organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl­pyridinium triiodide–4-tert-butyl­pyridine (1/1)

aCenter for Advanced Photovoltaics, Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA, and bDepartment of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
*Correspondence e-mail: hongshan.he@sdstate.edu

(Received 21 December 2010; accepted 10 January 2011; online 22 January 2011)

The title compound, C9H14N+·I3·C9H13N, consists of monoprotonated 4-tert-butyl­pyridinium cations and triiodide anions. The triiodide ion has near-symmetric linear geometry, with bond lengths of 2.9105 (4) Å (I—I) and a bond angle of 177.55 (3)° (I—I—I). For this room-temperature structure, the butyl group on the pyridine ring is disordered and has been treated as a rigid rotator, modeled in three separate positions with 1/3, 1/3, 1/3 occupancies. The cations assemble into dimeric forms by way of N—H⋯N hydrogen bonds.

Related literature

For applications of the 4-t-butyl­pyridine and iodide/triiodide system in dye-sensitized solar cells see: Campbell et al. (2004[Campbell, W. M., Burrell, A. K., Officer, D. L. & Jolley, K. W. (2004). Coord. Chem. Rev. 248, 1363-1379.]); Lee et al. (2010[Lee, C.-P., Chen, P.-Y., Vittala, R. & Ho, K.-C. (2010). J. Mater. Chem. 20, 2356-2361.]); Wang et al. (2005[Wang, H., Li, H., Xue, B., Wang, Z., Meng, Q. & Chen, L. (2005). J. Am. Chem. Soc. 127, 6394-6401.]). For related structures, see: Fialho et al. (1996[Fialho De Assis, E., Howie, R. A. & Wardell, J. L. (1996). Acta Cryst. C52, 955-957.]); Kochel (2006[Kochel, A. (2006). Acta Cryst. E62, o5605-o5606.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·I3·C9H13N

  • Mr = 652.12

  • Tetragonal, P 42 /n

  • a = 11.6862 (4) Å

  • c = 17.1665 (13) Å

  • V = 2344.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 293 K

  • 0.55 × 0.50 × 0.40 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.217, Tmax = 0.298

  • 23722 measured reflections

  • 2217 independent reflections

  • 1758 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.090

  • S = 1.04

  • 2217 reflections

  • 119 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H99⋯N1i 0.90 1.76 2.655 (7) 172
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4 - t-Butylpyridine is usually added into an iodide/triiodide electrolyte solution to enhance the photovoltaic performance of dye-sensitized solar cells. The solution is a mixture of iodide, lithium iodide, 4 - t-butylpyridine, and guanidinium thiocyanate (Campbell et al., 2004; Lee et al., 2010). Alternatively, the electrolyte can be prepared by the reaction between 2-hydroxypropionitrile and lithium iodide (Wang et al., 2005). It was proposed that triiodide was produced during the reaction; however, no direct evidence was obtained. Reported here is the structure of the resulting compound.

In the molecule of the title compound, three iodide atoms in triiodide ion are in a linear geometry (Fig. 1). The I1—I2 bond length is 2.9105 (4)Å and the I2—I1—I2 angle is 177.55 (3)°. The triiodide bond is almost parallel to the pyridyl ring. In each asymmetric unit cell, two pairs of triiodide ions are perpendicular to each other (Fig. 2 and Fig. 3). The cations assemble into dimeric forms by way of N—H···N hydrogen bonds (Fig. 4, Table 1).

Related literature top

For applications of the 4-t-butylpyridine and iodide/triiodide system in dye-sensitized solar cells see: Campbell et al. (2004); Lee et al. (2010); Wang et al. (2005). For related structures, see: Fialho et al. (1996); Kochel (2006).

Experimental top

2-Hydroxypropionitrile (6.1 g) and lithium iodide (10 g) was added to a flask. The resulting mixture was heated to 120°C in a sealed high pressure tube for 30 minutes. When the temperature decreased to 70°C, silica powder with diameter 25 µm (1.3 g), 4 - t-butylpyridine (1.0 g), and ethanol (3 ml) were added. The mixture was stirred by a mechanical stirrer at 50°C for 30 minutes. Red crystals were obtained from the resulting mixture in one month.

Refinement top

The hydrogen that binds to N atom is refined and other hydrogen atoms are geometrically constrained and refined in riding mode as follows: methyl d(C—H) = 0.96 Å, Uĩso~(H) = 1.5U~eq~(C); aromatic d(C—H) = 0.93 Å, Uĩso~(H) = 1.2U~eq~(C). The butyl group on the pyridine ring is disordered and has been treated as a rigid rotator, modeled in three separate positions with 1/3,1/3, and 1/3 occupancies. All atoms involved have been refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis.
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed down the c axis.
[Figure 4] Fig. 4. Packing diagram of the title compound showing the hydrogen bonding.
4-tert-Butylpyridinium triiodide–4-tert-butylpyridine (1/1) top
Crystal data top
C9H14N+·I3·C9H13NDx = 1.848 Mg m3
Mr = 652.12Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9942 reflections
Hall symbol: -P 4bcθ = 2.4–25.6°
a = 11.6862 (4) ŵ = 4.00 mm1
c = 17.1665 (13) ÅT = 293 K
V = 2344.4 (2) Å3Block, red
Z = 40.55 × 0.50 × 0.40 mm
F(000) = 1232
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2217 independent reflections
Radiation source: fine-focus sealed tube1758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1414
Tmin = 0.217, Tmax = 0.298k = 1414
23722 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0303P)2 + 5.5874P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2217 reflectionsΔρmax = 0.80 e Å3
119 parametersΔρmin = 0.77 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00208 (15)
Crystal data top
C9H14N+·I3·C9H13NZ = 4
Mr = 652.12Mo Kα radiation
Tetragonal, P42/nµ = 4.00 mm1
a = 11.6862 (4) ÅT = 293 K
c = 17.1665 (13) Å0.55 × 0.50 × 0.40 mm
V = 2344.4 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1758 reflections with I > 2σ(I)
Tmin = 0.217, Tmax = 0.298Rint = 0.027
23722 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.80 e Å3
2217 reflectionsΔρmin = 0.77 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0501 (4)0.9717 (5)0.3368 (3)0.0641 (12)
H10.05021.04140.31070.077*
C20.1482 (4)0.9081 (6)0.3407 (3)0.0749 (15)
H20.21400.93580.31690.090*
C30.0595 (5)0.7687 (5)0.4119 (3)0.0694 (14)
H30.06250.69880.43760.083*
C40.0414 (4)0.8291 (4)0.4105 (3)0.0608 (12)
H40.10550.80010.43600.073*
C50.0485 (4)0.9329 (4)0.3715 (2)0.0505 (10)
C60.1613 (4)0.9989 (4)0.3681 (3)0.0590 (12)
C70.179 (2)1.059 (2)0.2943 (13)0.099 (7)*0.33
H7A0.15541.00990.25210.148*0.33
H7B0.13381.12730.29370.148*0.33
H7C0.25821.07750.28860.148*0.33
C80.2650 (16)0.9078 (16)0.3731 (13)0.077 (5)*0.33
H8A0.26800.86410.32580.116*0.33
H8B0.33590.94790.38010.116*0.33
H8C0.25260.85730.41640.116*0.33
C90.1911 (15)1.0409 (17)0.4482 (9)0.051 (4)*0.33
H9A0.13031.08820.46750.076*0.33
H9B0.20170.97670.48230.076*0.33
H9C0.26061.08470.44590.076*0.33
C7'0.144 (2)1.125 (2)0.3487 (17)0.118 (8)*0.33
H7'10.11361.16390.39330.177*0.33
H7'20.21591.15840.33440.177*0.33
H7'30.09121.13160.30600.177*0.33
C8'0.230 (2)0.953 (2)0.3061 (13)0.091 (7)*0.33
H8'10.30070.99470.30310.136*0.33
H8'20.24530.87390.31590.136*0.33
H8'30.18940.96090.25770.136*0.33
C9'0.2236 (18)0.9924 (19)0.4480 (12)0.085 (6)*0.33
H9'10.16810.99340.48920.127*0.33
H9'20.26730.92300.45070.127*0.33
H9'30.27391.05690.45340.127*0.33
C8"0.2550 (14)0.9235 (14)0.3301 (12)0.052 (3)*0.33
H8"10.32570.96530.32820.078*0.33
H8"20.26530.85530.36040.078*0.33
H8"30.23210.90330.27820.078*0.33
C7"0.1486 (14)1.1071 (15)0.3079 (11)0.057 (4)*0.33
H7"10.09321.16020.32800.085*0.33
H7"20.22121.14490.30270.085*0.33
H7"30.12401.07980.25790.085*0.33
C9"0.1668 (19)1.0791 (19)0.4363 (13)0.085 (7)*0.33
H9"10.09071.10220.45040.127*0.33
H9"20.20211.04100.47960.127*0.33
H9"30.21101.14520.42240.127*0.33
N10.1527 (4)0.8086 (4)0.3770 (3)0.0699 (12)
I10.25000.25000.38499 (3)0.06646 (18)
I20.05632 (4)0.40649 (4)0.38862 (3)0.1013 (2)
H990.220 (6)0.772 (11)0.381 (5)0.09 (4)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (3)0.068 (3)0.065 (3)0.004 (2)0.000 (2)0.009 (2)
C20.048 (3)0.102 (4)0.074 (4)0.002 (3)0.008 (3)0.001 (3)
C30.067 (3)0.068 (3)0.073 (3)0.013 (3)0.004 (3)0.008 (3)
C40.055 (3)0.059 (3)0.068 (3)0.001 (2)0.007 (2)0.007 (2)
C50.050 (2)0.055 (3)0.047 (2)0.0031 (19)0.0037 (19)0.0077 (19)
C60.057 (3)0.060 (3)0.061 (3)0.014 (2)0.006 (2)0.010 (2)
N10.053 (3)0.091 (3)0.066 (3)0.020 (2)0.005 (2)0.011 (2)
I10.0663 (3)0.0676 (3)0.0656 (3)0.0000 (2)0.0000.000
I20.0790 (3)0.1007 (4)0.1243 (4)0.0253 (2)0.0064 (3)0.0184 (3)
Geometric parameters (Å, º) top
C1—C21.368 (7)C8—H8C0.9600
C1—C51.375 (6)C9—H9A0.9600
C1—H10.9300C9—H9B0.9600
C2—N11.320 (7)C9—H9C0.9600
C2—H20.9300C7'—H7'10.9600
C3—N11.327 (7)C7'—H7'20.9600
C3—C41.374 (7)C7'—H7'30.9600
C3—H30.9300C8'—H8'10.9600
C4—C51.389 (6)C8'—H8'20.9600
C4—H40.9300C8'—H8'30.9600
C5—C61.528 (6)C9'—H9'10.9600
C6—C8'1.44 (2)C9'—H9'20.9600
C6—C71.46 (2)C9'—H9'30.9600
C6—C9"1.50 (2)C8"—H8"10.9600
C6—C91.500 (16)C8"—H8"20.9600
C6—C7'1.52 (3)C8"—H8"30.9600
C6—C8"1.549 (16)C7"—H7"10.9600
C6—C9'1.55 (2)C7"—H7"20.9600
C6—C81.614 (19)C7"—H7"30.9600
C6—C7"1.641 (17)C9"—H9"10.9600
C7—H7A0.9600C9"—H9"20.9600
C7—H7B0.9600C9"—H9"30.9600
C7—H7C0.9600N1—H990.90 (2)
C8—H8A0.9600I1—I2i2.9105 (4)
C8—H8B0.9600I1—I22.9105 (4)
C2—C1—C5120.2 (5)H7A—C7—H7C109.5
C2—C1—H1119.9H7B—C7—H7C109.5
C5—C1—H1119.9C6—C8—H8A109.5
N1—C2—C1122.4 (5)C6—C8—H8B109.5
N1—C2—H2118.8H8A—C8—H8B109.5
C1—C2—H2118.8C6—C8—H8C109.5
N1—C3—C4121.1 (5)H8A—C8—H8C109.5
N1—C3—H3119.4H8B—C8—H8C109.5
C4—C3—H3119.4C6—C9—H9A109.5
C3—C4—C5120.5 (5)C6—C9—H9B109.5
C3—C4—H4119.7H9A—C9—H9B109.5
C5—C4—H4119.7C6—C9—H9C109.5
C1—C5—C4116.5 (4)H9A—C9—H9C109.5
C1—C5—C6122.8 (4)H9B—C9—H9C109.5
C4—C5—C6120.7 (4)C6—C7'—H7'1109.5
C8'—C6—C9"141.9 (13)C6—C7'—H7'2109.5
C7—C6—C9"111.9 (14)H7'1—C7'—H7'2109.5
C8'—C6—C9132.2 (12)C6—C7'—H7'3109.5
C7—C6—C9127.3 (12)H7'1—C7'—H7'3109.5
C8'—C6—C7'105.7 (14)H7'2—C7'—H7'3109.5
C9"—C6—C7'64.7 (14)C6—C8'—H8'1109.5
C9—C6—C7'85.2 (13)C6—C8'—H8'2109.5
C8'—C6—C5108.8 (9)H8'1—C8'—H8'2109.5
C7—C6—C5113.2 (10)C6—C8'—H8'3109.5
C9"—C6—C5108.8 (9)H8'1—C8'—H8'3109.5
C9—C6—C5109.3 (7)H8'2—C8'—H8'3109.5
C7'—C6—C5112.3 (11)C6—C9'—H9'1109.5
C7—C6—C8"78.9 (12)C6—C9'—H9'2109.5
C9"—C6—C8"130.8 (11)H9'1—C9'—H9'2109.5
C9—C6—C8"114.0 (11)C6—C9'—H9'3109.5
C7'—C6—C8"123.5 (13)H9'1—C9'—H9'3109.5
C5—C6—C8"109.8 (6)H9'2—C9'—H9'3109.5
C8'—C6—C9'112.1 (14)C6—C8"—H8"1109.5
C7—C6—C9'136.4 (12)C6—C8"—H8"2109.5
C7'—C6—C9'107.7 (14)H8"1—C8"—H8"2109.5
C5—C6—C9'110.2 (8)C6—C8"—H8"3109.5
C8"—C6—C9'90.7 (11)H8"1—C8"—H8"3109.5
C7—C6—C8104.9 (12)H8"2—C8"—H8"3109.5
C9"—C6—C8109.8 (12)C6—C7"—H7"1109.5
C9—C6—C889.6 (11)C6—C7"—H7"2109.5
C7'—C6—C8138.5 (13)H7"1—C7"—H7"2109.5
C5—C6—C8108.2 (8)C6—C7"—H7"3109.5
C9'—C6—C864.5 (11)H7"1—C7"—H7"3109.5
C8'—C6—C7"82.5 (11)H7"2—C7"—H7"3109.5
C9"—C6—C7"90.8 (11)C6—C9"—H9"1109.5
C9—C6—C7"110.2 (10)C6—C9"—H9"2109.5
C5—C6—C7"109.6 (7)H9"1—C9"—H9"2109.5
C8"—C6—C7"103.7 (10)C6—C9"—H9"3109.5
C9'—C6—C7"129.5 (10)H9"1—C9"—H9"3109.5
C8—C6—C7"127.6 (10)H9"2—C9"—H9"3109.5
C6—C7—H7A109.5C2—N1—C3119.3 (4)
C6—C7—H7B109.5C2—N1—H99120 (9)
H7A—C7—H7B109.5C3—N1—H99121 (9)
C6—C7—H7C109.5I2i—I1—I2177.55 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H99···N1ii0.901.762.655 (7)172
Symmetry code: (ii) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC9H14N+·I3·C9H13N
Mr652.12
Crystal system, space groupTetragonal, P42/n
Temperature (K)293
a, c (Å)11.6862 (4), 17.1665 (13)
V3)2344.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)4.00
Crystal size (mm)0.55 × 0.50 × 0.40
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.217, 0.298
No. of measured, independent and
observed [I > 2σ(I)] reflections
23722, 2217, 1758
Rint0.027
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.04
No. of reflections2217
No. of parameters119
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.80, 0.77

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H99···N1i0.901.762.655 (7)172
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

This material is based upon work supported by the National Science Foundation/EPSCoR grant No. 0903804 and by the State of South Dakota.

References

First citationBruker (2006). APEX2, SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, W. M., Burrell, A. K., Officer, D. L. & Jolley, K. W. (2004). Coord. Chem. Rev. 248, 1363–1379.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFialho De Assis, E., Howie, R. A. & Wardell, J. L. (1996). Acta Cryst. C52, 955–957.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKochel, A. (2006). Acta Cryst. E62, o5605–o5606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C.-P., Chen, P.-Y., Vittala, R. & Ho, K.-C. (2010). J. Mater. Chem. 20, 2356–2361.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Li, H., Xue, B., Wang, Z., Meng, Q. & Chen, L. (2005). J. Am. Chem. Soc. 127, 6394–6401.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds