metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m181-m182

Bis(2,1,3-benzoselena­diazole-κN)di­bromidocopper(II)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 20 December 2010; accepted 25 December 2010; online 15 January 2011)

In the title complex, [CuBr2(C6H4N2Se)2], the CuII ion is tetra­coordinated by two bromide anions and two N atoms in a distorted square-planar geometry. The two essentially planar 2,1,3-benzoselenadiazole ligands [maximum deviations = 0.012 (2) and 0.030 (2) Å] are approximately coplanar [dihedral angle = 6.14 (6)°]. In the crystal, short inter­molecular Se⋯Br, Se⋯N and N⋯N inter­actions are observed. These short inter­actions and inter­molecular C—H⋯Br hydrogen bonds link the complex mol­ecules into two-dimensional arrays parallel to the ac plane.

Related literature

For general background to and applications of the title complex, see: Fun et al. (2008[Fun, H.-K., Maity, A. C., Maity, S., Goswami, S. & Chantrapromma, S. (2008). Acta Cryst. E64, m1188.]); Zhou et al. (2005[Zhou, A.-J., Zheng, S.-L., Fang, Y. & Tong, M.-L. (2005). Inorg. Chem. 44, 4457-4459.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Maity, A. C., Maity, S., Goswami, S. & Chantrapromma, S. (2008). Acta Cryst. E64, m1188.]); Goswami et al. (2009[Goswami, S., Hazra, A., Chakrabarty, R. & Fun, H.-K. (2009). Org. Lett. 11, 4350-4353.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986)[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.].

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C6H4N2Se)2]

  • Mr = 589.50

  • Triclinic, [P \overline 1]

  • a = 8.3406 (1) Å

  • b = 9.5853 (1) Å

  • c = 10.2908 (1) Å

  • α = 94.627 (1)°

  • β = 109.640 (1)°

  • γ = 102.690 (1)°

  • V = 745.17 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.71 mm−1

  • T = 100 K

  • 0.52 × 0.11 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.064, Tmax = 0.550

  • 47530 measured reflections

  • 9041 independent reflections

  • 6854 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.02

  • 9041 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Selected interatomic distances (Å)

Cu1—N3 2.0077 (15)
Cu1—N1 2.0106 (15)
Cu1—Br1 2.3987 (3)
Cu1—Br2 2.4449 (3)
Se1⋯N2 1.7768 (15)
Se1⋯N1 1.8131 (16)
Se2⋯N4 1.7854 (15)
Se2⋯N3 1.8097 (15)
Se1⋯Br1i 3.5223 (3)
Se2⋯N2ii 2.6848 (16)
N2⋯N4iii 2.819 (2)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1; (iii) x, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br2iv 0.93 2.74 3.464 (2) 135
C8—H8⋯Br1i 0.93 2.90 3.762 (2) 154
Symmetry codes: (i) -x+1, -y+2, -z+1; (iv) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of metal-organic framework (MOF) materials are an interesting area nowadays. The coordination chemistry of 2,1,3-benzoselenadiazole (bsd) has been sparingly explored (Zhou et al., 2005). Recently we have shown that 2,1,3-bsd is capable of forming coordination networks with Zn(II) metal (Fun et al., 2008). In the present work, we report the coordination networks for CuII complex containing bsd. Reaction of 2,1,3-bsd with CuBr2 results in the formation of the title copper complex.

The title complex comprises a neutral CuBr2L2 molecule (L = 2,1,3-bsd ligand). The CuII ion is tetra-coordinated by two Br- ions and two L ligand-N atoms in a distorted square planar geometry, as indicated by angles of N1–Cu1–N3 = 172.82 (6)°, Br1–Cu1–Br2 = 170.661 (12)° and range of N–Cu–Br = 87.91 (5)–91.11 (5)°. The two ligands [(C1–C6/N1/N2/Se1) and (C6–C12/N3/N4/Se2)] are essentially planar, with maximum deviations of -0.012 (2) Å at atom C2 and 0.030 (2) Å at atom N3, respectively. These two ligands are approximately coplanar to one another, forming an interplanar angle of 6.14 (6)°. Selected bond lengths are listed in Table 1. All other bond lengths and angles are consistent to those observed in closely related structures (Fun et al., 2008; Goswami et al., 2009).

The interesting feature of the crystal packing is the observation of intermolecular short Se1···Br1, Se2···N2 and N2···N4 interactions (Table 1), as observed in the reported ZnCl2L2 structure (Fun et al., 2008). The title complex is interconnected into two-dimensional arrays lying parallel with the ac plane via these short interactions as well as intermolecular C2—H2···Br2 and C8—H8···Br1 hydrogen bonds (Table 2).

Related literature top

For general background to and applications of the title complex, see: Fun et al. (2008); Zhou et al. (2005). For related structures, see: Fun et al. (2008); Goswami et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2,1,3-bsd (1 g, 5.4 mol) and anhydrous copper bromide (606 mg, 2.72 mmol) in dry methanol (20 ml) was heated at 343–353 K for 2 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the precipitate was collected by filtration. Recrystallization from methanol (25 %) in chloroform afforded brown microcrystalline solids of the title compound.

Refinement top

All aromatic-H atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model with Uiso = 1.2 Ueq(C). The highest residual electron density peak is located at 0.71 Å from C11 and the deepest hole is located at 0.46 Å from Br2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal structure of the title complex, viewed along the b axis, showing a two-dimensional array parallel with the ac plane. Intermolecular interactions are shown as dashed lines.
Bis(2,1,3-benzoselenadiazole-κN)dibromidocopper(II) top
Crystal data top
[CuBr2(C6H4N2Se)2]Z = 2
Mr = 589.50F(000) = 550
Triclinic, P1Dx = 2.627 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3406 (1) ÅCell parameters from 9451 reflections
b = 9.5853 (1) Åθ = 2.1–39.8°
c = 10.2908 (1) ŵ = 11.71 mm1
α = 94.627 (1)°T = 100 K
β = 109.640 (1)°Block, red
γ = 102.690 (1)°0.52 × 0.11 × 0.06 mm
V = 745.17 (1) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9041 independent reflections
Radiation source: fine-focus sealed tube6854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 39.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.064, Tmax = 0.550k = 1717
47530 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.025P)2 + 0.1897P]
where P = (Fo2 + 2Fc2)/3
9041 reflections(Δ/σ)max = 0.003
190 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[CuBr2(C6H4N2Se)2]γ = 102.690 (1)°
Mr = 589.50V = 745.17 (1) Å3
Triclinic, P1Z = 2
a = 8.3406 (1) ÅMo Kα radiation
b = 9.5853 (1) ŵ = 11.71 mm1
c = 10.2908 (1) ÅT = 100 K
α = 94.627 (1)°0.52 × 0.11 × 0.06 mm
β = 109.640 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6854 reflections with I > 2σ(I)
Tmin = 0.064, Tmax = 0.550Rint = 0.048
47530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.02Δρmax = 0.96 e Å3
9041 reflectionsΔρmin = 1.28 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76323 (3)0.96053 (2)0.46923 (2)0.01342 (4)
Se10.76418 (3)1.00702 (2)0.790290 (19)0.01462 (4)
Se20.76370 (3)0.96029 (2)0.148426 (18)0.01419 (4)
Br10.50628 (3)0.76430 (2)0.346275 (19)0.01659 (4)
Br20.99180 (3)1.18054 (2)0.602981 (19)0.01630 (4)
N10.7843 (2)0.89074 (17)0.65184 (16)0.0145 (3)
N20.7949 (2)0.87760 (18)0.90445 (16)0.0157 (3)
N30.7309 (2)1.05001 (17)0.29546 (16)0.0145 (3)
N40.7204 (2)1.10188 (18)0.05009 (16)0.0156 (3)
C10.8108 (2)0.7679 (2)0.69755 (18)0.0141 (3)
C20.8325 (3)0.6474 (2)0.6210 (2)0.0168 (3)
H20.82670.64760.52920.020*
C30.8621 (3)0.5318 (2)0.6854 (2)0.0188 (3)
H30.87840.45350.63650.023*
C40.8690 (3)0.5269 (2)0.8263 (2)0.0188 (3)
H40.88880.44560.86600.023*
C50.8472 (3)0.6385 (2)0.9022 (2)0.0180 (3)
H50.85090.63430.99310.022*
C60.8185 (2)0.7628 (2)0.83934 (19)0.0149 (3)
C70.6893 (2)1.1727 (2)0.26414 (18)0.0139 (3)
C80.6457 (3)1.2712 (2)0.34984 (19)0.0168 (3)
H80.64371.25310.43680.020*
C90.6071 (3)1.3927 (2)0.3011 (2)0.0188 (3)
H90.57771.45720.35600.023*
C100.6102 (3)1.4242 (2)0.1680 (2)0.0199 (4)
H100.58661.50970.14010.024*
C110.6472 (3)1.3311 (2)0.0817 (2)0.0181 (3)
H110.64711.35150.00520.022*
C120.6860 (2)1.2015 (2)0.12748 (18)0.0147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01609 (10)0.01305 (10)0.01093 (9)0.00325 (8)0.00478 (7)0.00314 (7)
Se10.01835 (8)0.01413 (8)0.01224 (7)0.00580 (6)0.00550 (6)0.00300 (6)
Se20.01791 (8)0.01411 (8)0.01127 (7)0.00550 (6)0.00527 (6)0.00277 (6)
Br10.01675 (8)0.01600 (8)0.01488 (7)0.00238 (6)0.00416 (6)0.00318 (6)
Br20.01769 (8)0.01514 (8)0.01563 (8)0.00415 (6)0.00532 (6)0.00391 (6)
N10.0175 (7)0.0141 (7)0.0120 (6)0.0036 (5)0.0058 (5)0.0027 (5)
N20.0185 (7)0.0179 (7)0.0124 (6)0.0071 (6)0.0059 (5)0.0043 (5)
N30.0179 (7)0.0137 (7)0.0120 (6)0.0041 (5)0.0057 (5)0.0023 (5)
N40.0186 (7)0.0175 (7)0.0128 (6)0.0071 (6)0.0065 (5)0.0050 (5)
C10.0147 (7)0.0142 (7)0.0134 (7)0.0039 (6)0.0048 (6)0.0039 (6)
C20.0196 (8)0.0158 (8)0.0155 (7)0.0042 (7)0.0076 (7)0.0016 (6)
C30.0209 (9)0.0156 (8)0.0191 (8)0.0053 (7)0.0062 (7)0.0010 (6)
C40.0200 (9)0.0163 (8)0.0194 (8)0.0059 (7)0.0048 (7)0.0067 (7)
C50.0220 (9)0.0176 (8)0.0157 (7)0.0069 (7)0.0065 (7)0.0072 (6)
C60.0154 (7)0.0158 (8)0.0140 (7)0.0044 (6)0.0053 (6)0.0036 (6)
C70.0145 (7)0.0136 (7)0.0130 (7)0.0037 (6)0.0041 (6)0.0024 (6)
C80.0189 (8)0.0191 (9)0.0129 (7)0.0064 (7)0.0056 (6)0.0017 (6)
C90.0198 (9)0.0196 (9)0.0175 (8)0.0080 (7)0.0061 (7)0.0014 (7)
C100.0230 (9)0.0178 (9)0.0204 (8)0.0086 (7)0.0072 (7)0.0060 (7)
C110.0221 (9)0.0179 (8)0.0160 (7)0.0076 (7)0.0069 (7)0.0061 (6)
C120.0159 (7)0.0153 (8)0.0131 (7)0.0042 (6)0.0052 (6)0.0034 (6)
Geometric parameters (Å, º) top
Cu1—N32.0077 (15)C3—C41.437 (3)
Cu1—N12.0106 (15)C3—H30.9300
Cu1—Br12.3987 (3)C4—C51.354 (3)
Cu1—Br22.4449 (3)C4—H40.9300
Se1—N21.7768 (15)C5—C61.429 (3)
Se1—N11.8131 (16)C5—H50.9300
Se2—N41.7854 (15)C7—C81.426 (3)
Se2—N31.8097 (15)C7—C121.448 (2)
N1—C11.339 (2)C8—C91.365 (3)
N2—C61.328 (2)C8—H80.9300
N3—C71.331 (2)C9—C101.433 (3)
N4—C121.334 (2)C9—H90.9300
C1—C21.424 (3)C10—C111.363 (3)
C1—C61.444 (2)C10—H100.9300
C2—C31.362 (3)C11—C121.428 (3)
C2—H20.9300C11—H110.9300
Cu1···N32.0077 (15)Se2···N41.7854 (15)
Cu1···N12.0106 (15)Se2···N31.8097 (15)
Cu1···Br12.3987 (3)Se1···Br1i3.5223 (3)
Cu1···Br22.4449 (3)Se2···N2ii2.6848 (16)
Se1···N21.7768 (15)N2···N4iii2.819 (2)
Se1···N11.8131 (16)
N3—Cu1—N1172.82 (6)C5—C4—H4119.4
N3—Cu1—Br190.80 (5)C3—C4—H4119.4
N1—Cu1—Br191.11 (5)C4—C5—C6118.41 (17)
N3—Cu1—Br289.08 (5)C4—C5—H5120.8
N1—Cu1—Br287.91 (5)C6—C5—H5120.8
Br1—Cu1—Br2170.661 (12)N2—C6—C5123.19 (17)
N2—Se1—N192.13 (7)N2—C6—C1116.30 (16)
N4—Se2—N392.13 (7)C5—C6—C1120.50 (17)
C1—N1—Se1108.34 (12)N3—C7—C8126.26 (16)
C1—N1—Cu1132.71 (13)N3—C7—C12114.19 (16)
Se1—N1—Cu1118.95 (8)C8—C7—C12119.53 (16)
C6—N2—Se1108.82 (12)C9—C8—C7118.33 (17)
C7—N3—Se2108.91 (12)C9—C8—H8120.8
C7—N3—Cu1131.38 (13)C7—C8—H8120.8
Se2—N3—Cu1119.70 (8)C8—C9—C10122.20 (18)
C12—N4—Se2108.23 (12)C8—C9—H9118.9
N1—C1—C2126.44 (16)C10—C9—H9118.9
N1—C1—C6114.38 (16)C11—C10—C9121.24 (18)
C2—C1—C6119.18 (16)C11—C10—H10119.4
C3—C2—C1118.50 (17)C9—C10—H10119.4
C3—C2—H2120.7C10—C11—C12118.52 (17)
C1—C2—H2120.7C10—C11—H11120.7
C2—C3—C4122.18 (18)C12—C11—H11120.7
C2—C3—H3118.9N4—C12—C11123.37 (17)
C4—C3—H3118.9N4—C12—C7116.52 (16)
C5—C4—C3121.22 (18)C11—C12—C7120.11 (17)
N2—Se1—N1—C10.24 (14)Se1—N2—C6—C11.1 (2)
N2—Se1—N1—Cu1179.82 (10)C4—C5—C6—N2179.72 (19)
Br1—Cu1—N1—C161.95 (18)C4—C5—C6—C10.7 (3)
Br2—Cu1—N1—C1127.35 (18)N1—C1—C6—N21.3 (3)
Br1—Cu1—N1—Se1117.52 (8)C2—C1—C6—N2179.12 (17)
Br2—Cu1—N1—Se153.19 (8)N1—C1—C6—C5179.62 (18)
N1—Se1—N2—C60.48 (14)C2—C1—C6—C50.1 (3)
N4—Se2—N3—C70.87 (14)Se2—N3—C7—C8177.08 (16)
N4—Se2—N3—Cu1178.25 (10)Cu1—N3—C7—C83.9 (3)
Br1—Cu1—N3—C7112.79 (17)Se2—N3—C7—C121.4 (2)
Br2—Cu1—N3—C757.87 (17)Cu1—N3—C7—C12177.57 (13)
Br1—Cu1—N3—Se268.31 (9)N3—C7—C8—C9179.67 (19)
Br2—Cu1—N3—Se2121.03 (9)C12—C7—C8—C91.9 (3)
N3—Se2—N4—C120.07 (14)C7—C8—C9—C100.4 (3)
Se1—N1—C1—C2179.64 (16)C8—C9—C10—C112.0 (3)
Cu1—N1—C1—C20.1 (3)C9—C10—C11—C121.0 (3)
Se1—N1—C1—C60.9 (2)Se2—N4—C12—C11179.34 (16)
Cu1—N1—C1—C6179.63 (13)Se2—N4—C12—C70.7 (2)
N1—C1—C2—C3178.66 (19)C10—C11—C12—N4178.62 (19)
C6—C1—C2—C30.8 (3)C10—C11—C12—C71.3 (3)
C1—C2—C3—C41.1 (3)N3—C7—C12—N41.5 (3)
C2—C3—C4—C50.4 (3)C8—C7—C12—N4177.12 (17)
C3—C4—C5—C60.5 (3)N3—C7—C12—C11178.57 (18)
Se1—N2—C6—C5179.91 (16)C8—C7—C12—C112.8 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br2iv0.932.743.464 (2)135
C8—H8···Br1i0.932.903.762 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[CuBr2(C6H4N2Se)2]
Mr589.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3406 (1), 9.5853 (1), 10.2908 (1)
α, β, γ (°)94.627 (1), 109.640 (1), 102.690 (1)
V3)745.17 (1)
Z2
Radiation typeMo Kα
µ (mm1)11.71
Crystal size (mm)0.52 × 0.11 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.064, 0.550
No. of measured, independent and
observed [I > 2σ(I)] reflections
47530, 9041, 6854
Rint0.048
(sin θ/λ)max1)0.901
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.066, 1.02
No. of reflections9041
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 1.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected interatomic distances (Å) top
Cu1···N32.0077 (15)Se2···N41.7854 (15)
Cu1···N12.0106 (15)Se2···N31.8097 (15)
Cu1···Br12.3987 (3)Se1···Br1i3.5223 (3)
Cu1···Br22.4449 (3)Se2···N2ii2.6848 (16)
Se1···N21.7768 (15)N2···N4iii2.819 (2)
Se1···N11.8131 (16)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br2iv0.932.743.464 (2)135
C8—H8···Br1i0.932.903.762 (2)154
Symmetry codes: (i) x+1, y+2, z+1; (iv) x+2, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST, Government of India [SR/S1/OC-13/2005] for financial support. ACM thanks the UGC, Goverment of India, for a fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Maity, A. C., Maity, S., Goswami, S. & Chantrapromma, S. (2008). Acta Cryst. E64, m1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Hazra, A., Chakrabarty, R. & Fun, H.-K. (2009). Org. Lett. 11, 4350–4353.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, A.-J., Zheng, S.-L., Fang, Y. & Tong, M.-L. (2005). Inorg. Chem. 44, 4457–4459.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m181-m182
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds