organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Bromo­benzyl­­idene)-1,5-dioxa­spiro­[5.5]undecane-2,4-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 30 December 2010; accepted 11 January 2011; online 15 January 2011)

The title mol­ecule, C16H15BrO4, was prepared by the reaction of (R)-2,4-dioxo-1,5-dioxaspiro­[5.5]undecane and 4-bromo­benzaldehyde with ethanol. The 1,3-dioxane ring exhibits a distorted boat and the fused cyclo­hexane ring exhibits a chair conformation.

Related literature

For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background information and related structures, see: Zeng & Jian (2009[Zeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.]); Zeng et al. (2009[Zeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2035.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrO4

  • Mr = 351.18

  • Orthorhombic, P n a 21

  • a = 6.6008 (13) Å

  • b = 16.784 (3) Å

  • c = 13.424 (3) Å

  • V = 1487.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 293 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 12420 measured reflections

  • 3243 independent reflections

  • 2042 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.124

  • S = 0.93

  • 3243 reflections

  • 191 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1459 Friedel pairs

  • Flack parameter: −0.033 (13)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

We have recently reported the crystal structure of 3-(2-Furylmethylene)-1,5-dioxaspiro[5.5]undecane-2,4-dione (Zeng & Jian, 2009) and 3-[(5-Methylfuran-2-yl)methylene]-1,5-dioxaspiro- [5.5]undecane-2,4-dione (Zeng et al. 2009). As part of our ongoing studies on new spiro compounds with potentially higher bioactivity, the title compound, (I) (Fig. 1), has been synthesized and its structure is determined here. The crystal structure analysis confirms the title compound with atom C7 connected by the 1,3-dioxane ring via C4-C7 single bond [1.462 (7)Å] and the phenyl ring via C7C9 double bond [1.328 (7)Å]. In (I) (Fig. 1), the 1,3-dioxane ring has a distorted boat conformation. The four atoms (O3/C10/C8/O4)are approximately planar with an rms deviation of 0.0279 Å. The max. deviation from the mean plane is 0.029 (1) Å, and atoms C9 and C12 deviate -0.245 (2)Å and -0.567 (2) Å, respectively. Thus, the cyclohexane ring exists in a chair comformation (Cremer & Pople, 1975) with the puckering parameters Q =0.560 (5)Å, θ =3.9 (5)°, ϕ = 312 (10)°.

Related literature top

For puckering parameters, see: Cremer & Pople (1975). For background information and related structures, see: Zeng & Jian (2009); Zeng et al. (2009).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride(9 ml) in strong sulfuric acid (0.25 ml) was stirred with water at 303 K. After dissolving, cyclohexanone (5.88 g, 0.06 mol) was added dropwise into the solution for 1 h. The reaction was allowed to proceed for 4 h. The mixture was cooled and filtered, and then an ethanol solution of 4-bromobenzaldehyde (11.04 g,0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by evaporation of an ethanol solution of (I) at room temperature over a period of one week.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å), and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids and spheres of arbritrary size for the H atoms.
3-(4-Bromobenzylidene)-1,5-dioxaspiro[5.5]undecane-2,4-dione top
Crystal data top
C16H15BrO4F(000) = 712
Mr = 351.18Dx = 1.568 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2042 reflections
a = 6.6008 (13) Åθ = 3.0–27.5°
b = 16.784 (3) ŵ = 2.78 mm1
c = 13.424 (3) ÅT = 293 K
V = 1487.2 (5) Å3Block, yellow
Z = 40.18 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2042 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.065
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 88
12420 measured reflectionsk = 2121
3243 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 0.93Δρmax = 0.31 e Å3
3243 reflectionsΔρmin = 0.34 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0088 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1459 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.033 (13)
Crystal data top
C16H15BrO4V = 1487.2 (5) Å3
Mr = 351.18Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 6.6008 (13) ŵ = 2.78 mm1
b = 16.784 (3) ÅT = 293 K
c = 13.424 (3) Å0.18 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2042 reflections with I > 2σ(I)
12420 measured reflectionsRint = 0.065
3243 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.124Δρmax = 0.31 e Å3
S = 0.93Δρmin = 0.34 e Å3
3243 reflectionsAbsolute structure: Flack (1983), 1459 Friedel pairs
191 parametersAbsolute structure parameter: 0.033 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30705 (7)0.16937 (3)0.44191 (6)0.0845 (2)
O40.3239 (4)0.18964 (18)0.1213 (2)0.0495 (7)
C80.2952 (5)0.1895 (3)0.0213 (4)0.0474 (9)
C100.5373 (7)0.0731 (3)0.0208 (4)0.0683 (13)
O30.5363 (4)0.07733 (19)0.1204 (2)0.0628 (8)
O20.2192 (4)0.24707 (17)0.0163 (3)0.0565 (7)
C70.3358 (7)0.0974 (3)0.1252 (4)0.0625 (11)
H7A0.42140.05770.14900.075*
C40.1814 (6)0.1207 (3)0.1977 (4)0.0562 (11)
C90.3812 (7)0.1202 (3)0.0332 (4)0.0574 (11)
C120.3662 (6)0.1150 (2)0.1684 (4)0.0504 (10)
C60.1475 (7)0.1696 (3)0.2454 (5)0.0654 (13)
H6A0.27120.19200.22770.079*
C50.0046 (7)0.1545 (2)0.1731 (4)0.0626 (11)
H5A0.03270.16700.10710.075*
C10.1088 (7)0.1517 (2)0.3444 (3)0.0569 (10)
C130.4385 (7)0.1343 (3)0.2731 (4)0.0669 (13)
H13A0.54850.17250.26970.080*
H13B0.48980.08620.30430.080*
C110.1829 (5)0.0624 (2)0.1692 (3)0.0540 (10)
H11A0.13660.05390.10150.065*
H11B0.21820.01100.19730.065*
O10.6638 (6)0.0322 (3)0.0197 (3)0.0997 (14)
C30.2160 (7)0.1015 (3)0.2968 (4)0.0635 (12)
H3A0.33780.07750.31430.076*
C20.0755 (7)0.1171 (3)0.3698 (4)0.0690 (12)
H2A0.10360.10460.43580.083*
C160.0131 (6)0.0998 (3)0.2304 (4)0.0694 (13)
H16A0.10280.06430.23160.083*
H16B0.02870.14950.19970.083*
C140.2691 (10)0.1683 (3)0.3360 (5)0.0853 (18)
H14A0.31590.17420.40410.102*
H14B0.23340.22070.31120.102*
C150.0829 (9)0.1154 (4)0.3347 (4)0.0873 (17)
H15A0.02520.14090.37190.105*
H15B0.11400.06510.36700.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0827 (3)0.0985 (4)0.0723 (4)0.0064 (2)0.0037 (3)0.0060 (3)
O40.0564 (16)0.0396 (14)0.0526 (15)0.0002 (11)0.0015 (12)0.0001 (14)
C80.046 (2)0.043 (2)0.0540 (17)0.0020 (15)0.0062 (16)0.0023 (18)
C100.062 (2)0.057 (3)0.086 (4)0.020 (2)0.009 (2)0.007 (2)
O30.0540 (16)0.0653 (19)0.069 (2)0.0174 (14)0.0026 (15)0.0004 (17)
O20.0606 (15)0.0474 (16)0.0615 (17)0.0070 (12)0.0094 (14)0.0046 (14)
C70.069 (3)0.055 (3)0.064 (3)0.0137 (19)0.015 (2)0.001 (2)
C40.064 (3)0.049 (2)0.056 (3)0.0003 (18)0.015 (2)0.0050 (19)
C90.052 (2)0.049 (2)0.072 (3)0.006 (2)0.014 (2)0.001 (2)
C120.0482 (18)0.040 (2)0.063 (3)0.0070 (16)0.0009 (19)0.005 (2)
C60.058 (2)0.056 (3)0.083 (4)0.0011 (18)0.019 (3)0.010 (2)
C50.063 (2)0.065 (3)0.060 (3)0.0008 (19)0.013 (2)0.016 (2)
C10.070 (2)0.052 (2)0.049 (2)0.0062 (18)0.011 (2)0.0021 (19)
C130.075 (3)0.059 (3)0.067 (3)0.010 (2)0.019 (2)0.007 (2)
C110.057 (2)0.045 (2)0.060 (3)0.0001 (15)0.0026 (18)0.004 (2)
O10.095 (2)0.111 (3)0.093 (3)0.059 (2)0.022 (2)0.002 (2)
C30.070 (3)0.063 (3)0.057 (3)0.012 (2)0.017 (2)0.002 (2)
C20.083 (3)0.061 (3)0.063 (3)0.002 (2)0.029 (3)0.002 (2)
C160.058 (2)0.074 (3)0.076 (4)0.005 (2)0.009 (2)0.016 (3)
C140.111 (4)0.091 (4)0.054 (3)0.040 (3)0.020 (3)0.016 (3)
C150.091 (4)0.112 (4)0.059 (3)0.031 (3)0.014 (3)0.017 (3)
Geometric parameters (Å, º) top
Br1—C11.875 (5)C5—H5A0.9300
O4—C81.355 (5)C1—C21.391 (6)
O4—C121.431 (5)C13—C141.513 (8)
C8—O21.201 (5)C13—H13A0.9700
C8—C91.487 (6)C13—H13B0.9700
C10—O11.210 (6)C11—C161.525 (6)
C10—O31.338 (6)C11—H11A0.9700
C10—C91.487 (7)C11—H11B0.9700
O3—C121.441 (5)C3—C21.374 (7)
C7—C91.328 (7)C3—H3A0.9300
C7—C41.462 (7)C2—H2A0.9300
C7—H7A0.9300C16—C151.497 (7)
C4—C31.387 (6)C16—H16A0.9700
C4—C51.392 (6)C16—H16B0.9700
C12—C111.498 (6)C14—C151.517 (9)
C12—C131.520 (6)C14—H14A0.9700
C6—C51.377 (8)C14—H14B0.9700
C6—C11.385 (7)C15—H15A0.9700
C6—H6A0.9300C15—H15B0.9700
C8—O4—C12117.6 (4)C12—C13—H13A109.3
O2—C8—O4118.3 (4)C14—C13—H13B109.3
O2—C8—C9125.6 (5)C12—C13—H13B109.3
O4—C8—C9115.8 (4)H13A—C13—H13B108.0
O1—C10—O3118.8 (5)C12—C11—C16110.8 (4)
O1—C10—C9124.1 (5)C12—C11—H11A109.5
O3—C10—C9117.1 (4)C16—C11—H11A109.5
C10—O3—C12118.3 (4)C12—C11—H11B109.5
C9—C7—C4134.4 (4)C16—C11—H11B109.5
C9—C7—H7A112.8H11A—C11—H11B108.1
C4—C7—H7A112.8C2—C3—C4121.9 (4)
C3—C4—C5117.8 (5)C2—C3—H3A119.0
C3—C4—C7117.5 (4)C4—C3—H3A119.0
C5—C4—C7124.5 (5)C3—C2—C1119.7 (5)
C7—C9—C10117.2 (4)C3—C2—H2A120.2
C7—C9—C8126.7 (4)C1—C2—H2A120.2
C10—C9—C8116.1 (5)C15—C16—C11110.4 (4)
O4—C12—O3109.8 (3)C15—C16—H16A109.6
O4—C12—C11111.2 (3)C11—C16—H16A109.6
O3—C12—C11112.0 (3)C15—C16—H16B109.6
O4—C12—C13106.5 (3)C11—C16—H16B109.6
O3—C12—C13105.2 (3)H16A—C16—H16B108.1
C11—C12—C13111.8 (4)C13—C14—C15111.8 (4)
C5—C6—C1120.6 (4)C13—C14—H14A109.3
C5—C6—H6A119.7C15—C14—H14A109.3
C1—C6—H6A119.7C13—C14—H14B109.3
C6—C5—C4120.8 (5)C15—C14—H14B109.3
C6—C5—H5A119.6H14A—C14—H14B107.9
C4—C5—H5A119.6C16—C15—C14111.3 (4)
C6—C1—C2119.1 (5)C16—C15—H15A109.4
C6—C1—Br1120.4 (4)C14—C15—H15A109.4
C2—C1—Br1120.4 (4)C16—C15—H15B109.4
C14—C13—C12111.4 (4)C14—C15—H15B109.4
C14—C13—H13A109.3H15A—C15—H15B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O20.932.453.004 (2)117
C7—H7A···O10.932.402.812 (2)106

Experimental details

Crystal data
Chemical formulaC16H15BrO4
Mr351.18
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)6.6008 (13), 16.784 (3), 13.424 (3)
V3)1487.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12420, 3243, 2042
Rint0.065
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.124, 0.93
No. of reflections3243
No. of parameters191
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.34
Absolute structureFlack (1983), 1459 Friedel pairs
Absolute structure parameter0.033 (13)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. & Jian, F. (2009). Acta Cryst. E65, o1875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L., Zhang, H.-X. & Jian, F.-F. (2009). Acta Cryst. E65, o2035.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds