metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium tetra­chlorido(pyridine-2-carboxyl­ato-κ2N,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 January 2011; accepted 12 January 2011; online 22 January 2011)

In the reaction of pyridine-2-carb­oxy­lic acid and stannic chloride in the presence of 2-methyl-8-hy­droxy­quinoline, the 2-methyl-8-hy­droxy­quinoline is protonated, yielding the title salt, (C10H10NO)[SnCl4(C6H4NO2)]. The SnIV atom in the anion is N,O-chelated by a pyridine-2-carboxyl­ate in a cis-SnNOCl4 octa­hedral geometry. The cation is linked to the anion by an O—H⋯O hydrogen bond.

Related literature

For other 8-hy­droxy-2-methyl­quinolinium salts, see: Najafi et al. (2010[Najafi, E., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m1276.]); Sattarzadeh et al. (2009[Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[SnCl4(C6H4NO2)]

  • Mr = 542.78

  • Monoclinic, P 21 /c

  • a = 11.5188 (2) Å

  • b = 11.1971 (2) Å

  • c = 15.0257 (2) Å

  • β = 94.563 (2)°

  • V = 1931.83 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.600, Tmax = 0.703

  • 9737 measured reflections

  • 4304 independent reflections

  • 3686 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.04

  • 4304 reflections

  • 242 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 (3) 1.86 (1) 2.686 (3) 168 (3)

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The direct synthesis of a potentially chelating amino-carboxylic acid with stannic tetrachloride has not been reported. Pyridine-2-carboxylic acid yields a number of derivatives with organotin compounds; these are either synthesized by condensing the amino-carboxylic acids with an organotin oxide/hydroxide or by reacting the amino-carboxylic acids with an organotin chloride in the presence of a proton abstractor. With the latter route, the product may be an organostannate in which the pyridine-2-carboxylate chelates to the chlorine-bonded tin atom. In the reaction of pyridine-2-carboxylic acid and stannic chloride in the presence of 2-methyl-8-hydroxyquinoline, the 2-methyl-8-hydroxyquinoline is protonated to yield the salt, [C10H10NO2]+ [SnCl4(C6H4NO2)]- (Scheme I, Fig. 1). The tin atom in the anion is N,O-chelated by a pyridine-2-carboxylate in an octahedral geometry. The cation is linked to the anion by an O–H···O hydrogen bond (Table 1). The cation been observed in a similar reaction with zinc salts (Najafi et al., 2010; Sattarzadeh et al., 2009).

Related literature top

For other 8-hydroxy-2-methylquinolinium salts, see: Najafi et al. (2010); Sattarzadeh et al. (2009).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), pyridine-2-carboxylic acid (0.13 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Beige crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01, O–H 0.84±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C10H10NO2]+ [SnCl4(C6H4NO2)] at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium tetrachlorido(pyridine-2-carboxylato-κ2N,O)stannate(IV) top
Crystal data top
(C10H10NO)[SnCl4(C6H4NO2)]F(000) = 1064
Mr = 542.78Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5318 reflections
a = 11.5188 (2) Åθ = 2.3–29.2°
b = 11.1971 (2) ŵ = 1.90 mm1
c = 15.0257 (2) ÅT = 100 K
β = 94.563 (2)°Prism, beige
V = 1931.83 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4304 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3686 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1314
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 914
Tmin = 0.600, Tmax = 0.703l = 1918
9737 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0264P)2]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.54 e Å3
2 restraintsΔρmin = 0.62 e Å3
Crystal data top
(C10H10NO)[SnCl4(C6H4NO2)]V = 1931.83 (5) Å3
Mr = 542.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5188 (2) ŵ = 1.90 mm1
b = 11.1971 (2) ÅT = 100 K
c = 15.0257 (2) Å0.30 × 0.25 × 0.20 mm
β = 94.563 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4304 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
3686 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.703Rint = 0.031
9737 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0282 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
4304 reflectionsΔρmin = 0.62 e Å3
242 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.739358 (15)0.452510 (16)0.285941 (11)0.01301 (7)
Cl10.63844 (6)0.27357 (6)0.32327 (4)0.01928 (15)
Cl20.57101 (6)0.54218 (6)0.21479 (4)0.01787 (15)
Cl30.81600 (6)0.36052 (6)0.15995 (4)0.02070 (16)
Cl40.85945 (6)0.62635 (6)0.26734 (4)0.01903 (15)
O10.70258 (16)0.52449 (16)0.41026 (12)0.0163 (4)
O20.75372 (17)0.52641 (17)0.55626 (12)0.0202 (4)
O30.66210 (17)0.64322 (18)0.69025 (12)0.0206 (4)
H30.690 (3)0.616 (3)0.6447 (13)0.031*
N10.88239 (18)0.38362 (19)0.38018 (13)0.0131 (5)
N20.58299 (19)0.7069 (2)0.84655 (14)0.0154 (5)
H20.553 (2)0.732 (3)0.7947 (11)0.023*
C10.7667 (2)0.4919 (2)0.48003 (17)0.0153 (6)
C20.8656 (2)0.4085 (2)0.46593 (17)0.0138 (5)
C30.9373 (2)0.3617 (2)0.53524 (18)0.0180 (6)
H3A0.92390.37870.59550.022*
C41.0291 (2)0.2895 (2)0.51533 (18)0.0196 (6)
H41.07880.25520.56190.024*
C51.0481 (2)0.2677 (3)0.42687 (18)0.0191 (6)
H51.11250.22070.41190.023*
C60.9718 (2)0.3155 (2)0.36087 (18)0.0174 (6)
H60.98320.29940.30010.021*
C80.7199 (2)0.5982 (2)0.76441 (17)0.0155 (6)
C90.8168 (2)0.5276 (2)0.76669 (18)0.0194 (6)
H90.84880.50650.71250.023*
C100.8698 (2)0.4858 (3)0.84826 (19)0.0205 (6)
H100.93850.43880.84830.025*
C110.8247 (2)0.5114 (3)0.92770 (18)0.0203 (6)
H110.85980.47960.98200.024*
C120.7261 (2)0.5851 (2)0.92813 (18)0.0161 (6)
C130.6761 (2)0.6306 (2)0.84629 (17)0.0149 (6)
C140.6737 (2)0.6196 (3)1.00615 (18)0.0211 (6)
H140.70310.58841.06230.025*
C150.5820 (2)0.6965 (3)1.00250 (18)0.0203 (6)
H150.54890.71921.05590.024*
C160.5358 (2)0.7424 (3)0.91984 (18)0.0187 (6)
C170.4394 (3)0.8305 (3)0.91255 (19)0.0237 (7)
H17A0.40680.83500.85040.036*
H17B0.46920.90910.93180.036*
H17C0.37860.80560.95060.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01389 (11)0.01420 (11)0.01113 (10)0.00037 (7)0.00216 (7)0.00015 (7)
Cl10.0187 (3)0.0184 (3)0.0206 (3)0.0032 (3)0.0005 (3)0.0025 (3)
Cl20.0166 (3)0.0192 (3)0.0174 (3)0.0018 (3)0.0008 (3)0.0015 (3)
Cl30.0250 (4)0.0234 (4)0.0142 (3)0.0023 (3)0.0047 (3)0.0034 (3)
Cl40.0202 (3)0.0173 (3)0.0198 (3)0.0032 (3)0.0028 (3)0.0020 (3)
O10.0187 (10)0.0195 (10)0.0107 (9)0.0043 (8)0.0020 (8)0.0013 (8)
O20.0233 (11)0.0247 (11)0.0132 (10)0.0022 (9)0.0048 (8)0.0031 (8)
O30.0230 (11)0.0263 (11)0.0125 (10)0.0091 (9)0.0014 (8)0.0013 (8)
N10.0141 (11)0.0139 (11)0.0115 (11)0.0029 (10)0.0018 (9)0.0009 (9)
N20.0163 (12)0.0177 (12)0.0121 (11)0.0015 (10)0.0001 (9)0.0005 (10)
C10.0180 (14)0.0147 (14)0.0138 (14)0.0040 (12)0.0048 (11)0.0017 (11)
C20.0145 (13)0.0124 (13)0.0148 (13)0.0044 (11)0.0024 (10)0.0004 (11)
C30.0237 (15)0.0145 (14)0.0158 (14)0.0030 (12)0.0020 (12)0.0004 (11)
C40.0225 (15)0.0165 (14)0.0190 (14)0.0006 (12)0.0044 (12)0.0017 (12)
C50.0164 (14)0.0181 (14)0.0224 (15)0.0020 (12)0.0004 (11)0.0031 (12)
C60.0153 (14)0.0170 (14)0.0204 (15)0.0007 (12)0.0038 (11)0.0026 (12)
C80.0171 (14)0.0137 (13)0.0159 (13)0.0030 (12)0.0017 (11)0.0011 (11)
C90.0227 (15)0.0192 (15)0.0170 (14)0.0009 (12)0.0058 (12)0.0034 (12)
C100.0165 (14)0.0184 (14)0.0269 (16)0.0027 (12)0.0030 (12)0.0015 (12)
C110.0220 (15)0.0211 (15)0.0172 (15)0.0015 (13)0.0015 (12)0.0045 (12)
C120.0155 (14)0.0151 (14)0.0178 (14)0.0030 (12)0.0014 (11)0.0010 (11)
C130.0152 (14)0.0144 (14)0.0152 (13)0.0018 (11)0.0024 (11)0.0003 (11)
C140.0194 (15)0.0283 (17)0.0155 (14)0.0055 (13)0.0007 (11)0.0025 (12)
C150.0226 (15)0.0265 (16)0.0127 (13)0.0029 (13)0.0079 (11)0.0057 (12)
C160.0168 (14)0.0207 (15)0.0195 (14)0.0050 (12)0.0063 (11)0.0049 (12)
C170.0224 (16)0.0277 (17)0.0219 (15)0.0018 (13)0.0064 (12)0.0050 (13)
Geometric parameters (Å, º) top
Sn1—O12.1081 (17)C5—C61.380 (4)
Sn1—N12.223 (2)C5—H50.9500
Sn1—Cl22.3626 (7)C6—H60.9500
Sn1—Cl32.3854 (7)C8—C91.365 (4)
Sn1—Cl12.4050 (7)C8—C131.414 (4)
Sn1—Cl42.4171 (7)C9—C101.405 (4)
O1—C11.286 (3)C9—H90.9500
O2—C11.229 (3)C10—C111.369 (4)
O3—C81.350 (3)C10—H100.9500
O3—H30.84 (3)C11—C121.404 (4)
N1—C61.332 (3)C11—H110.9500
N1—C21.347 (3)C12—C131.411 (4)
N2—C161.327 (3)C12—C141.414 (4)
N2—C131.371 (3)C14—C151.361 (4)
N2—H20.88 (3)C14—H140.9500
C1—C21.502 (4)C15—C161.409 (4)
C2—C31.380 (4)C15—H150.9500
C3—C41.382 (4)C16—C171.483 (4)
C3—H3A0.9500C17—H17A0.9800
C4—C51.386 (4)C17—H17B0.9800
C4—H40.9500C17—H17C0.9800
O1—Sn1—N176.07 (7)C4—C5—H5120.6
O1—Sn1—Cl291.31 (5)N1—C6—C5121.7 (3)
N1—Sn1—Cl2167.32 (6)N1—C6—H6119.2
O1—Sn1—Cl3168.94 (5)C5—C6—H6119.2
N1—Sn1—Cl393.06 (6)O3—C8—C9125.9 (2)
Cl2—Sn1—Cl399.60 (2)O3—C8—C13115.8 (2)
O1—Sn1—Cl188.68 (5)C9—C8—C13118.3 (2)
N1—Sn1—Cl184.83 (6)C8—C9—C10120.8 (3)
Cl2—Sn1—Cl193.73 (2)C8—C9—H9119.6
Cl3—Sn1—Cl192.39 (2)C10—C9—H9119.6
O1—Sn1—Cl487.23 (5)C11—C10—C9121.5 (3)
N1—Sn1—Cl487.20 (6)C11—C10—H10119.3
Cl2—Sn1—Cl493.56 (2)C9—C10—H10119.3
Cl3—Sn1—Cl490.27 (2)C10—C11—C12119.3 (3)
Cl1—Sn1—Cl4171.72 (2)C10—C11—H11120.3
C1—O1—Sn1118.10 (17)C12—C11—H11120.3
C8—O3—H3110 (2)C13—C12—C11118.9 (2)
C6—N1—C2119.9 (2)C13—C12—C14116.9 (2)
C6—N1—Sn1127.34 (17)C11—C12—C14124.3 (3)
C2—N1—Sn1112.47 (17)N2—C13—C12119.2 (2)
C16—N2—C13124.1 (2)N2—C13—C8119.7 (2)
C16—N2—H2119 (2)C12—C13—C8121.1 (2)
C13—N2—H2117 (2)C15—C14—C12121.4 (3)
O2—C1—O1124.5 (3)C15—C14—H14119.3
O2—C1—C2118.5 (2)C12—C14—H14119.3
O1—C1—C2117.0 (2)C14—C15—C16120.3 (3)
N1—C2—C3121.4 (3)C14—C15—H15119.9
N1—C2—C1115.6 (2)C16—C15—H15119.9
C3—C2—C1123.0 (2)N2—C16—C15118.1 (3)
C2—C3—C4118.7 (3)N2—C16—C17119.5 (2)
C2—C3—H3A120.6C15—C16—C17122.4 (2)
C4—C3—H3A120.6C16—C17—H17A109.5
C3—C4—C5119.5 (3)C16—C17—H17B109.5
C3—C4—H4120.2H17A—C17—H17B109.5
C5—C4—H4120.2C16—C17—H17C109.5
C6—C5—C4118.7 (3)H17A—C17—H17C109.5
C6—C5—H5120.6H17B—C17—H17C109.5
N1—Sn1—O1—C15.35 (18)C3—C4—C5—C62.3 (4)
Cl2—Sn1—O1—C1173.35 (18)C2—N1—C6—C50.8 (4)
Cl3—Sn1—O1—C116.0 (4)Sn1—N1—C6—C5172.80 (19)
Cl1—Sn1—O1—C179.65 (18)C4—C5—C6—N11.4 (4)
Cl4—Sn1—O1—C193.15 (18)O3—C8—C9—C10180.0 (3)
O1—Sn1—N1—C6178.3 (2)C13—C8—C9—C101.6 (4)
Cl2—Sn1—N1—C6175.77 (18)C8—C9—C10—C111.8 (5)
Cl3—Sn1—N1—C60.3 (2)C9—C10—C11—C122.7 (4)
Cl1—Sn1—N1—C691.8 (2)C10—C11—C12—C130.2 (4)
Cl4—Sn1—N1—C690.5 (2)C10—C11—C12—C14178.6 (3)
O1—Sn1—N1—C27.74 (17)C16—N2—C13—C120.4 (4)
Cl2—Sn1—N1—C21.8 (4)C16—N2—C13—C8180.0 (3)
Cl3—Sn1—N1—C2174.30 (17)C11—C12—C13—N2177.1 (3)
Cl1—Sn1—N1—C282.18 (17)C14—C12—C13—N21.7 (4)
Cl4—Sn1—N1—C295.58 (17)C11—C12—C13—C83.3 (4)
Sn1—O1—C1—O2179.3 (2)C14—C12—C13—C8177.9 (2)
Sn1—O1—C1—C22.3 (3)O3—C8—C13—N22.3 (4)
C6—N1—C2—C32.0 (4)C9—C8—C13—N2176.3 (3)
Sn1—N1—C2—C3172.4 (2)O3—C8—C13—C12177.3 (2)
C6—N1—C2—C1176.5 (2)C9—C8—C13—C124.1 (4)
Sn1—N1—C2—C19.1 (3)C13—C12—C14—C152.4 (4)
O2—C1—C2—N1173.5 (2)C11—C12—C14—C15176.4 (3)
O1—C1—C2—N15.0 (4)C12—C14—C15—C160.9 (4)
O2—C1—C2—C35.0 (4)C13—N2—C16—C151.9 (4)
O1—C1—C2—C3176.5 (2)C13—N2—C16—C17176.6 (3)
N1—C2—C3—C41.1 (4)C14—C15—C16—N21.2 (4)
C1—C2—C3—C4177.3 (3)C14—C15—C16—C17177.2 (3)
C2—C3—C4—C51.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.84 (3)1.86 (1)2.686 (3)168 (3)

Experimental details

Crystal data
Chemical formula(C10H10NO)[SnCl4(C6H4NO2)]
Mr542.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5188 (2), 11.1971 (2), 15.0257 (2)
β (°) 94.563 (2)
V3)1931.83 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.600, 0.703
No. of measured, independent and
observed [I > 2σ(I)] reflections
9737, 4304, 3686
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.04
No. of reflections4304
No. of parameters242
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.62

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.84 (3)1.86 (1)2.686 (3)168 (3)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m1276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds