metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Meth­­oxy­carbonyl-1-methyl­pyrazinium tetra­chlorido(pyrazine-2-carboxyl­ato-κ2N1,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 January 2011; accepted 12 January 2011; online 22 January 2011)

In the reaction of pyrazine-2-carb­oxy­lic acid and stannic chloride in methanol, one equivalent of the carb­oxy­lic acid is methyl­ated at the 4-amino site and is also esterified, yielding the title salt, (C7H9N2O2)[SnCl4(C5H3N2O2)]. The SnIV atom in the anion is N,O-chelated by a pyrazine-2-carboxyl­ate in a cis-SnNOCl4 octa­hedral geometry.

Related literature

For related organotin structures, see: Ma et al. (2004[Ma, C.-L., Han, Y.-F., Zhang, R.-F. & Wang, D.-Q. (2004). Dalton Trans. pp. 1832-1840.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H9N2O2)[SnCl4(C5H3N2O2)]

  • Mr = 536.75

  • Monoclinic, P 21 /n

  • a = 7.0655 (2) Å

  • b = 26.7603 (7) Å

  • c = 9.5220 (2) Å

  • β = 94.554 (2)°

  • V = 1794.69 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.579, Tmax = 0.685

  • 8726 measured reflections

  • 3964 independent reflections

  • 3582 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.02

  • 3964 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The direct synthesis of a potentially chelating amino-carboxylic acid with stannic tetrachloride has not been reported. Pyrazine-2-carboxylic acid yields a number of derivatives with organotin compounds; these are either synthesized by condensing the amino-carboxylic acids with an organotin oxide/hydroxide or by reacting the amino-carboxylic acids with an organotin chloride in the presence of a proton abstractor. With the latter route, the product may be an organostannate in which the pyridine-2-carboxylate chelates to the chlorine-bonded tin atom (Ma et al., 2004). In the reaction of pyrazine-2-carboxylic acid and stannic chloride in methanol, one equivalent of the carboxylic acid is methylated at the 4-amino site and is also esterified to yield the salt, [C7H9N2O2]+ [SnCl4(C5H3N2O2)]- (Scheme I, Fig. 1). The tin atom in the anion is N,O-chelated by a pyrazine-2-carboxylate in a cis-SnNOCl4 octahedral geometry.

Related literature top

For related organotin structures, see: Ma et al. (2004).

Experimental top

Stannic chloride pentahydrate 0.35 g, 1 mmol) and pyrazine-2-carboxylic acid (0.13 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C7H9N2O2]+ [SnCl4(C5H3N2O2)]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-Methoxycarbonyl-1-methylpyrazinium tetrachlorido(pyrazine-2-carboxylato-κ2N1,O)stannate(IV) top
Crystal data top
(C7H9N2O2)[SnCl4(C5H3N2O2)]F(000) = 1048
Mr = 536.75Dx = 1.987 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5671 reflections
a = 7.0655 (2) Åθ = 2.3–29.2°
b = 26.7603 (7) ŵ = 2.05 mm1
c = 9.5220 (2) ÅT = 100 K
β = 94.554 (2)°Prism, colorless
V = 1794.69 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3964 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3582 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1933
Tmin = 0.579, Tmax = 0.685l = 1211
8726 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.1852P]
where P = (Fo2 + 2Fc2)/3
3964 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
(C7H9N2O2)[SnCl4(C5H3N2O2)]V = 1794.69 (8) Å3
Mr = 536.75Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0655 (2) ŵ = 2.05 mm1
b = 26.7603 (7) ÅT = 100 K
c = 9.5220 (2) Å0.30 × 0.25 × 0.20 mm
β = 94.554 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3964 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
3582 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.685Rint = 0.024
8726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
3964 reflectionsΔρmin = 0.71 e Å3
228 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.60924 (2)0.655455 (6)0.329618 (16)0.01294 (6)
Cl10.37306 (8)0.67760 (2)0.14686 (6)0.01817 (13)
Cl20.86908 (9)0.70312 (3)0.26342 (7)0.02392 (15)
Cl30.50421 (8)0.72003 (2)0.48125 (6)0.01835 (13)
Cl40.70745 (9)0.58382 (2)0.20077 (6)0.02003 (14)
O10.7650 (2)0.62593 (7)0.50542 (17)0.0159 (4)
O20.7745 (3)0.56931 (7)0.67716 (18)0.0218 (4)
O31.1503 (3)0.55738 (7)1.01670 (19)0.0237 (4)
O41.4080 (3)0.57009 (8)0.89617 (19)0.0265 (4)
N10.4045 (3)0.60323 (8)0.4241 (2)0.0137 (4)
N20.2115 (3)0.52822 (8)0.5541 (2)0.0189 (5)
N30.8601 (3)0.67062 (8)0.8236 (2)0.0157 (4)
N41.2150 (3)0.64576 (8)0.7473 (2)0.0194 (5)
C10.6920 (3)0.59043 (9)0.5772 (2)0.0151 (5)
C20.4893 (3)0.57708 (9)0.5319 (2)0.0135 (5)
C30.3911 (4)0.53973 (9)0.5957 (2)0.0167 (5)
H30.45370.52170.67170.020*
C40.1292 (3)0.55520 (10)0.4485 (3)0.0187 (5)
H40.00090.54830.41720.022*
C50.2236 (3)0.59312 (10)0.3823 (3)0.0170 (5)
H50.15970.61170.30790.020*
C61.2439 (4)0.51458 (11)1.0871 (3)0.0283 (6)
H6A1.16200.50071.15580.042*
H6B1.36460.52531.13570.042*
H6C1.26800.48901.01720.042*
C71.2504 (4)0.58058 (10)0.9240 (3)0.0190 (5)
C81.1371 (3)0.62241 (10)0.8531 (2)0.0161 (5)
C90.9594 (3)0.63438 (10)0.8935 (3)0.0171 (5)
H90.90820.61730.96930.021*
C100.9332 (4)0.69445 (10)0.7175 (3)0.0178 (5)
H100.86320.72000.66750.021*
C111.1126 (4)0.68141 (10)0.6813 (3)0.0201 (5)
H111.16430.69870.60600.024*
C120.6682 (3)0.68313 (11)0.8634 (3)0.0225 (6)
H12A0.60610.70560.79280.034*
H12B0.67770.69960.95560.034*
H12C0.59330.65250.86840.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01198 (9)0.01295 (10)0.01393 (9)0.00115 (6)0.00119 (6)0.00060 (6)
Cl10.0190 (3)0.0184 (3)0.0166 (3)0.0002 (2)0.0016 (2)0.0015 (2)
Cl20.0176 (3)0.0224 (4)0.0324 (3)0.0056 (3)0.0063 (3)0.0047 (3)
Cl30.0208 (3)0.0170 (3)0.0172 (3)0.0022 (2)0.0015 (2)0.0020 (2)
Cl40.0217 (3)0.0188 (3)0.0199 (3)0.0023 (2)0.0029 (2)0.0030 (2)
O10.0132 (8)0.0157 (9)0.0180 (8)0.0006 (7)0.0036 (7)0.0014 (7)
O20.0225 (9)0.0220 (11)0.0200 (9)0.0004 (8)0.0048 (7)0.0033 (8)
O30.0239 (10)0.0209 (11)0.0259 (10)0.0029 (8)0.0005 (8)0.0048 (8)
O40.0220 (10)0.0319 (12)0.0253 (10)0.0089 (8)0.0009 (8)0.0018 (8)
N10.0120 (9)0.0124 (11)0.0169 (10)0.0008 (8)0.0017 (8)0.0009 (8)
N20.0182 (10)0.0157 (12)0.0230 (11)0.0018 (9)0.0030 (9)0.0006 (9)
N30.0156 (10)0.0153 (11)0.0159 (10)0.0013 (8)0.0009 (8)0.0031 (8)
N40.0159 (10)0.0218 (13)0.0204 (11)0.0029 (9)0.0006 (9)0.0014 (9)
C10.0188 (12)0.0119 (13)0.0143 (11)0.0015 (10)0.0010 (10)0.0027 (9)
C20.0158 (11)0.0114 (12)0.0135 (11)0.0025 (9)0.0022 (9)0.0007 (9)
C30.0223 (12)0.0133 (13)0.0147 (11)0.0003 (10)0.0025 (10)0.0008 (10)
C40.0133 (11)0.0186 (14)0.0243 (13)0.0015 (10)0.0021 (10)0.0018 (11)
C50.0154 (11)0.0171 (14)0.0183 (12)0.0007 (10)0.0002 (10)0.0006 (10)
C60.0344 (16)0.0207 (16)0.0282 (14)0.0040 (12)0.0068 (12)0.0027 (12)
C70.0194 (13)0.0199 (14)0.0172 (12)0.0016 (11)0.0025 (10)0.0052 (10)
C80.0164 (12)0.0149 (13)0.0165 (12)0.0015 (10)0.0012 (10)0.0036 (9)
C90.0182 (12)0.0158 (13)0.0168 (12)0.0006 (10)0.0010 (10)0.0013 (10)
C100.0198 (12)0.0145 (13)0.0187 (12)0.0020 (10)0.0019 (10)0.0008 (10)
C110.0214 (13)0.0198 (15)0.0191 (12)0.0054 (11)0.0018 (10)0.0004 (11)
C120.0147 (12)0.0246 (16)0.0284 (14)0.0036 (11)0.0037 (11)0.0007 (12)
Geometric parameters (Å, º) top
Sn1—O12.0843 (17)N4—C81.340 (3)
Sn1—N12.2499 (19)C1—C21.506 (3)
Sn1—Cl22.3619 (6)C2—C31.384 (3)
Sn1—Cl12.3881 (6)C3—H30.9500
Sn1—Cl32.4065 (6)C4—C51.392 (4)
Sn1—Cl42.4076 (6)C4—H40.9500
O1—C11.301 (3)C5—H50.9500
O2—C11.215 (3)C6—H6A0.9800
O3—C71.328 (3)C6—H6B0.9800
O3—C61.459 (3)C6—H6C0.9800
O4—C71.199 (3)C7—C81.504 (4)
N1—C51.336 (3)C8—C91.380 (3)
N1—C21.343 (3)C9—H90.9500
N2—C41.333 (3)C10—C111.384 (4)
N2—C31.335 (3)C10—H100.9500
N3—C101.333 (3)C11—H110.9500
N3—C91.342 (3)C12—H12A0.9800
N3—C121.475 (3)C12—H12B0.9800
N4—C111.326 (3)C12—H12C0.9800
O1—Sn1—N176.03 (7)N2—C4—C5122.7 (2)
O1—Sn1—Cl292.70 (5)N2—C4—H4118.6
N1—Sn1—Cl2168.60 (5)C5—C4—H4118.6
O1—Sn1—Cl1166.67 (5)N1—C5—C4119.6 (2)
N1—Sn1—Cl190.65 (5)N1—C5—H5120.2
Cl2—Sn1—Cl1100.63 (2)C4—C5—H5120.2
O1—Sn1—Cl387.62 (5)O3—C6—H6A109.5
N1—Sn1—Cl388.13 (5)O3—C6—H6B109.5
Cl2—Sn1—Cl393.19 (2)H6A—C6—H6B109.5
Cl1—Sn1—Cl391.61 (2)O3—C6—H6C109.5
O1—Sn1—Cl487.27 (5)H6A—C6—H6C109.5
N1—Sn1—Cl485.97 (5)H6B—C6—H6C109.5
Cl2—Sn1—Cl491.86 (2)O4—C7—O3126.2 (3)
Cl1—Sn1—Cl492.25 (2)O4—C7—C8123.1 (2)
Cl3—Sn1—Cl4172.98 (2)O3—C7—C8110.7 (2)
C1—O1—Sn1119.54 (15)N4—C8—C9122.6 (2)
C7—O3—C6115.3 (2)N4—C8—C7116.6 (2)
C5—N1—C2118.7 (2)C9—C8—C7120.8 (2)
C5—N1—Sn1129.58 (17)N3—C9—C8118.7 (2)
C2—N1—Sn1111.54 (15)N3—C9—H9120.6
C4—N2—C3116.5 (2)C8—C9—H9120.6
C10—N3—C9120.2 (2)N3—C10—C11119.1 (2)
C10—N3—C12120.4 (2)N3—C10—H10120.5
C9—N3—C12119.4 (2)C11—C10—H10120.5
C11—N4—C8116.8 (2)N4—C11—C10122.6 (2)
O2—C1—O1124.5 (2)N4—C11—H11118.7
O2—C1—C2120.0 (2)C10—C11—H11118.7
O1—C1—C2115.5 (2)N3—C12—H12A109.5
N1—C2—C3120.2 (2)N3—C12—H12B109.5
N1—C2—C1116.9 (2)H12A—C12—H12B109.5
C3—C2—C1122.9 (2)N3—C12—H12C109.5
N2—C3—C2122.3 (2)H12A—C12—H12C109.5
N2—C3—H3118.9H12B—C12—H12C109.5
C2—C3—H3118.9
N1—Sn1—O1—C16.32 (17)O1—C1—C2—C3179.1 (2)
Cl2—Sn1—O1—C1171.93 (17)C4—N2—C3—C21.1 (4)
Cl1—Sn1—O1—C18.0 (3)N1—C2—C3—N20.0 (4)
Cl3—Sn1—O1—C194.98 (17)C1—C2—C3—N2179.8 (2)
Cl4—Sn1—O1—C180.20 (17)C3—N2—C4—C50.8 (4)
O1—Sn1—N1—C5178.9 (2)C2—N1—C5—C41.6 (4)
Cl2—Sn1—N1—C5172.28 (19)Sn1—N1—C5—C4173.07 (17)
Cl1—Sn1—N1—C50.7 (2)N2—C4—C5—N10.5 (4)
Cl3—Sn1—N1—C590.9 (2)C6—O3—C7—O41.4 (4)
Cl4—Sn1—N1—C592.9 (2)C6—O3—C7—C8177.4 (2)
O1—Sn1—N1—C26.18 (15)C11—N4—C8—C90.2 (4)
Cl2—Sn1—N1—C22.7 (4)C11—N4—C8—C7177.6 (2)
Cl1—Sn1—N1—C2174.22 (15)O4—C7—C8—N45.1 (4)
Cl3—Sn1—N1—C294.20 (15)O3—C7—C8—N4173.7 (2)
Cl4—Sn1—N1—C282.01 (15)O4—C7—C8—C9177.1 (2)
Sn1—O1—C1—O2176.53 (19)O3—C7—C8—C94.1 (3)
Sn1—O1—C1—C25.3 (3)C10—N3—C9—C80.1 (4)
C5—N1—C2—C31.4 (3)C12—N3—C9—C8178.7 (2)
Sn1—N1—C2—C3174.21 (18)N4—C8—C9—N30.4 (4)
C5—N1—C2—C1178.8 (2)C7—C8—C9—N3177.3 (2)
Sn1—N1—C2—C15.6 (3)C9—N3—C10—C110.3 (4)
O2—C1—C2—N1177.5 (2)C12—N3—C10—C11179.1 (2)
O1—C1—C2—N10.7 (3)C8—N4—C11—C100.2 (4)
O2—C1—C2—C32.7 (4)N3—C10—C11—N40.5 (4)

Experimental details

Crystal data
Chemical formula(C7H9N2O2)[SnCl4(C5H3N2O2)]
Mr536.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.0655 (2), 26.7603 (7), 9.5220 (2)
β (°) 94.554 (2)
V3)1794.69 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.579, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
8726, 3964, 3582
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.02
No. of reflections3964
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.71

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationMa, C.-L., Han, Y.-F., Zhang, R.-F. & Wang, D.-Q. (2004). Dalton Trans. pp. 1832–1840.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds