 (6)O2—Na1—Ni135.82 (6)
O6iii—Ca1—P2iii17.90 (5)O9iv—Na1—Ni1119.28 (9)
O10—Ca1—P2iii70.83 (5)O10—Na1—Ni1131.87 (8)
O10i—Ca1—P2iii82.51 (6)O9—Na1—Ni1101.75 (8)
O8—Ca1—P2ii115.28 (6)O11—Na1—Ni187.18 (7)
O8i—Ca1—P2ii93.50 (5)O3—Na1—Ca1137.79 (8)
O6ii—Ca1—P2ii17.90 (5)O2—Na1—Ca168.06 (6)
O6iii—Ca1—P2ii153.99 (6)O9iv—Na1—Ca1127.04 (8)
O10—Ca1—P2ii82.51 (6)O10—Na1—Ca129.95 (6)
O10i—Ca1—P2ii70.83 (5)O9—Na1—Ca181.95 (7)
P2iii—Ca1—P2ii141.77 (4)O11—Na1—Ca188.65 (6)
O8—Ca1—Na163.55 (6)Ni1—Na1—Ca1103.42 (4)
O8i—Ca1—Na1144.66 (7)O8—P1—O3v113.09 (14)
O6ii—Ca1—Na182.73 (6)O8—P1—O2113.15 (13)
O6iii—Ca1—Na194.96 (6)O3v—P1—O2112.81 (14)
O10—Ca1—Na130.25 (6)O8—P1—O7104.81 (11)
O10i—Ca1—Na1121.07 (6)O3v—P1—O7106.16 (12)
P2iii—Ca1—Na181.25 (3)O2—P1—O7105.95 (12)
P2ii—Ca1—Na189.39 (3)O6—P2—O4v113.05 (13)
O8—Ca1—Na1i144.66 (7)O6—P2—O1112.14 (12)
O8i—Ca1—Na1i63.55 (6)O4v—P2—O1112.95 (13)
O6ii—Ca1—Na1i94.96 (6)O6—P2—O7105.94 (11)
O6iii—Ca1—Na1i82.73 (6)O4v—P2—O7106.24 (12)
O10—Ca1—Na1i121.07 (6)O1—P2—O7105.81 (12)
O10i—Ca1—Na1i30.25 (6)O6—P2—Ca1vi28.24 (8)
P2iii—Ca1—Na1i89.39 (3)O4v—P2—Ca1vi131.10 (9)
P2ii—Ca1—Na1i81.25 (3)O1—P2—Ca1vi84.08 (9)
Na1—Ca1—Na1i151.23 (5)O7—P2—Ca1vi112.57 (7)
O4—Ni1—O395.47 (9)P2—O1—Ni1128.42 (13)
O4—Ni1—O186.08 (9)P1—O2—Ni1122.61 (13)
O3—Ni1—O1175.96 (11)P1—O2—Na1126.15 (13)
O4—Ni1—O2173.20 (10)Ni1—O2—Na199.80 (9)
O3—Ni1—O286.53 (9)P1iv—O3—Ni1132.45 (14)
O1—Ni1—O291.52 (9)P1iv—O3—Na1126.69 (13)
O4—Ni1—O597.25 (11)Ni1—O3—Na1100.73 (10)
O3—Ni1—O589.63 (11)P2iv—O4—Ni1129.96 (14)
O1—Ni1—O593.88 (11)P2—O6—Ca1vi133.86 (13)
O2—Ni1—O589.25 (10)P2—O7—P1120.81 (12)
O4—Ni1—Na1138.85 (7)P1—O8—Ca1147.13 (15)
O3—Ni1—Na143.95 (7)Na1v—O9—Na1128.74 (13)
O1—Ni1—Na1134.90 (7)Ca1—O10—Na1119.80 (10)
O2—Ni1—Na144.37 (6)
O4—Ni1—Na1—O311.86 (18)O2—Ni1—O1—P240.92 (18)
O1—Ni1—Na1—O3174.48 (15)O5—Ni1—O1—P2130.27 (18)
O2—Ni1—Na1—O3159.31 (16)Na1—Ni1—O1—P251.5 (2)
O5—Ni1—Na1—O3100.70 (14)O8—P1—O2—Ni1173.16 (13)
O4—Ni1—Na1—O2171.18 (15)O3v—P1—O2—Ni156.86 (19)
O3—Ni1—Na1—O2159.31 (16)O7—P1—O2—Ni158.88 (17)
O1—Ni1—Na1—O215.16 (14)O8—P1—O2—Na150.97 (19)
O5—Ni1—Na1—O299.98 (13)O3v—P1—O2—Na179.01 (17)
O4—Ni1—Na1—O9iv31.96 (17)O7—P1—O2—Na1165.25 (12)
O3—Ni1—Na1—O9iv43.83 (13)O4—Ni1—O2—P123.7 (9)
O1—Ni1—Na1—O9iv141.70 (12)O3—Ni1—O2—P1130.99 (16)
O2—Ni1—Na1—O9iv156.86 (14)O1—Ni1—O2—P145.47 (16)
O5—Ni1—Na1—O9iv56.88 (12)O5—Ni1—O2—P1139.33 (17)
O4—Ni1—Na1—O10168.76 (14)Na1—Ni1—O2—P1145.2 (2)
O3—Ni1—Na1—O10179.38 (18)O4—Ni1—O2—Na1121.5 (7)
O1—Ni1—Na1—O104.90 (17)O3—Ni1—O2—Na114.22 (11)
O2—Ni1—Na1—O1020.07 (13)O1—Ni1—O2—Na1169.32 (10)
O5—Ni1—Na1—O1079.92 (15)O5—Ni1—O2—Na175.45 (11)
O4—Ni1—Na1—O996.08 (14)O3—Na1—O2—P1130.91 (17)
O3—Ni1—Na1—O984.22 (13)O9iv—Na1—O2—P1173.25 (18)
O1—Ni1—Na1—O990.26 (12)O10—Na1—O2—P151.46 (17)
O2—Ni1—Na1—O975.10 (12)O9—Na1—O2—P134.60 (16)
O5—Ni1—Na1—O9175.08 (11)O11—Na1—O2—P1134.06 (15)
O4—Ni1—Na1—O1191.57 (14)Ni1—Na1—O2—P1143.5 (2)
O3—Ni1—Na1—O11103.44 (13)Ca1—Na1—O2—P146.30 (13)
O1—Ni1—Na1—O1182.09 (12)O3—Na1—O2—Ni112.57 (9)
O2—Ni1—Na1—O1197.25 (11)O9iv—Na1—O2—Ni143.3 (2)
O5—Ni1—Na1—O112.73 (11)O10—Na1—O2—Ni1165.06 (10)
O4—Ni1—Na1—Ca1179.51 (11)O9—Na1—O2—Ni1108.87 (10)
O3—Ni1—Na1—Ca1168.63 (13)O11—Na1—O2—Ni182.47 (10)
O1—Ni1—Na1—Ca15.85 (11)Ca1—Na1—O2—Ni1170.23 (10)
O2—Ni1—Na1—Ca19.31 (9)O4—Ni1—O3—P1iv3.7 (2)
O5—Ni1—Na1—Ca190.67 (10)O1—Ni1—O3—P1iv108.7 (13)
O8—Ca1—Na1—O321.31 (14)O2—Ni1—O3—P1iv169.8 (2)
O8i—Ca1—Na1—O32.33 (19)O5—Ni1—O3—P1iv100.9 (2)
O6ii—Ca1—Na1—O380.87 (14)Na1—Ni1—O3—P1iv175.9 (3)
O6iii—Ca1—Na1—O3108.14 (14)O4—Ni1—O3—Na1172.19 (12)
O10—Ca1—Na1—O3173.6 (2)O1—Ni1—O3—Na175.5 (14)
O10i—Ca1—Na1—O3164.60 (14)O2—Ni1—O3—Na114.33 (11)
P2iii—Ca1—Na1—O3119.68 (13)O5—Ni1—O3—Na174.94 (12)
P2ii—Ca1—Na1—O397.53 (13)O2—Na1—O3—P1iv171.1 (2)
Na1i—Ca1—Na1—O3167.93 (14)O9iv—Na1—O3—P1iv33.4 (2)
O8—Ca1—Na1—O225.22 (9)O10—Na1—O3—P1iv178.3 (5)
O8i—Ca1—Na1—O21.58 (13)O9—Na1—O3—P1iv82.3 (2)
O6ii—Ca1—Na1—O276.96 (9)O11—Na1—O3—P1iv98.82 (18)
O6iii—Ca1—Na1—O2112.05 (9)Ni1—Na1—O3—P1iv176.2 (3)
O10—Ca1—Na1—O2169.71 (14)Ca1—Na1—O3—P1iv167.22 (12)
O10i—Ca1—Na1—O2160.69 (9)O2—Na1—O3—Ni112.72 (10)
P2iii—Ca1—Na1—O2123.59 (7)O9iv—Na1—O3—Ni1142.82 (11)
P2ii—Ca1—Na1—O293.62 (7)O10—Na1—O3—Ni12.1 (6)
Na1i—Ca1—Na1—O2164.03 (7)O9—Na1—O3—Ni1101.50 (11)
O8—Ca1—Na1—O9iv175.17 (13)O11—Na1—O3—Ni177.37 (12)
O8i—Ca1—Na1—O9iv151.54 (13)Ca1—Na1—O3—Ni116.59 (19)
O6ii—Ca1—Na1—O9iv72.99 (12)O3—Ni1—O4—P2iv4.3 (2)
O6iii—Ca1—Na1—O9iv97.99 (12)O1—Ni1—O4—P2iv179.5 (2)
O10—Ca1—Na1—O9iv19.75 (14)O2—Ni1—O4—P2iv111.1 (8)
O10i—Ca1—Na1—O9iv10.73 (13)O5—Ni1—O4—P2iv86.0 (2)
P2iii—Ca1—Na1—O9iv86.45 (11)Na1—Ni1—O4—P2iv4.0 (3)
P2ii—Ca1—Na1—O9iv56.33 (11)O4v—P2—O6—Ca1vi135.88 (17)
Na1i—Ca1—Na1—O9iv14.07 (10)O1—P2—O6—Ca1vi6.8 (2)
O8—Ca1—Na1—O10165.08 (13)O7—P2—O6—Ca1vi108.17 (17)
O8i—Ca1—Na1—O10171.28 (15)O6—P2—O7—P1174.81 (14)
O6ii—Ca1—Na1—O1092.74 (13)O4v—P2—O7—P164.71 (18)
O6iii—Ca1—Na1—O1078.24 (13)O1—P2—O7—P155.59 (17)
O10i—Ca1—Na1—O109.02 (17)Ca1vi—P2—O7—P1145.68 (11)
P2iii—Ca1—Na1—O1066.71 (11)O8—P1—O7—P2177.56 (14)
P2ii—Ca1—Na1—O1076.08 (11)O3v—P1—O7—P257.63 (18)
Na1i—Ca1—Na1—O105.68 (11)O2—P1—O7—P262.54 (17)
O8—Ca1—Na1—O969.16 (9)O3v—P1—O8—Ca1132.5 (2)
O8i—Ca1—Na1—O992.80 (12)O2—P1—O8—Ca12.6 (3)
O6ii—Ca1—Na1—O9171.34 (9)O7—P1—O8—Ca1112.4 (2)
O6iii—Ca1—Na1—O917.68 (9)O8i—Ca1—O8—P1141.1 (3)
O10—Ca1—Na1—O995.92 (13)O6ii—Ca1—O8—P152.6 (3)
O10i—Ca1—Na1—O9104.93 (9)O6iii—Ca1—O8—P1121.2 (2)
P2iii—Ca1—Na1—O929.21 (7)O10—Ca1—O8—P132.8 (2)
P2ii—Ca1—Na1—O9172.00 (7)O10i—Ca1—O8—P1158.4 (6)
Na1i—Ca1—Na1—O9101.60 (7)P2iii—Ca1—O8—P1103.8 (2)
O8—Ca1—Na1—O11117.86 (9)P2ii—Ca1—O8—P150.3 (3)
O8i—Ca1—Na1—O1194.22 (12)Na1—Ca1—O8—P125.4 (2)
O6ii—Ca1—Na1—O1115.68 (8)Na1i—Ca1—O8—P1162.32 (17)
O6iii—Ca1—Na1—O11155.31 (9)O3—Na1—O9—Na1v64.92 (15)
O10—Ca1—Na1—O1177.06 (12)O2—Na1—O9—Na1v4.89 (15)
O10i—Ca1—Na1—O1168.05 (10)O9iv—Na1—O9—Na1v160.14 (15)
P2iii—Ca1—Na1—O11143.77 (7)O10—Na1—O9—Na1v102.41 (16)
P2ii—Ca1—Na1—O110.98 (7)O11—Na1—O9—Na1v109.5 (5)
Na1i—Ca1—Na1—O1171.38 (7)Ni1—Na1—O9—Na1v29.56 (15)
O8—Ca1—Na1—Ni131.08 (7)Ca1—Na1—O9—Na1v72.56 (14)
O8i—Ca1—Na1—Ni17.44 (12)O8—Ca1—O10—Na113.35 (11)
O6ii—Ca1—Na1—Ni171.10 (7)O8i—Ca1—O10—Na146.6 (7)
O6iii—Ca1—Na1—Ni1117.91 (7)O6ii—Ca1—O10—Na183.96 (12)
O10—Ca1—Na1—Ni1163.84 (13)O6iii—Ca1—O10—Na1102.65 (12)
O10i—Ca1—Na1—Ni1154.83 (7)O10i—Ca1—O10—Na1172.28 (15)
P2iii—Ca1—Na1—Ni1129.45 (4)P2iii—Ca1—O10—Na1106.04 (11)
P2ii—Ca1—Na1—Ni187.76 (4)P2ii—Ca1—O10—Na1101.78 (11)
Na1i—Ca1—Na1—Ni1158.16 (5)Na1i—Ca1—O10—Na1176.81 (6)
O6—P2—O1—Ni1163.26 (14)O3—Na1—O10—Ca119.7 (6)
O4v—P2—O1—Ni167.6 (2)O2—Na1—O10—Ca19.63 (13)
O7—P2—O1—Ni148.21 (19)O9iv—Na1—O10—Ca1164.18 (11)
Ca1vi—P2—O1—Ni1160.03 (16)O9—Na1—O10—Ca180.87 (12)
O4—Ni1—O1—P2132.71 (19)O11—Na1—O10—Ca1100.59 (11)
O3—Ni1—O1—P220.1 (15)Ni1—Na1—O10—Ca121.31 (17)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+1/4, y+1/4, z+1/4; (v) x1/4, y+1/4, z1/4; (vi) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O110.941.892.803 (4)163
O5—H51···O12vii0.981.962.846 (4)150
O9—H92···O4iii0.862.142.819 (4)136
O9—H91···O11v0.882.352.904 (4)122
O10—H102···O1iii0.951.752.687 (3)170
O10—H101···O12viii0.901.892.776 (3)168
O11—H112···O8vii0.991.852.834 (3)175
O11—H111···O7ii0.922.042.953 (3)173
O12—H122···O5ix0.902.353.121 (4)143
O12—H121···O60.931.872.772 (3)162
Symmetry codes: (ii) x+3/2, y, z+1/2; (iii) x1/2, y, z+1/2; (v) x1/4, y+1/4, z1/4; (vii) x+1/2, y, z+1/2; (viii) x, y, z+1; (ix) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaNa2CaNi2(P2O7)2(H2O)10
Mr731.48
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)290
a, b, c (Å)11.9340 (11), 32.774 (4), 10.9860 (11)
V3)4296.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker CCD APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.705, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
5540, 2085, 1999
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.07
No. of reflections2085
No. of parameters150
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29
Absolute structureFlack (1983), 974 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ca1—O82.254 (2)Ni1—O21.970 (2)
Ca1—O8i2.254 (2)Ni1—O52.353 (3)
Ca1—O6ii2.309 (2)Na1—O32.342 (3)
Ca1—O6iii2.309 (2)Na1—O22.353 (2)
Ca1—O102.428 (2)Na1—O9iv2.423 (3)
Ca1—O10i2.428 (2)Na1—O102.450 (3)
Ni1—O41.933 (2)Na1—O92.489 (4)
Ni1—O31.951 (2)Na1—O112.902 (3)
Ni1—O11.957 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y, z+1/2; (iii) x1/2, y, z+1/2; (iv) x+1/4, y+1/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H52···O110.941.892.803 (4)163
O5—H51···O12v0.981.962.846 (4)150
O9—H92···O4iii0.862.142.819 (4)136
O9—H91···O11vi0.882.352.904 (4)122
O10—H102···O1iii0.951.752.687 (3)170
O10—H101···O12vii0.901.892.776 (3)168
O11—H112···O8v0.991.852.834 (3)175
O11—H111···O7ii0.922.042.953 (3)173
O12—H122···O5viii0.902.353.121 (4)143
O12—H121···O60.931.872.772 (3)162
Symmetry codes: (ii) x+3/2, y, z+1/2; (iii) x1/2, y, z+1/2; (v) x+1/2, y, z+1/2; (vi) x1/4, y+1/4, z1/4; (vii) x, y, z+1; (viii) x+3/2, y, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Youth Fund of Jilin Normal University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCooper, M. A. & Hawthorne, F. C. (1999). Can. Mineral. 37, 73–81.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIkotun, O. F., Armatus, N. G., Julve, M., Kruger, P. E., Lloret, F., Nieuvenhuyzen, M. & Doyle, R. P. (2007). Inorg. Chem. 46, 6668–6674.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKruger, P. E., Doyle, R. P., Julve, M., Lloret, F. & Nieuwenhuyzen, M. (2001). Inorg. Chem. 40,1726–1727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMarino, N., Mastropietro, T. F., Armentano, D., De Munno, G., Doyle, R. P., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 5152–5154.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages i13-i14
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds