metal-organic compounds
Bis(2,1,3-benzoselenadiazole-κN)dibromidocopper(II)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my
In the title complex, [CuBr2(C6H4N2Se)2], the CuII ion is tetracoordinated by two bromide anions and two N atoms in a distorted square-planar geometry. The two essentially planar 2,1,3-benzoselenadiazole ligands [maximum deviations = 0.012 (2) and 0.030 (2) Å] are approximately coplanar [dihedral angle = 6.14 (6)°]. In the crystal, short intermolecular Se⋯Br, Se⋯N and N⋯N interactions are observed. These short interactions and intermolecular C—H⋯Br hydrogen bonds link the complex molecules into two-dimensional arrays parallel to the ac plane.
Related literature
For general background to and applications of the title complex, see: Fun et al. (2008); Zhou et al. (2005). For related structures, see: Fun et al. (2008); Goswami et al. (2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681005422X/sj5081sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681005422X/sj5081Isup2.hkl
A mixture of 2,1,3-bsd (1 g, 5.4 mol) and anhydrous copper bromide (606 mg, 2.72 mmol) in dry methanol (20 ml) was heated at 343–353 K for 2 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the precipitate was collected by filtration. Recrystallization from methanol (25 %) in chloroform afforded brown microcrystalline solids of the title compound.
All aromatic-H atoms were placed in their calculated positions, with C—H = 0.93 Å, and refined using a riding model with Uiso = 1.2 Ueq(C). The highest residual electron density peak is located at 0.71 Å from C11 and the deepest hole is located at 0.46 Å from Br2.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title complex, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. | |
Fig. 2. The crystal structure of the title complex, viewed along the b axis, showing a two-dimensional array parallel with the ac plane. Intermolecular interactions are shown as dashed lines. |
[CuBr2(C6H4N2Se)2] | Z = 2 |
Mr = 589.50 | F(000) = 550 |
Triclinic, P1 | Dx = 2.627 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.3406 (1) Å | Cell parameters from 9451 reflections |
b = 9.5853 (1) Å | θ = 2.1–39.8° |
c = 10.2908 (1) Å | µ = 11.71 mm−1 |
α = 94.627 (1)° | T = 100 K |
β = 109.640 (1)° | Block, red |
γ = 102.690 (1)° | 0.52 × 0.11 × 0.06 mm |
V = 745.17 (1) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 9041 independent reflections |
Radiation source: fine-focus sealed tube | 6854 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 39.8°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.064, Tmax = 0.550 | k = −17→17 |
47530 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.025P)2 + 0.1897P] where P = (Fo2 + 2Fc2)/3 |
9041 reflections | (Δ/σ)max = 0.003 |
190 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −1.28 e Å−3 |
[CuBr2(C6H4N2Se)2] | γ = 102.690 (1)° |
Mr = 589.50 | V = 745.17 (1) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.3406 (1) Å | Mo Kα radiation |
b = 9.5853 (1) Å | µ = 11.71 mm−1 |
c = 10.2908 (1) Å | T = 100 K |
α = 94.627 (1)° | 0.52 × 0.11 × 0.06 mm |
β = 109.640 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 9041 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 6854 reflections with I > 2σ(I) |
Tmin = 0.064, Tmax = 0.550 | Rint = 0.048 |
47530 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.96 e Å−3 |
9041 reflections | Δρmin = −1.28 e Å−3 |
190 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.76323 (3) | 0.96053 (2) | 0.46923 (2) | 0.01342 (4) | |
Se1 | 0.76418 (3) | 1.00702 (2) | 0.790290 (19) | 0.01462 (4) | |
Se2 | 0.76370 (3) | 0.96029 (2) | 0.148426 (18) | 0.01419 (4) | |
Br1 | 0.50628 (3) | 0.76430 (2) | 0.346275 (19) | 0.01659 (4) | |
Br2 | 0.99180 (3) | 1.18054 (2) | 0.602981 (19) | 0.01630 (4) | |
N1 | 0.7843 (2) | 0.89074 (17) | 0.65184 (16) | 0.0145 (3) | |
N2 | 0.7949 (2) | 0.87760 (18) | 0.90445 (16) | 0.0157 (3) | |
N3 | 0.7309 (2) | 1.05001 (17) | 0.29546 (16) | 0.0145 (3) | |
N4 | 0.7204 (2) | 1.10188 (18) | 0.05009 (16) | 0.0156 (3) | |
C1 | 0.8108 (2) | 0.7679 (2) | 0.69755 (18) | 0.0141 (3) | |
C2 | 0.8325 (3) | 0.6474 (2) | 0.6210 (2) | 0.0168 (3) | |
H2 | 0.8267 | 0.6476 | 0.5292 | 0.020* | |
C3 | 0.8621 (3) | 0.5318 (2) | 0.6854 (2) | 0.0188 (3) | |
H3 | 0.8784 | 0.4535 | 0.6365 | 0.023* | |
C4 | 0.8690 (3) | 0.5269 (2) | 0.8263 (2) | 0.0188 (3) | |
H4 | 0.8888 | 0.4456 | 0.8660 | 0.023* | |
C5 | 0.8472 (3) | 0.6385 (2) | 0.9022 (2) | 0.0180 (3) | |
H5 | 0.8509 | 0.6343 | 0.9931 | 0.022* | |
C6 | 0.8185 (2) | 0.7628 (2) | 0.83934 (19) | 0.0149 (3) | |
C7 | 0.6893 (2) | 1.1727 (2) | 0.26414 (18) | 0.0139 (3) | |
C8 | 0.6457 (3) | 1.2712 (2) | 0.34984 (19) | 0.0168 (3) | |
H8 | 0.6437 | 1.2531 | 0.4368 | 0.020* | |
C9 | 0.6071 (3) | 1.3927 (2) | 0.3011 (2) | 0.0188 (3) | |
H9 | 0.5777 | 1.4572 | 0.3560 | 0.023* | |
C10 | 0.6102 (3) | 1.4242 (2) | 0.1680 (2) | 0.0199 (4) | |
H10 | 0.5866 | 1.5097 | 0.1401 | 0.024* | |
C11 | 0.6472 (3) | 1.3311 (2) | 0.0817 (2) | 0.0181 (3) | |
H11 | 0.6471 | 1.3515 | −0.0052 | 0.022* | |
C12 | 0.6860 (2) | 1.2015 (2) | 0.12748 (18) | 0.0147 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01609 (10) | 0.01305 (10) | 0.01093 (9) | 0.00325 (8) | 0.00478 (7) | 0.00314 (7) |
Se1 | 0.01835 (8) | 0.01413 (8) | 0.01224 (7) | 0.00580 (6) | 0.00550 (6) | 0.00300 (6) |
Se2 | 0.01791 (8) | 0.01411 (8) | 0.01127 (7) | 0.00550 (6) | 0.00527 (6) | 0.00277 (6) |
Br1 | 0.01675 (8) | 0.01600 (8) | 0.01488 (7) | 0.00238 (6) | 0.00416 (6) | 0.00318 (6) |
Br2 | 0.01769 (8) | 0.01514 (8) | 0.01563 (8) | 0.00415 (6) | 0.00532 (6) | 0.00391 (6) |
N1 | 0.0175 (7) | 0.0141 (7) | 0.0120 (6) | 0.0036 (5) | 0.0058 (5) | 0.0027 (5) |
N2 | 0.0185 (7) | 0.0179 (7) | 0.0124 (6) | 0.0071 (6) | 0.0059 (5) | 0.0043 (5) |
N3 | 0.0179 (7) | 0.0137 (7) | 0.0120 (6) | 0.0041 (5) | 0.0057 (5) | 0.0023 (5) |
N4 | 0.0186 (7) | 0.0175 (7) | 0.0128 (6) | 0.0071 (6) | 0.0065 (5) | 0.0050 (5) |
C1 | 0.0147 (7) | 0.0142 (7) | 0.0134 (7) | 0.0039 (6) | 0.0048 (6) | 0.0039 (6) |
C2 | 0.0196 (8) | 0.0158 (8) | 0.0155 (7) | 0.0042 (7) | 0.0076 (7) | 0.0016 (6) |
C3 | 0.0209 (9) | 0.0156 (8) | 0.0191 (8) | 0.0053 (7) | 0.0062 (7) | 0.0010 (6) |
C4 | 0.0200 (9) | 0.0163 (8) | 0.0194 (8) | 0.0059 (7) | 0.0048 (7) | 0.0067 (7) |
C5 | 0.0220 (9) | 0.0176 (8) | 0.0157 (7) | 0.0069 (7) | 0.0065 (7) | 0.0072 (6) |
C6 | 0.0154 (7) | 0.0158 (8) | 0.0140 (7) | 0.0044 (6) | 0.0053 (6) | 0.0036 (6) |
C7 | 0.0145 (7) | 0.0136 (7) | 0.0130 (7) | 0.0037 (6) | 0.0041 (6) | 0.0024 (6) |
C8 | 0.0189 (8) | 0.0191 (9) | 0.0129 (7) | 0.0064 (7) | 0.0056 (6) | 0.0017 (6) |
C9 | 0.0198 (9) | 0.0196 (9) | 0.0175 (8) | 0.0080 (7) | 0.0061 (7) | 0.0014 (7) |
C10 | 0.0230 (9) | 0.0178 (9) | 0.0204 (8) | 0.0086 (7) | 0.0072 (7) | 0.0060 (7) |
C11 | 0.0221 (9) | 0.0179 (8) | 0.0160 (7) | 0.0076 (7) | 0.0069 (7) | 0.0061 (6) |
C12 | 0.0159 (7) | 0.0153 (8) | 0.0131 (7) | 0.0042 (6) | 0.0052 (6) | 0.0034 (6) |
Cu1—N3 | 2.0077 (15) | C3—C4 | 1.437 (3) |
Cu1—N1 | 2.0106 (15) | C3—H3 | 0.9300 |
Cu1—Br1 | 2.3987 (3) | C4—C5 | 1.354 (3) |
Cu1—Br2 | 2.4449 (3) | C4—H4 | 0.9300 |
Se1—N2 | 1.7768 (15) | C5—C6 | 1.429 (3) |
Se1—N1 | 1.8131 (16) | C5—H5 | 0.9300 |
Se2—N4 | 1.7854 (15) | C7—C8 | 1.426 (3) |
Se2—N3 | 1.8097 (15) | C7—C12 | 1.448 (2) |
N1—C1 | 1.339 (2) | C8—C9 | 1.365 (3) |
N2—C6 | 1.328 (2) | C8—H8 | 0.9300 |
N3—C7 | 1.331 (2) | C9—C10 | 1.433 (3) |
N4—C12 | 1.334 (2) | C9—H9 | 0.9300 |
C1—C2 | 1.424 (3) | C10—C11 | 1.363 (3) |
C1—C6 | 1.444 (2) | C10—H10 | 0.9300 |
C2—C3 | 1.362 (3) | C11—C12 | 1.428 (3) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
Cu1···N3 | 2.0077 (15) | Se2···N4 | 1.7854 (15) |
Cu1···N1 | 2.0106 (15) | Se2···N3 | 1.8097 (15) |
Cu1···Br1 | 2.3987 (3) | Se1···Br1i | 3.5223 (3) |
Cu1···Br2 | 2.4449 (3) | Se2···N2ii | 2.6848 (16) |
Se1···N2 | 1.7768 (15) | N2···N4iii | 2.819 (2) |
Se1···N1 | 1.8131 (16) | ||
N3—Cu1—N1 | 172.82 (6) | C5—C4—H4 | 119.4 |
N3—Cu1—Br1 | 90.80 (5) | C3—C4—H4 | 119.4 |
N1—Cu1—Br1 | 91.11 (5) | C4—C5—C6 | 118.41 (17) |
N3—Cu1—Br2 | 89.08 (5) | C4—C5—H5 | 120.8 |
N1—Cu1—Br2 | 87.91 (5) | C6—C5—H5 | 120.8 |
Br1—Cu1—Br2 | 170.661 (12) | N2—C6—C5 | 123.19 (17) |
N2—Se1—N1 | 92.13 (7) | N2—C6—C1 | 116.30 (16) |
N4—Se2—N3 | 92.13 (7) | C5—C6—C1 | 120.50 (17) |
C1—N1—Se1 | 108.34 (12) | N3—C7—C8 | 126.26 (16) |
C1—N1—Cu1 | 132.71 (13) | N3—C7—C12 | 114.19 (16) |
Se1—N1—Cu1 | 118.95 (8) | C8—C7—C12 | 119.53 (16) |
C6—N2—Se1 | 108.82 (12) | C9—C8—C7 | 118.33 (17) |
C7—N3—Se2 | 108.91 (12) | C9—C8—H8 | 120.8 |
C7—N3—Cu1 | 131.38 (13) | C7—C8—H8 | 120.8 |
Se2—N3—Cu1 | 119.70 (8) | C8—C9—C10 | 122.20 (18) |
C12—N4—Se2 | 108.23 (12) | C8—C9—H9 | 118.9 |
N1—C1—C2 | 126.44 (16) | C10—C9—H9 | 118.9 |
N1—C1—C6 | 114.38 (16) | C11—C10—C9 | 121.24 (18) |
C2—C1—C6 | 119.18 (16) | C11—C10—H10 | 119.4 |
C3—C2—C1 | 118.50 (17) | C9—C10—H10 | 119.4 |
C3—C2—H2 | 120.7 | C10—C11—C12 | 118.52 (17) |
C1—C2—H2 | 120.7 | C10—C11—H11 | 120.7 |
C2—C3—C4 | 122.18 (18) | C12—C11—H11 | 120.7 |
C2—C3—H3 | 118.9 | N4—C12—C11 | 123.37 (17) |
C4—C3—H3 | 118.9 | N4—C12—C7 | 116.52 (16) |
C5—C4—C3 | 121.22 (18) | C11—C12—C7 | 120.11 (17) |
N2—Se1—N1—C1 | 0.24 (14) | Se1—N2—C6—C1 | −1.1 (2) |
N2—Se1—N1—Cu1 | 179.82 (10) | C4—C5—C6—N2 | 179.72 (19) |
Br1—Cu1—N1—C1 | 61.95 (18) | C4—C5—C6—C1 | 0.7 (3) |
Br2—Cu1—N1—C1 | −127.35 (18) | N1—C1—C6—N2 | 1.3 (3) |
Br1—Cu1—N1—Se1 | −117.52 (8) | C2—C1—C6—N2 | −179.12 (17) |
Br2—Cu1—N1—Se1 | 53.19 (8) | N1—C1—C6—C5 | −179.62 (18) |
N1—Se1—N2—C6 | 0.48 (14) | C2—C1—C6—C5 | −0.1 (3) |
N4—Se2—N3—C7 | 0.87 (14) | Se2—N3—C7—C8 | 177.08 (16) |
N4—Se2—N3—Cu1 | −178.25 (10) | Cu1—N3—C7—C8 | −3.9 (3) |
Br1—Cu1—N3—C7 | 112.79 (17) | Se2—N3—C7—C12 | −1.4 (2) |
Br2—Cu1—N3—C7 | −57.87 (17) | Cu1—N3—C7—C12 | 177.57 (13) |
Br1—Cu1—N3—Se2 | −68.31 (9) | N3—C7—C8—C9 | 179.67 (19) |
Br2—Cu1—N3—Se2 | 121.03 (9) | C12—C7—C8—C9 | −1.9 (3) |
N3—Se2—N4—C12 | −0.07 (14) | C7—C8—C9—C10 | −0.4 (3) |
Se1—N1—C1—C2 | 179.64 (16) | C8—C9—C10—C11 | 2.0 (3) |
Cu1—N1—C1—C2 | 0.1 (3) | C9—C10—C11—C12 | −1.0 (3) |
Se1—N1—C1—C6 | −0.9 (2) | Se2—N4—C12—C11 | 179.34 (16) |
Cu1—N1—C1—C6 | 179.63 (13) | Se2—N4—C12—C7 | −0.7 (2) |
N1—C1—C2—C3 | 178.66 (19) | C10—C11—C12—N4 | 178.62 (19) |
C6—C1—C2—C3 | −0.8 (3) | C10—C11—C12—C7 | −1.3 (3) |
C1—C2—C3—C4 | 1.1 (3) | N3—C7—C12—N4 | 1.5 (3) |
C2—C3—C4—C5 | −0.4 (3) | C8—C7—C12—N4 | −177.12 (17) |
C3—C4—C5—C6 | −0.5 (3) | N3—C7—C12—C11 | −178.57 (18) |
Se1—N2—C6—C5 | 179.91 (16) | C8—C7—C12—C11 | 2.8 (3) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z−1; (iii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Br2iv | 0.93 | 2.74 | 3.464 (2) | 135 |
C8—H8···Br1i | 0.93 | 2.90 | 3.762 (2) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuBr2(C6H4N2Se)2] |
Mr | 589.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.3406 (1), 9.5853 (1), 10.2908 (1) |
α, β, γ (°) | 94.627 (1), 109.640 (1), 102.690 (1) |
V (Å3) | 745.17 (1) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 11.71 |
Crystal size (mm) | 0.52 × 0.11 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.064, 0.550 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 47530, 9041, 6854 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.901 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.066, 1.02 |
No. of reflections | 9041 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −1.28 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cu1···N3 | 2.0077 (15) | Se2···N4 | 1.7854 (15) |
Cu1···N1 | 2.0106 (15) | Se2···N3 | 1.8097 (15) |
Cu1···Br1 | 2.3987 (3) | Se1···Br1i | 3.5223 (3) |
Cu1···Br2 | 2.4449 (3) | Se2···N2ii | 2.6848 (16) |
Se1···N2 | 1.7768 (15) | N2···N4iii | 2.819 (2) |
Se1···N1 | 1.8131 (16) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z−1; (iii) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Br2iv | 0.93 | 2.74 | 3.464 (2) | 135 |
C8—H8···Br1i | 0.93 | 2.90 | 3.762 (2) | 154 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (iv) −x+2, −y+2, −z+1. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST, Government of India [SR/S1/OC-13/2005] for financial support. ACM thanks the UGC, Goverment of India, for a fellowship.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Maity, A. C., Maity, S., Goswami, S. & Chantrapromma, S. (2008). Acta Cryst. E64, m1188. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goswami, S., Hazra, A., Chakrabarty, R. & Fun, H.-K. (2009). Org. Lett. 11, 4350–4353. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, A.-J., Zheng, S.-L., Fang, Y. & Tong, M.-L. (2005). Inorg. Chem. 44, 4457–4459. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of metal-organic framework (MOF) materials are an interesting area nowadays. The coordination chemistry of 2,1,3-benzoselenadiazole (bsd) has been sparingly explored (Zhou et al., 2005). Recently we have shown that 2,1,3-bsd is capable of forming coordination networks with Zn(II) metal (Fun et al., 2008). In the present work, we report the coordination networks for CuII complex containing bsd. Reaction of 2,1,3-bsd with CuBr2 results in the formation of the title copper complex.
The title complex comprises a neutral CuBr2L2 molecule (L = 2,1,3-bsd ligand). The CuII ion is tetra-coordinated by two Br- ions and two L ligand-N atoms in a distorted square planar geometry, as indicated by angles of N1–Cu1–N3 = 172.82 (6)°, Br1–Cu1–Br2 = 170.661 (12)° and range of N–Cu–Br = 87.91 (5)–91.11 (5)°. The two ligands [(C1–C6/N1/N2/Se1) and (C6–C12/N3/N4/Se2)] are essentially planar, with maximum deviations of -0.012 (2) Å at atom C2 and 0.030 (2) Å at atom N3, respectively. These two ligands are approximately coplanar to one another, forming an interplanar angle of 6.14 (6)°. Selected bond lengths are listed in Table 1. All other bond lengths and angles are consistent to those observed in closely related structures (Fun et al., 2008; Goswami et al., 2009).
The interesting feature of the crystal packing is the observation of intermolecular short Se1···Br1, Se2···N2 and N2···N4 interactions (Table 1), as observed in the reported ZnCl2L2 structure (Fun et al., 2008). The title complex is interconnected into two-dimensional arrays lying parallel with the ac plane via these short interactions as well as intermolecular C2—H2···Br2 and C8—H8···Br1 hydrogen bonds (Table 2).