metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Hy­dr­oxy-2-methyl­quinolinium tetra­chlorido(quinolin-2-olato-κ2N,O)stannate(IV) methanol disolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 8 January 2011; accepted 12 January 2011; online 22 January 2011)

In the reaction of 8-hy­droxy­quinoline, 2-methyl-8-hy­droxy­quinoline and stannic chloride, the 2-methyl-8-hy­droxy­quinoline is protonated, yielding the disolvated title salt, (C10H10NO)[SnCl4(C9H6NO)]·2CH3OH. The SnIV atom in the anion is N,O-chelated by the hy­droxy­quinolinate in a cis-SnNOCl4 octa­hedral geometry. In the crystal, the cation, anion and solvent mol­ecules are linked by N—H⋯O, O—H⋯O and O—H⋯Cl hydrogen bonds, generating a three-dimensional network.

Related literature

For related tin–oxinate structures, see: Archer et al. (1987[Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.]); Faza­eli et al. (2009[Fazaeli, Y., Najafi, E., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m270.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m719.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[SnCl4(C9H6NO)]·2CH4O

  • Mr = 628.91

  • Triclinic, [P \overline 1]

  • a = 7.9395 (3) Å

  • b = 9.9721 (4) Å

  • c = 16.0531 (8) Å

  • α = 75.056 (4)°

  • β = 82.529 (4)°

  • γ = 88.529 (3)°

  • V = 1217.53 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.659, Tmax = 0.751

  • 8825 measured reflections

  • 5371 independent reflections

  • 4258 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.130

  • S = 1.05

  • 5371 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.84 1.76 2.595 (4) 172
O3—H3⋯O1 0.84 1.91 2.736 (4) 168
O4—H4⋯Cl1i 0.84 2.53 3.258 (3) 146
N2—H2n⋯O4 0.88 1.91 2.764 (5) 162
Symmetry code: (i) x+1, y+1, z.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Only symmetrical dichlorotin bis(oxinates) have been reported; these include the 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline derivatives (Archer et al., 1987; Fazaeli et al., 2009; Lo & Ng, 2009). In the reaction of 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and stannic chloride, the 2-methyl-8-hydroxyquinoline is protonated to yield the disolvated salt, [SnCl4(C9H6NO2)]-.2CH3OH (Scheme I, Fig. 1). The tin atom in the anion is N,O-chelated by the hydroxyquinolinate and it exists in a cis-SnNOCl4 octahedral geometry. The cation, anion and solvent molecules are linked by N–H···O and O–H···O hydrogen bonds to generate a three-dimensional network (Table 1).

Related literature top

For related tin–oxinate structures, see: Archer et al. (1987); Fazaeli et al. (2009); Lo & Ng (2009).

Experimental top

Stannic chloride pentahydrate (0.35 g, 1 mmol), 8-hydroxyquinoline (0.15 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were similarly placed (N–H 0.88±0.01, O–H 0.84±0.01 Å) and their temperature factors were also tied. The final difference Fourier map had a peak and a hole in the vicinity of Sn1.

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C10H10NO]+ [SnCl4(C9H6NO)]–. 2CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-2-olato-κ2N,O)stannate(IV) methanol disolvate top
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·2CH4OZ = 2
Mr = 628.91F(000) = 628
Triclinic, P1Dx = 1.715 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9395 (3) ÅCell parameters from 4114 reflections
b = 9.9721 (4) Åθ = 2.6–29.3°
c = 16.0531 (8) ŵ = 1.52 mm1
α = 75.056 (4)°T = 100 K
β = 82.529 (4)°Prism, yellow
γ = 88.529 (3)°0.30 × 0.25 × 0.20 mm
V = 1217.53 (9) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5371 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4258 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 810
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
k = 1112
Tmin = 0.659, Tmax = 0.751l = 1620
8825 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
5371 reflections(Δ/σ)max = 0.001
295 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.85 e Å3
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·2CH4Oγ = 88.529 (3)°
Mr = 628.91V = 1217.53 (9) Å3
Triclinic, P1Z = 2
a = 7.9395 (3) ÅMo Kα radiation
b = 9.9721 (4) ŵ = 1.52 mm1
c = 16.0531 (8) ÅT = 100 K
α = 75.056 (4)°0.30 × 0.25 × 0.20 mm
β = 82.529 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5371 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent Technologies, 2010)
4258 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.751Rint = 0.040
8825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.05Δρmax = 1.76 e Å3
5371 reflectionsΔρmin = 1.85 e Å3
295 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.51336 (4)0.56573 (3)0.20809 (2)0.01909 (12)
Cl10.24880 (15)0.54380 (11)0.30721 (8)0.0232 (3)
Cl20.47350 (15)0.33873 (11)0.18991 (8)0.0242 (3)
Cl30.67740 (16)0.50347 (12)0.32577 (8)0.0262 (3)
Cl40.75884 (15)0.60727 (11)0.09839 (8)0.0227 (3)
O10.5234 (4)0.7725 (3)0.2102 (2)0.0203 (7)
O20.8013 (5)1.0336 (3)0.3161 (2)0.0280 (8)
H20.80170.98850.27860.042*
O30.8327 (4)0.8959 (3)0.1982 (2)0.0253 (8)
H30.74530.85060.19760.038*
O41.0402 (4)1.2688 (3)0.3035 (2)0.0262 (8)
H41.12791.31290.30520.039*
N10.3617 (5)0.6649 (4)0.1035 (2)0.0191 (8)
N20.8391 (5)1.1312 (4)0.4535 (3)0.0216 (9)
H2N0.88311.17410.40040.032*
C10.2875 (6)0.6087 (5)0.0509 (3)0.0235 (10)
H10.29680.51170.05650.028*
C20.1958 (6)0.6896 (5)0.0127 (3)0.0256 (11)
H2A0.14280.64700.04920.031*
C30.1824 (6)0.8287 (5)0.0226 (3)0.0215 (10)
H3A0.12150.88340.06630.026*
C40.2598 (6)0.8921 (5)0.0328 (3)0.0211 (10)
C50.2544 (6)1.0356 (5)0.0277 (3)0.0219 (10)
H50.19401.09640.01390.026*
C60.3369 (6)1.0866 (5)0.0830 (3)0.0247 (11)
H60.33341.18340.07880.030*
C70.4256 (6)1.0005 (5)0.1451 (3)0.0228 (10)
H70.48031.03930.18280.027*
C80.4353 (6)0.8596 (5)0.1527 (3)0.0197 (10)
C90.3486 (6)0.8058 (4)0.0956 (3)0.0171 (9)
C100.7577 (6)1.0063 (5)0.4660 (3)0.0208 (10)
C110.7396 (6)0.9540 (5)0.3939 (3)0.0220 (10)
C120.6582 (6)0.8283 (5)0.4091 (3)0.0238 (11)
H120.64520.79110.36140.029*
C130.5940 (6)0.7539 (5)0.4932 (3)0.0254 (11)
H130.53990.66680.50130.030*
C140.6071 (6)0.8030 (5)0.5637 (3)0.0251 (11)
H140.56090.75210.62030.030*
C150.6919 (6)0.9330 (5)0.5509 (3)0.0226 (10)
C160.7117 (7)0.9934 (5)0.6198 (3)0.0283 (11)
H160.67210.94550.67810.034*
C170.7881 (6)1.1211 (5)0.6025 (3)0.0247 (11)
H170.79571.16290.64880.030*
C180.8548 (6)1.1910 (5)0.5179 (3)0.0224 (10)
C190.9411 (6)1.3281 (5)0.4955 (4)0.0278 (11)
H19A0.91061.38400.43990.042*
H19B1.06441.31500.49080.042*
H19C0.90541.37580.54100.042*
C200.9683 (6)0.8028 (5)0.2200 (4)0.0289 (12)
H20A1.07520.85520.20920.043*
H20B0.97630.73610.18430.043*
H20C0.94700.75290.28160.043*
C210.9985 (7)1.3030 (6)0.2168 (3)0.0319 (12)
H21A0.88211.27240.21710.048*
H21B1.07731.25650.18120.048*
H21C1.00751.40370.19240.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0224 (2)0.01323 (17)0.0203 (2)0.00323 (12)0.00130 (14)0.00209 (13)
Cl10.0248 (6)0.0189 (5)0.0238 (6)0.0031 (4)0.0030 (5)0.0041 (5)
Cl20.0291 (7)0.0147 (5)0.0277 (7)0.0021 (4)0.0006 (5)0.0045 (5)
Cl30.0291 (7)0.0225 (6)0.0245 (7)0.0029 (5)0.0066 (5)0.0002 (5)
Cl40.0249 (6)0.0167 (5)0.0237 (6)0.0025 (4)0.0021 (5)0.0028 (5)
O10.0243 (18)0.0132 (15)0.0230 (19)0.0003 (13)0.0024 (15)0.0039 (14)
O20.041 (2)0.0218 (17)0.0186 (19)0.0130 (15)0.0025 (16)0.0020 (14)
O30.0248 (19)0.0234 (17)0.025 (2)0.0081 (14)0.0014 (15)0.0005 (15)
O40.030 (2)0.0241 (18)0.024 (2)0.0085 (14)0.0026 (15)0.0041 (15)
N10.018 (2)0.0176 (19)0.019 (2)0.0039 (15)0.0008 (16)0.0001 (16)
N20.024 (2)0.021 (2)0.018 (2)0.0018 (16)0.0012 (17)0.0019 (17)
C10.027 (3)0.015 (2)0.025 (3)0.0030 (19)0.004 (2)0.003 (2)
C20.029 (3)0.029 (3)0.019 (3)0.005 (2)0.002 (2)0.007 (2)
C30.022 (3)0.020 (2)0.018 (3)0.0015 (18)0.002 (2)0.0032 (19)
C40.022 (3)0.019 (2)0.020 (3)0.0034 (18)0.006 (2)0.005 (2)
C50.022 (3)0.019 (2)0.021 (3)0.0026 (19)0.002 (2)0.000 (2)
C60.026 (3)0.014 (2)0.030 (3)0.0032 (19)0.007 (2)0.001 (2)
C70.024 (3)0.021 (2)0.019 (3)0.0067 (19)0.005 (2)0.002 (2)
C80.016 (2)0.019 (2)0.021 (3)0.0012 (18)0.0017 (19)0.0030 (19)
C90.018 (2)0.017 (2)0.014 (2)0.0023 (17)0.0039 (18)0.0025 (18)
C100.019 (3)0.017 (2)0.023 (3)0.0003 (18)0.000 (2)0.002 (2)
C110.023 (3)0.020 (2)0.022 (3)0.0006 (19)0.003 (2)0.003 (2)
C120.023 (3)0.023 (2)0.024 (3)0.0014 (19)0.001 (2)0.005 (2)
C130.023 (3)0.016 (2)0.034 (3)0.0063 (19)0.004 (2)0.002 (2)
C140.030 (3)0.016 (2)0.024 (3)0.0005 (19)0.002 (2)0.003 (2)
C150.016 (2)0.022 (2)0.028 (3)0.0051 (19)0.001 (2)0.005 (2)
C160.031 (3)0.031 (3)0.020 (3)0.002 (2)0.001 (2)0.003 (2)
C170.026 (3)0.028 (3)0.019 (3)0.001 (2)0.002 (2)0.005 (2)
C180.014 (2)0.028 (3)0.024 (3)0.0036 (19)0.002 (2)0.004 (2)
C190.023 (3)0.030 (3)0.032 (3)0.002 (2)0.006 (2)0.011 (2)
C200.025 (3)0.031 (3)0.029 (3)0.002 (2)0.004 (2)0.005 (2)
C210.032 (3)0.034 (3)0.027 (3)0.004 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Sn1—O12.075 (3)C6—H60.9500
Sn1—N12.204 (4)C7—C81.379 (6)
Sn1—Cl32.3758 (12)C7—H70.9500
Sn1—Cl22.3898 (11)C8—C91.428 (6)
Sn1—Cl42.4174 (12)C10—C151.409 (7)
Sn1—Cl12.4427 (12)C10—C111.412 (6)
O1—C81.350 (5)C11—C121.376 (6)
O2—C111.333 (6)C12—C131.399 (7)
O2—H20.8400C12—H120.9500
O3—C201.423 (6)C13—C141.361 (7)
O3—H30.8400C13—H130.9500
O4—C211.426 (6)C14—C151.431 (7)
O4—H40.8400C14—H140.9500
N1—C11.328 (6)C15—C161.416 (6)
N1—C91.381 (5)C16—C171.371 (7)
N2—C181.341 (6)C16—H160.9500
N2—C101.373 (6)C17—C181.397 (7)
N2—H2N0.8800C17—H170.9500
C1—C21.400 (7)C18—C191.483 (7)
C1—H10.9500C19—H19A0.9800
C2—C31.358 (6)C19—H19B0.9800
C2—H2A0.9500C19—H19C0.9800
C3—C41.422 (6)C20—H20A0.9800
C3—H3A0.9500C20—H20B0.9800
C4—C91.399 (7)C20—H20C0.9800
C4—C51.411 (6)C21—H21A0.9800
C5—C61.370 (6)C21—H21B0.9800
C5—H50.9500C21—H21C0.9800
C6—C71.393 (7)
O1—Sn1—N178.45 (12)N1—C9—C4121.7 (4)
O1—Sn1—Cl390.22 (9)N1—C9—C8116.6 (4)
N1—Sn1—Cl3168.60 (9)C4—C9—C8121.7 (4)
O1—Sn1—Cl2171.51 (9)N2—C10—C15119.3 (4)
N1—Sn1—Cl293.09 (10)N2—C10—C11119.7 (4)
Cl3—Sn1—Cl298.22 (4)C15—C10—C11121.0 (4)
O1—Sn1—Cl488.73 (9)O2—C11—C12125.8 (4)
N1—Sn1—Cl487.00 (10)O2—C11—C10116.2 (4)
Cl3—Sn1—Cl493.98 (4)C12—C11—C10118.0 (5)
Cl2—Sn1—Cl491.61 (4)C11—C12—C13121.5 (4)
O1—Sn1—Cl188.01 (9)C11—C12—H12119.3
N1—Sn1—Cl186.76 (10)C13—C12—H12119.3
Cl3—Sn1—Cl191.73 (4)C14—C13—C12121.7 (4)
Cl2—Sn1—Cl190.78 (4)C14—C13—H13119.1
Cl4—Sn1—Cl1173.44 (4)C12—C13—H13119.1
C8—O1—Sn1114.7 (2)C13—C14—C15118.7 (5)
C11—O2—H2109.5C13—C14—H14120.7
C20—O3—H3109.5C15—C14—H14120.7
C21—O4—H4109.5C10—C15—C16117.8 (4)
C1—N1—C9119.6 (4)C10—C15—C14119.1 (4)
C1—N1—Sn1129.6 (3)C16—C15—C14123.1 (5)
C9—N1—Sn1110.8 (3)C17—C16—C15120.0 (5)
C18—N2—C10123.4 (4)C17—C16—H16120.0
C18—N2—H2N118.3C15—C16—H16120.0
C10—N2—H2N118.3C16—C17—C18121.2 (4)
N1—C1—C2121.3 (4)C16—C17—H17119.4
N1—C1—H1119.3C18—C17—H17119.4
C2—C1—H1119.3N2—C18—C17118.2 (4)
C3—C2—C1120.3 (4)N2—C18—C19118.2 (4)
C3—C2—H2A119.8C17—C18—C19123.6 (4)
C1—C2—H2A119.8C18—C19—H19A109.5
C2—C3—C4119.8 (4)C18—C19—H19B109.5
C2—C3—H3A120.1H19A—C19—H19B109.5
C4—C3—H3A120.1C18—C19—H19C109.5
C9—C4—C5118.5 (4)H19A—C19—H19C109.5
C9—C4—C3117.2 (4)H19B—C19—H19C109.5
C5—C4—C3124.3 (4)O3—C20—H20A109.5
C6—C5—C4119.6 (4)O3—C20—H20B109.5
C6—C5—H5120.2H20A—C20—H20B109.5
C4—C5—H5120.2O3—C20—H20C109.5
C5—C6—C7121.8 (4)H20A—C20—H20C109.5
C5—C6—H6119.1H20B—C20—H20C109.5
C7—C6—H6119.1O4—C21—H21A109.5
C8—C7—C6120.9 (4)O4—C21—H21B109.5
C8—C7—H7119.5H21A—C21—H21B109.5
C6—C7—H7119.5O4—C21—H21C109.5
O1—C8—C7123.1 (4)H21A—C21—H21C109.5
O1—C8—C9119.4 (4)H21B—C21—H21C109.5
C7—C8—C9117.5 (4)
N1—Sn1—O1—C81.6 (3)C5—C4—C9—N1178.9 (4)
Cl3—Sn1—O1—C8177.2 (3)C3—C4—C9—N10.3 (7)
Cl4—Sn1—O1—C888.8 (3)C5—C4—C9—C81.1 (7)
Cl1—Sn1—O1—C885.5 (3)C3—C4—C9—C8178.1 (4)
O1—Sn1—N1—C1178.1 (4)O1—C8—C9—N10.1 (6)
Cl3—Sn1—N1—C1175.9 (4)C7—C8—C9—N1179.2 (4)
Cl2—Sn1—N1—C12.6 (4)O1—C8—C9—C4178.0 (4)
Cl4—Sn1—N1—C188.8 (4)C7—C8—C9—C41.3 (7)
Cl1—Sn1—N1—C193.2 (4)C18—N2—C10—C152.4 (7)
O1—Sn1—N1—C91.6 (3)C18—N2—C10—C11176.9 (4)
Cl3—Sn1—N1—C94.4 (7)N2—C10—C11—O21.5 (7)
Cl2—Sn1—N1—C9177.6 (3)C15—C10—C11—O2177.8 (4)
Cl4—Sn1—N1—C990.9 (3)N2—C10—C11—C12179.7 (4)
Cl1—Sn1—N1—C987.0 (3)C15—C10—C11—C121.0 (7)
C9—N1—C1—C20.0 (7)O2—C11—C12—C13178.4 (5)
Sn1—N1—C1—C2179.7 (3)C10—C11—C12—C130.3 (7)
N1—C1—C2—C30.7 (8)C11—C12—C13—C140.8 (8)
C1—C2—C3—C40.9 (8)C12—C13—C14—C151.2 (7)
C2—C3—C4—C90.4 (7)N2—C10—C15—C160.7 (7)
C2—C3—C4—C5179.5 (5)C11—C10—C15—C16178.7 (4)
C9—C4—C5—C60.7 (7)N2—C10—C15—C14179.9 (4)
C3—C4—C5—C6178.5 (5)C11—C10—C15—C140.6 (7)
C4—C5—C6—C70.5 (8)C13—C14—C15—C100.5 (7)
C5—C6—C7—C80.7 (8)C13—C14—C15—C16179.7 (5)
Sn1—O1—C8—C7179.3 (4)C10—C15—C16—C172.0 (7)
Sn1—O1—C8—C91.4 (5)C14—C15—C16—C17177.2 (5)
C6—C7—C8—O1178.2 (4)C15—C16—C17—C183.1 (7)
C6—C7—C8—C91.1 (7)C10—N2—C18—C171.4 (7)
C1—N1—C9—C40.5 (7)C10—N2—C18—C19178.2 (4)
Sn1—N1—C9—C4179.3 (4)C16—C17—C18—N21.4 (7)
C1—N1—C9—C8178.4 (4)C16—C17—C18—C19179.0 (4)
Sn1—N1—C9—C81.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.762.595 (4)172
O3—H3···O10.841.912.736 (4)168
O4—H4···Cl1i0.842.533.258 (3)146
N2—H2n···O40.881.912.764 (5)162
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C10H10NO)[SnCl4(C9H6NO)]·2CH4O
Mr628.91
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.9395 (3), 9.9721 (4), 16.0531 (8)
α, β, γ (°)75.056 (4), 82.529 (4), 88.529 (3)
V3)1217.53 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent Technologies, 2010)
Tmin, Tmax0.659, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
8825, 5371, 4258
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.130, 1.05
No. of reflections5371
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 1.85

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.841.762.595 (4)172
O3—H3···O10.841.912.736 (4)168
O4—H4···Cl1i0.842.533.258 (3)146
N2—H2n···O40.881.912.764 (5)162
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArcher, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFazaeli, Y., Najafi, E., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m270.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds