organic compounds
1-[2-(4-Nitrophenyl)-5-(5-phenyl-1,2-oxazol-3-yl)-1,2,3,4-tetrahydroquinolin-4-yl]pyrrolidin-2-one
aInstituto de Quimica de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile, bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile, and cInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain.
*Correspondence e-mail: ivanbritob@yahoo.com
The title compound, (I) C28H24N4O4, is the trans diastereoisomer of the compound 1-[2-(4-nitrophenyl)-6-(5-phenyl-3-isoxazolyl)-1,2,3,4-tetrahydro-4-quinolinyl]-2-pyrrolidinone monohydrate, (II) [Gutierrez et al. (2011). Acta Cryst. E67, o175–o176]. The most obvious differences between the diastereoisomers are the dihedral angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°, respectively, for (II) 75.4 (2) and 5.8 (3), respectively, for (I)]. In the crystal of (I), the molecules are linked by N—H⋯O interactions into a chain along [001] with graph-set notation C(8).
Related literature
For details of nitrogen-containing et al. (2010) and for their pharmacological activity, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For reactions of isoxazoles, see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For applications of compounds possessing the quinoline system as drugs and pharmaceuticals, see: Kalita et al. (2006). For syntheses of quinolines, see: Kouznetsov et al. (2005). For the trans diastereoisomer of the title compound, see: Gutierrez et al. (2011). For graph-set motifs see: Bernstein et al. (1995) and for puckering parameters, see: Cremer & Pople (1975)
see: SankaranExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Nonius, 2000); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810054048/sj5084sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810054048/sj5084Isup2.hkl
A mixture of 3-(3-aminophenyl)-5-phenylisoxazole (2.8 mmol) 3 and 4-nitrobenzaldehyde (3.4 mmol) 1 in anhydrous CH3CN (15 mL) was stirred at room temperature for 30 min. BiCl3 (2.0 mmol) was added. Over a period of 20 min, a solution the N-vinyl.2-pyrrolidone (NVP) (5.5 mmol) 4 in CH3CN (10 ml) was added dropwise. The resulting mixture was stirred for 10–14 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3×15 mL). The organic layer was separated and dried (Na2SO4),concentrated in vacuum and the resulting product was purified by δ): 8.24 (2H, d, J = 8.0); 7.81 (2H, d, J= 8.0); 7.60 (1H, d, J = 8.0); 7.27(2H, dd, J = 8.0 and 4.0); 7.17 (1H,t, J = 8.0); 6.97 (1H, d, J = 8.0); 6.89 (2H, d, J = 8.0); 6.78 (1H, d, J = 8.0); 6.62 (1H, s); 5.35 (1H, s); 4.59 (1H, dd, J = 12.0 and 1.0); 4.41 (1H, br. s);2.39 (2H, m); 1.97 (2H, m); 1.62 (2H, s). RMN-13H (CDCl3),400 MHz, δ): 174.68, 169.95, 162.48, 150.61, 147.65, 145.15, 130.87, 129.31, 128.98, 127.47,127.27, 125.95, 125.04, 124.61, 119.61, 116.32, 115.27, 99.89, 52.54, 47.51,46.22, 37.37, 31.36, 18.56. MS m/z (EI): 480. Anal. Calcd. for C28H24N4O4: C, 69.99; H,5.03;N, 11.66. Found: C, 69.89; H, 5.01; N, 11.77.
(silica gel) using PE and EtOAc mixtures. Obtained for derivatives trans and cis Quinoline-Isoxazole 5 and (I), see Figure 3. Solid crystalline mp 130 - 132 °C; RMN-1H(CDCl3), 400 MHz,The SQUEEZE function of PLATON (Spek, 2009) was used to eliminate the contribution of electron density in the solvent region from the intensity data, and a solvent-free model was employed for the final
The volume which is accessible for potential solvent molecules was calculated to be 452.0 Å3 and the total electron count per cell was calculated to be 15. Note that the calculated density, the value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option in PLATON (Spek, 2009). Therefore, the solvent-free model and intensity data were used for the final results reported here.The
of the two stereogenic centres could not be established by the (Flack, 1983) and Friedel opposites were merged.The position of the N2 H atom was refined freely with isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: COLLECT (Nonius, 2000); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) & PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).C28H24N4O4 | Dx = 1.229 Mg m−3 |
Mr = 480.51 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P61 | Cell parameters from 2728 reflections |
Hall symbol: P 61 | θ = 2.8–27.5° |
a = 20.753 (3) Å | µ = 0.08 mm−1 |
c = 10.446 (2) Å | T = 293 K |
V = 3896.2 (11) Å3 | Prismatic, orange |
Z = 6 | 0.20 × 0.20 × 0.18 mm |
F(000) = 1512 |
Nonius KappaCCD area-detector diffractometer | 2646 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
Graphite monochromator | θmax = 27.5°, θmin = 2.8° |
ϕ scans, and ω scans with κ offsets | h = −22→0 |
5951 measured reflections | k = 0→26 |
3144 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.075 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | w = 1/[σ2(Fo2) + (0.0755P)2 + 0.8624P] where P = (Fo2 + 2Fc2)/3 |
3144 reflections | (Δ/σ)max = 0.010 |
329 parameters | Δρmax = 0.32 e Å−3 |
1 restraint | Δρmin = −0.24 e Å−3 |
C28H24N4O4 | Z = 6 |
Mr = 480.51 | Mo Kα radiation |
Hexagonal, P61 | µ = 0.08 mm−1 |
a = 20.753 (3) Å | T = 293 K |
c = 10.446 (2) Å | 0.20 × 0.20 × 0.18 mm |
V = 3896.2 (11) Å3 |
Nonius KappaCCD area-detector diffractometer | 2646 reflections with I > 2σ(I) |
5951 measured reflections | Rint = 0.026 |
3144 independent reflections |
R[F2 > 2σ(F2)] = 0.075 | 1 restraint |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.22 | Δρmax = 0.32 e Å−3 |
3144 reflections | Δρmin = −0.24 e Å−3 |
329 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2019 (3) | −0.0999 (3) | 0.6005 (5) | 0.1165 (18) | |
O2 | 0.1082 (3) | −0.1080 (3) | 0.5004 (7) | 0.147 (3) | |
O3 | 0.54683 (17) | 0.55998 (14) | 0.2252 (3) | 0.0485 (7) | |
O4 | 0.36115 (17) | 0.42435 (19) | 0.2789 (3) | 0.0607 (8) | |
N1 | 0.1743 (3) | −0.0784 (3) | 0.5205 (5) | 0.0880 (15) | |
N2 | 0.43438 (18) | 0.19821 (17) | 0.2011 (4) | 0.0456 (8) | |
N3 | 0.5569 (2) | 0.49764 (18) | 0.2257 (4) | 0.0492 (8) | |
N4 | 0.36641 (16) | 0.33963 (17) | 0.1463 (3) | 0.0388 (7) | |
C1 | 0.2234 (3) | −0.0115 (2) | 0.4445 (5) | 0.0631 (12) | |
C2 | 0.2982 (3) | 0.0205 (3) | 0.4559 (5) | 0.0637 (12) | |
H2 | 0.3186 | −0.0002 | 0.5098 | 0.076* | |
C3 | 0.3433 (2) | 0.0833 (2) | 0.3881 (5) | 0.0597 (12) | |
H3 | 0.3946 | 0.1050 | 0.3963 | 0.072* | |
C4 | 0.3145 (2) | 0.1154 (2) | 0.3075 (4) | 0.0489 (10) | |
C5 | 0.2376 (3) | 0.0806 (3) | 0.2964 (7) | 0.0855 (19) | |
H5 | 0.2168 | 0.1006 | 0.2416 | 0.103* | |
C6 | 0.1916 (3) | 0.0171 (3) | 0.3647 (7) | 0.091 (2) | |
H6 | 0.1401 | −0.0057 | 0.3568 | 0.109* | |
C7 | 0.3612 (2) | 0.1867 (2) | 0.2334 (5) | 0.0471 (9) | |
H7 | 0.3351 | 0.1839 | 0.1535 | 0.057* | |
C8 | 0.3719 (2) | 0.25488 (19) | 0.3085 (4) | 0.0404 (8) | |
H8A | 0.3237 | 0.2483 | 0.3310 | 0.048* | |
H8B | 0.3985 | 0.2591 | 0.3873 | 0.048* | |
C9 | 0.41529 (18) | 0.32633 (18) | 0.2308 (4) | 0.0337 (7) | |
H9 | 0.4378 | 0.3677 | 0.2918 | 0.040* | |
C10 | 0.47821 (18) | 0.32842 (19) | 0.1526 (4) | 0.0335 (7) | |
C11 | 0.4825 (2) | 0.26296 (19) | 0.1383 (4) | 0.0379 (8) | |
C12 | 0.5384 (2) | 0.2653 (2) | 0.0586 (4) | 0.0451 (10) | |
H12 | 0.5428 | 0.2231 | 0.0502 | 0.054* | |
C13 | 0.5865 (2) | 0.3290 (2) | −0.0069 (4) | 0.0499 (10) | |
H13 | 0.6217 | 0.3289 | −0.0618 | 0.060* | |
C14 | 0.5826 (2) | 0.3935 (2) | 0.0088 (4) | 0.0439 (9) | |
H14 | 0.6151 | 0.4365 | −0.0357 | 0.053* | |
C15 | 0.53053 (19) | 0.39350 (19) | 0.0906 (4) | 0.0345 (8) | |
C16 | 0.53036 (18) | 0.46432 (19) | 0.1164 (4) | 0.0355 (8) | |
C17 | 0.5044 (2) | 0.5032 (2) | 0.0404 (4) | 0.0393 (8) | |
H17 | 0.4844 | 0.4914 | −0.0417 | 0.047* | |
C18 | 0.51507 (19) | 0.56076 (19) | 0.1134 (4) | 0.0374 (8) | |
C19 | 0.4969 (2) | 0.6206 (2) | 0.0963 (4) | 0.0401 (8) | |
C20 | 0.4578 (2) | 0.6207 (2) | −0.0102 (4) | 0.0456 (9) | |
H20 | 0.4425 | 0.5828 | −0.0704 | 0.055* | |
C21 | 0.4409 (2) | 0.6770 (3) | −0.0284 (5) | 0.0552 (11) | |
H21 | 0.4141 | 0.6767 | −0.0999 | 0.066* | |
C22 | 0.4643 (3) | 0.7329 (3) | 0.0603 (6) | 0.0655 (14) | |
H22 | 0.4544 | 0.7714 | 0.0476 | 0.079* | |
C23 | 0.5015 (4) | 0.7325 (3) | 0.1657 (6) | 0.0790 (17) | |
H23 | 0.5157 | 0.7701 | 0.2262 | 0.095* | |
C24 | 0.5191 (3) | 0.6767 (3) | 0.1855 (5) | 0.0671 (14) | |
H24 | 0.5454 | 0.6773 | 0.2579 | 0.080* | |
C25 | 0.3392 (3) | 0.3060 (3) | 0.0210 (5) | 0.0674 (14) | |
H25A | 0.3053 | 0.2529 | 0.0290 | 0.081* | |
H25B | 0.3802 | 0.3141 | −0.0341 | 0.081* | |
C26 | 0.2998 (3) | 0.3441 (4) | −0.0316 (6) | 0.0799 (16) | |
H26A | 0.3271 | 0.3753 | −0.1038 | 0.096* | |
H26B | 0.2503 | 0.3076 | −0.0602 | 0.096* | |
C27 | 0.2955 (3) | 0.3900 (3) | 0.0734 (5) | 0.0704 (14) | |
H27A | 0.2446 | 0.3694 | 0.1028 | 0.085* | |
H27B | 0.3135 | 0.4407 | 0.0446 | 0.085* | |
C28 | 0.3444 (2) | 0.3884 (2) | 0.1797 (4) | 0.0474 (10) | |
H2N | 0.4315 (16) | 0.1573 (18) | 0.174 (3) | 0.017 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.113 (4) | 0.106 (3) | 0.110 (4) | 0.039 (3) | 0.008 (3) | 0.058 (3) |
O2 | 0.088 (3) | 0.109 (4) | 0.173 (6) | −0.005 (3) | −0.006 (4) | 0.069 (4) |
O3 | 0.0723 (18) | 0.0384 (13) | 0.0401 (15) | 0.0317 (13) | −0.0135 (14) | −0.0066 (12) |
O4 | 0.0657 (18) | 0.086 (2) | 0.0577 (19) | 0.0587 (18) | −0.0052 (16) | −0.0198 (18) |
N1 | 0.079 (3) | 0.063 (3) | 0.090 (4) | 0.011 (2) | 0.004 (3) | 0.018 (3) |
N2 | 0.0506 (18) | 0.0267 (15) | 0.062 (2) | 0.0212 (14) | 0.0040 (17) | −0.0034 (15) |
N3 | 0.067 (2) | 0.0429 (17) | 0.0464 (19) | 0.0341 (16) | −0.0109 (18) | −0.0027 (16) |
N4 | 0.0363 (15) | 0.0475 (16) | 0.0394 (17) | 0.0262 (14) | −0.0005 (14) | −0.0013 (14) |
C1 | 0.066 (3) | 0.040 (2) | 0.064 (3) | 0.012 (2) | 0.001 (2) | 0.007 (2) |
C2 | 0.070 (3) | 0.061 (3) | 0.063 (3) | 0.035 (2) | 0.004 (3) | 0.016 (2) |
C3 | 0.052 (2) | 0.057 (2) | 0.068 (3) | 0.026 (2) | −0.002 (2) | 0.014 (2) |
C4 | 0.046 (2) | 0.0338 (18) | 0.058 (3) | 0.0127 (16) | −0.001 (2) | 0.0012 (19) |
C5 | 0.059 (3) | 0.070 (3) | 0.111 (5) | 0.020 (2) | −0.008 (3) | 0.038 (4) |
C6 | 0.056 (3) | 0.068 (3) | 0.117 (5) | 0.008 (3) | −0.013 (3) | 0.029 (4) |
C7 | 0.046 (2) | 0.0363 (19) | 0.055 (2) | 0.0175 (16) | −0.0023 (19) | 0.0047 (18) |
C8 | 0.0396 (18) | 0.0416 (19) | 0.043 (2) | 0.0225 (16) | 0.0057 (17) | 0.0045 (17) |
C9 | 0.0337 (16) | 0.0332 (17) | 0.0379 (18) | 0.0194 (14) | 0.0005 (15) | −0.0010 (15) |
C10 | 0.0337 (17) | 0.0359 (17) | 0.0354 (18) | 0.0207 (15) | −0.0041 (15) | −0.0050 (15) |
C11 | 0.0400 (18) | 0.0380 (18) | 0.044 (2) | 0.0260 (16) | −0.0081 (17) | −0.0073 (17) |
C12 | 0.042 (2) | 0.044 (2) | 0.059 (3) | 0.0297 (18) | −0.007 (2) | −0.016 (2) |
C13 | 0.0383 (19) | 0.059 (2) | 0.056 (3) | 0.0276 (19) | 0.008 (2) | −0.012 (2) |
C14 | 0.0369 (18) | 0.043 (2) | 0.050 (2) | 0.0181 (16) | 0.0077 (18) | −0.0001 (19) |
C15 | 0.0344 (17) | 0.0341 (17) | 0.0376 (18) | 0.0192 (14) | −0.0063 (15) | −0.0017 (15) |
C16 | 0.0317 (17) | 0.0348 (17) | 0.0365 (19) | 0.0139 (14) | 0.0064 (15) | 0.0058 (15) |
C17 | 0.0493 (19) | 0.0404 (18) | 0.0315 (19) | 0.0249 (16) | 0.0008 (16) | 0.0012 (16) |
C18 | 0.0385 (18) | 0.0345 (18) | 0.0376 (19) | 0.0170 (15) | 0.0034 (16) | 0.0050 (15) |
C19 | 0.047 (2) | 0.0351 (18) | 0.042 (2) | 0.0236 (16) | 0.0096 (17) | 0.0055 (16) |
C20 | 0.053 (2) | 0.047 (2) | 0.041 (2) | 0.0287 (19) | 0.0041 (19) | 0.0014 (18) |
C21 | 0.065 (3) | 0.063 (3) | 0.053 (2) | 0.044 (2) | 0.002 (2) | 0.010 (2) |
C22 | 0.093 (4) | 0.055 (3) | 0.070 (3) | 0.053 (3) | 0.012 (3) | 0.010 (3) |
C23 | 0.120 (5) | 0.063 (3) | 0.076 (4) | 0.061 (3) | −0.020 (4) | −0.025 (3) |
C24 | 0.101 (4) | 0.057 (3) | 0.059 (3) | 0.051 (3) | −0.025 (3) | −0.017 (2) |
C25 | 0.078 (3) | 0.086 (3) | 0.058 (3) | 0.055 (3) | −0.024 (3) | −0.020 (3) |
C26 | 0.083 (4) | 0.119 (5) | 0.059 (3) | 0.067 (4) | −0.022 (3) | −0.011 (3) |
C27 | 0.075 (3) | 0.096 (4) | 0.069 (3) | 0.064 (3) | −0.008 (3) | 0.000 (3) |
C28 | 0.042 (2) | 0.062 (2) | 0.051 (2) | 0.035 (2) | 0.0038 (19) | 0.005 (2) |
O1—N1 | 1.217 (6) | C11—C12 | 1.409 (6) |
O2—N1 | 1.209 (7) | C12—C13 | 1.375 (6) |
O3—C18 | 1.344 (5) | C12—H12 | 0.9300 |
O3—N3 | 1.410 (4) | C13—C14 | 1.390 (6) |
O4—C28 | 1.221 (5) | C13—H13 | 0.9300 |
N1—C1 | 1.477 (6) | C14—C15 | 1.378 (5) |
N2—C11 | 1.375 (5) | C14—H14 | 0.9300 |
N2—C7 | 1.454 (5) | C15—C16 | 1.496 (5) |
N2—H2N | 0.87 (3) | C16—C17 | 1.416 (5) |
N3—C16 | 1.306 (5) | C17—C18 | 1.339 (5) |
N4—C28 | 1.349 (5) | C17—H17 | 0.9300 |
N4—C25 | 1.457 (6) | C18—C19 | 1.477 (5) |
N4—C9 | 1.472 (4) | C19—C20 | 1.378 (6) |
C1—C2 | 1.353 (7) | C19—C24 | 1.379 (6) |
C1—C6 | 1.370 (7) | C20—C21 | 1.390 (6) |
C2—C3 | 1.362 (6) | C20—H20 | 0.9300 |
C2—H2 | 0.9300 | C21—C22 | 1.370 (7) |
C3—C4 | 1.381 (6) | C21—H21 | 0.9300 |
C3—H3 | 0.9300 | C22—C23 | 1.346 (8) |
C4—C5 | 1.389 (6) | C22—H22 | 0.9300 |
C4—C7 | 1.514 (6) | C23—C24 | 1.394 (7) |
C5—C6 | 1.378 (8) | C23—H23 | 0.9300 |
C5—H5 | 0.9300 | C24—H24 | 0.9300 |
C6—H6 | 0.9300 | C25—C26 | 1.497 (7) |
C7—C8 | 1.534 (5) | C25—H25A | 0.9700 |
C7—H7 | 0.9800 | C25—H25B | 0.9700 |
C8—C9 | 1.527 (5) | C26—C27 | 1.486 (8) |
C8—H8A | 0.9700 | C26—H26A | 0.9700 |
C8—H8B | 0.9700 | C26—H26B | 0.9700 |
C9—C10 | 1.523 (5) | C27—C28 | 1.515 (7) |
C9—H9 | 0.9800 | C27—H27A | 0.9700 |
C10—C15 | 1.398 (5) | C27—H27B | 0.9700 |
C10—C11 | 1.413 (5) | ||
C18—O3—N3 | 108.2 (3) | C12—C13—H13 | 119.9 |
O2—N1—O1 | 123.8 (5) | C14—C13—H13 | 119.9 |
O2—N1—C1 | 117.2 (5) | C15—C14—C13 | 119.8 (4) |
O1—N1—C1 | 119.0 (5) | C15—C14—H14 | 120.1 |
C11—N2—C7 | 117.3 (3) | C13—C14—H14 | 120.1 |
C11—N2—H2N | 117 (2) | C14—C15—C10 | 121.1 (3) |
C7—N2—H2N | 111.2 (19) | C14—C15—C16 | 119.9 (3) |
C16—N3—O3 | 105.4 (3) | C10—C15—C16 | 118.9 (3) |
C28—N4—C25 | 113.3 (3) | N3—C16—C17 | 111.6 (3) |
C28—N4—C9 | 120.7 (3) | N3—C16—C15 | 118.0 (3) |
C25—N4—C9 | 126.0 (3) | C17—C16—C15 | 130.4 (3) |
C2—C1—C6 | 121.6 (4) | C18—C17—C16 | 104.4 (3) |
C2—C1—N1 | 119.8 (5) | C18—C17—H17 | 127.8 |
C6—C1—N1 | 118.6 (5) | C16—C17—H17 | 127.8 |
C1—C2—C3 | 119.6 (5) | C17—C18—O3 | 110.3 (3) |
C1—C2—H2 | 120.2 | C17—C18—C19 | 133.0 (4) |
C3—C2—H2 | 120.2 | O3—C18—C19 | 116.6 (3) |
C2—C3—C4 | 121.5 (4) | C20—C19—C24 | 119.5 (4) |
C2—C3—H3 | 119.3 | C20—C19—C18 | 119.9 (4) |
C4—C3—H3 | 119.3 | C24—C19—C18 | 120.7 (4) |
C3—C4—C5 | 117.5 (4) | C19—C20—C21 | 120.5 (4) |
C3—C4—C7 | 124.3 (4) | C19—C20—H20 | 119.7 |
C5—C4—C7 | 118.2 (4) | C21—C20—H20 | 119.7 |
C6—C5—C4 | 121.4 (5) | C22—C21—C20 | 119.2 (4) |
C6—C5—H5 | 119.3 | C22—C21—H21 | 120.4 |
C4—C5—H5 | 119.3 | C20—C21—H21 | 120.4 |
C1—C6—C5 | 118.4 (5) | C23—C22—C21 | 120.6 (4) |
C1—C6—H6 | 120.8 | C23—C22—H22 | 119.7 |
C5—C6—H6 | 120.8 | C21—C22—H22 | 119.7 |
N2—C7—C4 | 112.6 (3) | C22—C23—C24 | 121.0 (5) |
N2—C7—C8 | 108.0 (3) | C22—C23—H23 | 119.5 |
C4—C7—C8 | 111.5 (4) | C24—C23—H23 | 119.5 |
N2—C7—H7 | 108.2 | C19—C24—C23 | 119.1 (5) |
C4—C7—H7 | 108.2 | C19—C24—H24 | 120.4 |
C8—C7—H7 | 108.2 | C23—C24—H24 | 120.4 |
C9—C8—C7 | 111.5 (3) | N4—C25—C26 | 105.1 (4) |
C9—C8—H8A | 109.3 | N4—C25—H25A | 110.7 |
C7—C8—H8A | 109.3 | C26—C25—H25A | 110.7 |
C9—C8—H8B | 109.3 | N4—C25—H25B | 110.7 |
C7—C8—H8B | 109.3 | C26—C25—H25B | 110.7 |
H8A—C8—H8B | 108.0 | H25A—C25—H25B | 108.8 |
N4—C9—C10 | 109.5 (3) | C27—C26—C25 | 107.0 (4) |
N4—C9—C8 | 112.0 (3) | C27—C26—H26A | 110.3 |
C10—C9—C8 | 113.2 (3) | C25—C26—H26A | 110.3 |
N4—C9—H9 | 107.3 | C27—C26—H26B | 110.3 |
C10—C9—H9 | 107.3 | C25—C26—H26B | 110.3 |
C8—C9—H9 | 107.3 | H26A—C26—H26B | 108.6 |
C15—C10—C11 | 119.2 (3) | C26—C27—C28 | 105.7 (4) |
C15—C10—C9 | 121.1 (3) | C26—C27—H27A | 110.6 |
C11—C10—C9 | 119.6 (3) | C28—C27—H27A | 110.6 |
N2—C11—C12 | 119.9 (3) | C26—C27—H27B | 110.6 |
N2—C11—C10 | 121.7 (3) | C28—C27—H27B | 110.6 |
C12—C11—C10 | 118.4 (3) | H27A—C27—H27B | 108.7 |
C13—C12—C11 | 121.2 (3) | O4—C28—N4 | 125.3 (4) |
C13—C12—H12 | 119.4 | O4—C28—C27 | 126.7 (4) |
C11—C12—H12 | 119.4 | N4—C28—C27 | 108.0 (4) |
C12—C13—C14 | 120.2 (3) | ||
C18—O3—N3—C16 | −0.6 (4) | C12—C13—C14—C15 | 0.2 (6) |
O2—N1—C1—C2 | −174.9 (7) | C13—C14—C15—C10 | −4.0 (6) |
O1—N1—C1—C2 | 6.3 (8) | C13—C14—C15—C16 | 174.8 (4) |
O2—N1—C1—C6 | 5.8 (9) | C11—C10—C15—C14 | 4.8 (5) |
O1—N1—C1—C6 | −173.0 (6) | C9—C10—C15—C14 | −173.0 (3) |
C6—C1—C2—C3 | 0.9 (8) | C11—C10—C15—C16 | −174.0 (3) |
N1—C1—C2—C3 | −178.4 (5) | C9—C10—C15—C16 | 8.2 (5) |
C1—C2—C3—C4 | 0.1 (8) | O3—N3—C16—C17 | 1.5 (4) |
C2—C3—C4—C5 | −1.0 (8) | O3—N3—C16—C15 | −177.6 (3) |
C2—C3—C4—C7 | 177.5 (5) | C14—C15—C16—N3 | −103.9 (4) |
C3—C4—C5—C6 | 1.1 (10) | C10—C15—C16—N3 | 74.9 (4) |
C7—C4—C5—C6 | −177.5 (6) | C14—C15—C16—C17 | 77.0 (5) |
C2—C1—C6—C5 | −0.8 (10) | C10—C15—C16—C17 | −104.2 (5) |
N1—C1—C6—C5 | 178.5 (6) | N3—C16—C17—C18 | −1.9 (4) |
C4—C5—C6—C1 | −0.2 (11) | C15—C16—C17—C18 | 177.2 (4) |
C11—N2—C7—C4 | −177.3 (4) | C16—C17—C18—O3 | 1.4 (4) |
C11—N2—C7—C8 | −53.8 (5) | C16—C17—C18—C19 | −176.3 (4) |
C3—C4—C7—N2 | 29.5 (6) | N3—O3—C18—C17 | −0.6 (4) |
C5—C4—C7—N2 | −152.0 (5) | N3—O3—C18—C19 | 177.6 (3) |
C3—C4—C7—C8 | −92.1 (5) | C17—C18—C19—C20 | 4.0 (6) |
C5—C4—C7—C8 | 86.4 (6) | O3—C18—C19—C20 | −173.6 (3) |
N2—C7—C8—C9 | 59.0 (4) | C17—C18—C19—C24 | −175.8 (5) |
C4—C7—C8—C9 | −176.8 (3) | O3—C18—C19—C24 | 6.6 (6) |
C28—N4—C9—C10 | −133.2 (3) | C24—C19—C20—C21 | 0.4 (6) |
C25—N4—C9—C10 | 44.6 (5) | C18—C19—C20—C21 | −179.4 (4) |
C28—N4—C9—C8 | 100.4 (4) | C19—C20—C21—C22 | 0.6 (6) |
C25—N4—C9—C8 | −81.8 (5) | C20—C21—C22—C23 | −1.7 (8) |
C7—C8—C9—N4 | 85.5 (4) | C21—C22—C23—C24 | 1.9 (9) |
C7—C8—C9—C10 | −38.9 (4) | C20—C19—C24—C23 | −0.2 (8) |
N4—C9—C10—C15 | 63.8 (4) | C18—C19—C24—C23 | 179.5 (5) |
C8—C9—C10—C15 | −170.5 (3) | C22—C23—C24—C19 | −0.9 (9) |
N4—C9—C10—C11 | −114.0 (4) | C28—N4—C25—C26 | 4.4 (6) |
C8—C9—C10—C11 | 11.8 (5) | C9—N4—C25—C26 | −173.5 (4) |
C7—N2—C11—C12 | −153.3 (4) | N4—C25—C26—C27 | −8.6 (7) |
C7—N2—C11—C10 | 27.5 (6) | C25—C26—C27—C28 | 9.5 (7) |
C15—C10—C11—N2 | 177.3 (3) | C25—N4—C28—O4 | −178.7 (4) |
C9—C10—C11—N2 | −4.9 (5) | C9—N4—C28—O4 | −0.7 (6) |
C15—C10—C11—C12 | −1.9 (5) | C25—N4—C28—C27 | 1.6 (5) |
C9—C10—C11—C12 | 175.9 (3) | C9—N4—C28—C27 | 179.6 (4) |
N2—C11—C12—C13 | 179.0 (4) | C26—C27—C28—O4 | 173.3 (5) |
C10—C11—C12—C13 | −1.8 (6) | C26—C27—C28—N4 | −7.0 (6) |
C11—C12—C13—C14 | 2.7 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4i | 0.87 (3) | 1.99 (3) | 2.859 (6) | 180 (5) |
Symmetry code: (i) y, −x+y, z−1/6. |
Experimental details
Crystal data | |
Chemical formula | C28H24N4O4 |
Mr | 480.51 |
Crystal system, space group | Hexagonal, P61 |
Temperature (K) | 293 |
a, c (Å) | 20.753 (3), 10.446 (2) |
V (Å3) | 3896.2 (11) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.20 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5951, 3144, 2646 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.075, 0.162, 1.22 |
No. of reflections | 3144 |
No. of parameters | 329 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.24 |
Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) & PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O4i | 0.87 (3) | 1.99 (3) | 2.859 (6) | 180 (5) |
Symmetry code: (i) y, −x+y, z−1/6. |
Acknowledgements
LAS thanks FONDECYT (project No. 1100481) and PBCT ADI-38. We also thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Broggini, G., Chiesa, K., De Marchi, I., Martinelli, M., Pilati, T. & Zecchi, G. (2005). Tetrahedron, 61, 3525–3531. Web of Science CSD CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Eswaran, S., Adhikari, V. A., Pal, K. N. & Chowdhury, H. I. (2010). Bioorg. Med. Chem. 20, 1040–1044. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gutierrez, M., Vallejos, G., Fernández, C., Cárdenas, A. & Brito, I. (2011). Acta Cryst. E67, o175–o176. Web of Science CrossRef IUCr Journals Google Scholar
He, F.-J., Yun, L.-H., Yang, R.-F., Xiao, Z.-Y., Cheng, J.-P., Zhou, W.-X. & Zhang, Y.-X. (2005). Bioorg. Med. Chem. Lett. 15, 2980–2985. Web of Science CrossRef PubMed CAS Google Scholar
Kalita, P., Baruah, B. & Bhuyan, P. (2006). Tetrahedron Lett. 47, 7779–7782. Web of Science CrossRef CAS Google Scholar
Kotera, K., Takano, Y., Matsuura, A. & Kitahonoki, K. (1970). Tetrahedron, 26, 539–556. CrossRef CAS Google Scholar
Kouznetsov, V. V., Vargas, L. Y. & Melendez, C. C. (2005). Curr. Org. Chem. 9, 141–161. Web of Science CrossRef CAS Google Scholar
Lautens, M. & Roy, A. (2000). Org. Lett. 2, 555–557. Web of Science CrossRef PubMed CAS Google Scholar
Lunniss, J. C., Cooper, W. J. A., Eldred, D. C., Kranz, M., Lindvall, M., Lucas, S. F., Neu, M., Preston, A., Ranshaw, E. L., Redgrave, J. A., Robinson, E. J., Shimpley, J. T., Solanke, E. Y., Somers, O. D. & Wiseman, O. J. (2009). Bioorg. Med. Chem. Lett. 19, 1380–1385. Web of Science CrossRef PubMed CAS Google Scholar
Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165–172. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York; Academic Press. Google Scholar
Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651–4654. Web of Science CrossRef PubMed CAS Google Scholar
Sankaran, M., Kumarasamy, C., Chokkalingam, U. & Mohan, P. S. (2010). Bioorg. Med. Chem. Lett. 20, 7147–7151. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, A., Nguyen, T. A., Battina, K. S., Rana, S., Takemoto, J. D., Chiang, K. P. & Hua, D. (2008). Bioorg. Med. Chem. Lett. 18, 3364–3368. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370–374. Web of Science CrossRef PubMed CAS Google Scholar
Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999–2002. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as the structural framework in some natural products (Kalita et al., 2006). They also have several pharmacological activities as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), and antimycobacterial agents (Eswaran et al., 2010), among others.
Quinoline and its derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).
The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonists (Rizzi et al., 2008).
A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometime suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthetized by 1, 3-dipolar cyclo-addition reactions between a nitrile oxide and an alkyne, that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).
Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns.
Due to these facts, the combination of the two heterocyclic rings into a new chemical entity is of interest, as no examples are known in the chemical literature to date.
Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where incorporation of an isoxazole ring led to the formation of stable derivatives which catalyzed the degradation of gastric acid levels (flucloxacillin and cloxacillin).
We report here the crystal structure of a novel synthetic derivative cis quinoline-isoxazole prepared by imino Diels-Alder cyclo-addition, Scheme 1.
The structure of the title compound, (I) C28H24N4O4, has hexagonal (P61) symmetry and is the trans diastereoisomer of the compound 1-[2-(4-nitrophenyl)-6-(5-phenyl-3-isoxazolyl)-1,2,3,4-tetrahydro-4-quinolinyl]-2-pyrrolidinone-dihydrate, (II) (Gutierrez et al., 2011), so the pyrrolidinone fragment is trans oriented respect to 4-nitrophenyl fragment [C7—C8—C9—N4 torsion angle 85.59 (4)°; -175.(2) (4)° for (II) (mean)]. The most obvious differences between both diastereoisomers are the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)° for (II) 75.4 (2) and 5.8 (3) for (I)]. In both diastereoisomers the six-membered heterocyclic ring has a half-boat conformation (QT= 0.477 (5) Å, θ = 47.7 (5)° ϕ= 76.3 (7)°), Cremer & Pople, 1975. In the crystal, molecules are linked by N— H··· O interactions into chains with graph-set notation C(8) along [001], Fig. 2, Bernstein et al., 1995.