organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o450-o451

N,N′,N′′,N′′′-Tetra­kis­(2-methylphenyl)­oxybis(phospho­nic di­amide): a redetermination at 150 K with Mo Kα radiation

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, 91779, Iran, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic
*Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

(Received 22 December 2010; accepted 13 January 2011; online 22 January 2011)

The structure of the title compound, C28H32N4O3P2, has been redetermined at 150 K, with much improved precision. The structure and mol­ecular packing of the title compound was previously determined using Cu Kα radiation, with an R value of 0.0933 [Cameron et al. (1978[Cameron, T. S., Cordes, R. E. & Jackman, F. A. (1978). Z. Naturforsch. Teil B, 33, 728-730.]). Z. Naturforsch. Teil B, 33, 728–730]. The c-axis length in this structure [13.8401 (8) Å] is almost half that reported in the original study. In the title compound, two (C6H4(2-CH3)NH)2P(O) units are bridged via an O atom [P—O—P = 133.31 (11)°]. The P atoms adopt a slightly distorted tetra­hedral coordination geometry. In the crystal, mol­ecules are linked via N—H⋯OP hydrogen bonds into extended chains parallel to the c axis. An intra­molecular N—H⋯O=P hydrogen bond is also found in the mol­ecule.

Related literature

For the previous determination of this structure, see: Cameron et al. (1978[Cameron, T. S., Cordes, R. E. & Jackman, F. A. (1978). Z. Naturforsch. Teil B, 33, 728-730.]). For bond lengths and angles in related structures, see: Pourayoubi et al. (2010[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2010). Acta Cryst. E66, o450.]); Sabbaghi et al. (2010[Sabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755.]).

[Scheme 1]

Experimental

Crystal data
  • C28H32N4O3P2

  • Mr = 534.52

  • Monoclinic, P 21 /c

  • a = 14.2621 (6) Å

  • b = 15.7029 (11) Å

  • c = 13.8401 (8) Å

  • β = 118.915 (4)°

  • V = 2713.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 150 K

  • 0.45 × 0.33 × 0.21 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian integration (Coppens & Hamilton, 1970[Coppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.]) Tmin = 0.942, Tmax = 0.969

  • 19090 measured reflections

  • 6133 independent reflections

  • 4719 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.121

  • S = 1.18

  • 6133 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N111—H111⋯O3i 0.86 2.16 2.926 (2) 149
N112—H112⋯O3 0.86 2.16 2.906 (2) 144
N113—H113⋯O2ii 0.86 1.97 2.814 (2) 167
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The structure and molecular packing of µ-oxo-bis(phosphenyl-o-toluidide) was previously reported at ambient temperature by Cameron et al. (1978) using 2595 independent reflections significantly above the background with Cu Kα radiation; R = 0.0933. The unit-cell length c and density were respectively reported as 25.26 (3) Å and 1.255 g cm-3.

Here, we report on the low temperature X-ray determination of the title compound (Fig. 1) at 150 K using Mo Kα radiation, with some improved precision. The unit-cell length c (of 13.8401 (8) Å) and density (of 1.309 g cm-3) in this structure are very different from the previously reported values.

In the title compound, two (C6H4(2-CH3)NH)2P(O) moieties are bridged via an oxygen atom (P1—O1—P2 angle = 133.31 (11)°); the P1—O1 and P2—O1 bond lengths of 1.6014 (16) and 1.6017 (16) Å are standard for the P—O—P moiety (Pourayoubi et al., 2010). The P atoms adopt a slightly distorted tetrahedral environment. The bond angles around the P atoms are in the range of 101.05 (9)° to 116.62 (11)° for P1 and 100.12 (10)° to 117.97 (11)° for P2.

The P1—O2 and P2—O3 bond lengths (1.4681 (17) and 1.4736 (17) Å) and the P—N bond lengths (1.630 (2), 1.6376 (19), 1.612 (2) and 1.634 (2) Å) are standard for this type of compound; for example in [4-H3C—C6H4O]P(O)[NHC6H4-2-CH3]2 (Sabbaghi et al., 2010), PO = 1.4692 (12) Å and P—N = 1.6268 (15) and 1.6279 (15) Å).

An intramolecular N–H···OP hydrogen bond (N···O = 2.906 (2) Å) is found between the oxygen atom of the P2 phosphoryl group and the N–H hydrogen atom of one of the amide moieties linked to the P1 atom. In the crystal structure, molecules are linked via N–H···OP hydrogen bonds (Fig. 2) into extended chains parallel to the c axis (N···O = 2.814 (2) & 2.926 (2) Å).

Related literature top

For the previous determination of this structure, see: Cameron et al. (1978). For bond lengths and angles in related structures, see: Pourayoubi et al. (2010); Sabbaghi et al. (2010).

Experimental top

To a solution of (11.42 mmol) phosphoryl chloride in chloroform (10 ml), a solution of o-toluidine (68.52 mmol) in chloroform (10 ml) was added dropwise at 268 K. After 4 h, the solvent was removed in vacuum. Single crystals were obtained from a mixture of chloroform/n-heptane after slow evaporation at room temperature. 31P{1H} NMR (202.45 MHz, DMSO-d6, 300.0 K, H3PO4 external): -5.01 p.p.m. (s). 1H NMR (500.13 MHz, DMSO-d6, 300.0 K, TMS): 2.03 (s, 12H, 4CH3), 6.87–7.06 (m, 12H, Ar—H), 7.29 (m, 4H, Ar—H), 7.35 p.p.m. (d, 2J(P,H) = 7.9 Hz, 4H, NH). IR (KBr, cm-1): 3746.3, 3413.2, 3300.4, 3188.5, 2927.3, 2854.8, 2358.8, 1675.8, 1599.4, 1496.1, 1402.5, 1226.5, 1111.8, 980.2, 844.9, 750.9.

Refinement top

All the H atoms were discernible in the difference electron density map. However, all the H atoms were positioned geometrically and refined as riding on their parent C or N atoms, with N—H = 0.86 Å, C—H = 0.98 Å for methyl, C—H = 0.93 Å for aromatic hydrogen atoms, U(H) = 1.2Ueq(C/N) for the amine and U(H) = 1.5Ueq(C) for methyl H atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom labeling scheme for title compound with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of H-bonded chain in the crystal network of title compound. N–H···OP hydrogen bonds are shown as dashed lines.
N-{[bis(2-methylanilino)phosphoryloxy](2- methylanilino)phosphoryl]}-2-methylaniline top
Crystal data top
C28H32N4O3P2Z = 4
Mr = 534.52F(000) = 1128
Monoclinic, P21/cDx = 1.309 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.2621 (6) Åθ = 1–27.5°
b = 15.7029 (11) ŵ = 0.20 mm1
c = 13.8401 (8) ÅT = 150 K
β = 118.915 (4)°Needle, colourless
V = 2713.2 (3) Å30.45 × 0.33 × 0.21 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
6133 independent reflections
Radiation source: fine-focus sealed tube4719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.6°
ϕ and ω scans to fill the Ewald sphereh = 1718
Absorption correction: integration
Gaussian integration (Coppens & Hamilton, 1970)
k = 2018
Tmin = 0.942, Tmax = 0.969l = 1717
19090 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.026P)2 + 3.5968P]
where P = (Fo2 + 2Fc2)/3
6133 reflections(Δ/σ)max < 0.001
334 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C28H32N4O3P2V = 2713.2 (3) Å3
Mr = 534.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.2621 (6) ŵ = 0.20 mm1
b = 15.7029 (11) ÅT = 150 K
c = 13.8401 (8) Å0.45 × 0.33 × 0.21 mm
β = 118.915 (4)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
6133 independent reflections
Absorption correction: integration
Gaussian integration (Coppens & Hamilton, 1970)
4719 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.969Rint = 0.047
19090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.18Δρmax = 0.38 e Å3
6133 reflectionsΔρmin = 0.51 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.71234 (5)0.23508 (4)0.23550 (5)0.01571 (14)
P20.81104 (5)0.21568 (4)0.47636 (5)0.01629 (14)
O30.71315 (13)0.18618 (12)0.47678 (13)0.0220 (4)
O20.77228 (13)0.18044 (11)0.19840 (14)0.0222 (4)
N1110.67768 (15)0.32469 (13)0.16770 (15)0.0171 (4)
H1110.70470.33750.12580.021*
N1120.60850 (15)0.19217 (13)0.23720 (15)0.0181 (4)
H1120.61260.17940.29950.022*
O10.78382 (12)0.26154 (11)0.36239 (12)0.0195 (4)
N1130.87451 (15)0.28468 (13)0.57247 (15)0.0183 (4)
H1130.84260.30370.60730.022*
N1140.89635 (16)0.14390 (13)0.48176 (16)0.0207 (4)
H1140.90350.13630.42420.025*
C150.97931 (18)0.31677 (16)0.6050 (2)0.0192 (5)
C80.51193 (18)0.17513 (15)0.13812 (18)0.0171 (5)
C140.4100 (2)0.25236 (18)0.2194 (2)0.0263 (6)
H14A0.33750.26910.19630.032*
H14B0.45430.30210.23660.032*
H14C0.43560.21690.28370.032*
C100.3220 (2)0.18702 (18)0.0296 (2)0.0268 (6)
H100.25630.20490.02110.032*
C270.9154 (2)0.06277 (17)0.6406 (2)0.0259 (6)
H270.84430.07440.62000.031*
C231.0662 (2)0.07556 (16)0.6064 (2)0.0231 (5)
C10.60452 (19)0.38319 (15)0.1753 (2)0.0193 (5)
C20.5062 (2)0.40163 (16)0.0836 (2)0.0226 (5)
C90.41430 (19)0.20379 (16)0.12797 (19)0.0206 (5)
C241.1247 (2)0.02480 (17)0.6984 (2)0.0294 (6)
H241.19470.01040.71740.035*
C211.0415 (2)0.25452 (19)0.7949 (2)0.0297 (6)
H21A1.10220.26050.86730.036*
H21B1.03070.19540.77500.036*
H21C0.97890.27680.79500.036*
C161.06130 (19)0.30251 (16)0.7133 (2)0.0219 (5)
C60.6332 (2)0.42124 (17)0.2774 (2)0.0267 (6)
H60.70030.41040.33740.032*
C220.9598 (2)0.09322 (16)0.5770 (2)0.0214 (5)
C110.3249 (2)0.1444 (2)0.0562 (2)0.0326 (7)
H110.26190.13480.12180.039*
C120.4213 (2)0.11623 (19)0.0450 (2)0.0305 (6)
H120.42340.08730.10250.037*
C30.4368 (2)0.45692 (18)0.0985 (2)0.0309 (6)
H30.37080.47050.03860.037*
C130.5154 (2)0.13111 (17)0.0530 (2)0.0241 (5)
H130.58060.11170.06150.029*
C251.0816 (2)0.00486 (18)0.7628 (2)0.0327 (6)
H251.12280.03810.82470.039*
C191.1003 (2)0.39397 (19)0.5620 (3)0.0331 (6)
H191.11320.42390.51160.040*
C70.4739 (2)0.36301 (18)0.0263 (2)0.0264 (6)
H7A0.53120.36900.04350.032*
H7B0.41120.39140.08160.032*
H7C0.45850.30370.02470.032*
C200.9989 (2)0.36202 (18)0.5309 (2)0.0261 (6)
H200.94370.37140.45950.031*
C260.9776 (2)0.01502 (17)0.7348 (2)0.0300 (6)
H260.94890.00350.77880.036*
C281.1164 (2)0.11288 (19)0.5422 (2)0.0308 (6)
H28A1.19020.09600.57540.037*
H28B1.11200.17390.54290.037*
H28C1.07910.09280.46740.037*
C181.1820 (2)0.3807 (2)0.6680 (3)0.0354 (7)
H181.25010.40210.68970.043*
C50.5626 (3)0.47486 (18)0.2898 (3)0.0347 (7)
H50.58120.49910.35810.042*
C171.1622 (2)0.33534 (19)0.7422 (2)0.0314 (6)
H171.21810.32660.81330.038*
C40.4648 (2)0.49159 (18)0.2005 (3)0.0344 (7)
H40.41680.52700.20870.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0135 (3)0.0217 (3)0.0119 (3)0.0002 (2)0.0062 (2)0.0018 (2)
P20.0149 (3)0.0225 (3)0.0113 (3)0.0025 (2)0.0062 (2)0.0001 (2)
O30.0189 (8)0.0333 (10)0.0141 (8)0.0056 (8)0.0083 (7)0.0009 (7)
O20.0214 (8)0.0264 (9)0.0232 (9)0.0059 (7)0.0144 (7)0.0043 (7)
N1110.0195 (9)0.0215 (10)0.0146 (9)0.0007 (8)0.0115 (8)0.0009 (8)
N1120.0163 (9)0.0267 (11)0.0119 (9)0.0035 (8)0.0073 (8)0.0021 (8)
O10.0163 (8)0.0280 (9)0.0113 (7)0.0049 (7)0.0045 (6)0.0020 (7)
N1130.0150 (9)0.0261 (11)0.0150 (9)0.0024 (8)0.0081 (8)0.0046 (8)
N1140.0260 (11)0.0239 (11)0.0148 (9)0.0019 (9)0.0119 (8)0.0005 (8)
C150.0151 (11)0.0206 (12)0.0221 (12)0.0010 (10)0.0090 (9)0.0053 (10)
C80.0178 (11)0.0167 (11)0.0140 (10)0.0019 (9)0.0055 (9)0.0029 (9)
C140.0216 (12)0.0355 (15)0.0246 (13)0.0017 (11)0.0134 (10)0.0018 (11)
C100.0167 (12)0.0343 (15)0.0249 (13)0.0031 (11)0.0063 (10)0.0033 (11)
C270.0308 (14)0.0234 (13)0.0265 (13)0.0003 (11)0.0163 (11)0.0009 (11)
C230.0253 (13)0.0198 (13)0.0237 (12)0.0030 (10)0.0115 (11)0.0085 (10)
C10.0245 (12)0.0156 (11)0.0247 (12)0.0012 (10)0.0172 (10)0.0011 (10)
C20.0249 (12)0.0182 (12)0.0280 (13)0.0002 (10)0.0154 (11)0.0044 (10)
C90.0206 (12)0.0228 (13)0.0182 (11)0.0031 (10)0.0092 (10)0.0030 (10)
C240.0285 (14)0.0237 (14)0.0276 (14)0.0045 (11)0.0068 (11)0.0027 (11)
C210.0266 (13)0.0372 (16)0.0179 (12)0.0018 (12)0.0049 (10)0.0012 (11)
C160.0172 (11)0.0228 (13)0.0227 (12)0.0026 (10)0.0072 (10)0.0052 (10)
C60.0338 (14)0.0227 (13)0.0274 (13)0.0032 (12)0.0178 (12)0.0040 (11)
C220.0265 (13)0.0183 (12)0.0184 (11)0.0008 (10)0.0101 (10)0.0029 (10)
C110.0237 (13)0.0411 (17)0.0192 (12)0.0111 (13)0.0007 (10)0.0013 (12)
C120.0367 (15)0.0334 (15)0.0184 (12)0.0098 (13)0.0109 (11)0.0079 (11)
C30.0314 (14)0.0262 (15)0.0383 (15)0.0041 (12)0.0193 (13)0.0078 (12)
C130.0246 (13)0.0260 (14)0.0210 (12)0.0015 (11)0.0104 (10)0.0014 (10)
C250.0423 (16)0.0217 (14)0.0250 (13)0.0037 (12)0.0090 (12)0.0032 (11)
C190.0330 (15)0.0341 (16)0.0426 (16)0.0031 (13)0.0264 (14)0.0005 (13)
C70.0255 (13)0.0281 (14)0.0241 (13)0.0016 (11)0.0107 (11)0.0038 (11)
C200.0244 (13)0.0295 (14)0.0257 (13)0.0042 (11)0.0130 (11)0.0025 (11)
C260.0429 (16)0.0222 (13)0.0267 (14)0.0017 (12)0.0182 (13)0.0024 (11)
C280.0271 (14)0.0330 (15)0.0343 (15)0.0002 (12)0.0164 (12)0.0020 (12)
C180.0222 (13)0.0353 (16)0.0519 (18)0.0066 (12)0.0203 (13)0.0101 (14)
C50.0517 (18)0.0266 (15)0.0364 (16)0.0027 (14)0.0297 (15)0.0062 (12)
C170.0177 (12)0.0350 (16)0.0341 (15)0.0005 (12)0.0066 (11)0.0063 (12)
C40.0455 (17)0.0195 (14)0.0502 (18)0.0071 (13)0.0327 (15)0.0024 (13)
Geometric parameters (Å, º) top
P1—O21.4681 (17)C2—C71.489 (4)
P1—O11.6014 (16)C24—C251.385 (4)
P1—N1111.630 (2)C24—H240.9300
P1—N1121.6376 (19)C21—C161.494 (4)
P2—O31.4736 (17)C21—H21A0.9601
P2—O11.6017 (16)C21—H21B0.9599
P2—N1131.612 (2)C21—H21C0.9601
P2—N1141.634 (2)C16—C171.392 (4)
N111—C11.432 (3)C6—C51.385 (4)
N111—H1110.8600C6—H60.9300
N112—C81.422 (3)C11—C121.379 (4)
N112—H1120.8599C11—H110.9299
N113—C151.428 (3)C12—C131.391 (4)
N113—H1130.8600C12—H120.9300
N114—C221.427 (3)C3—C41.380 (4)
N114—H1140.8600C3—H30.9299
C15—C201.383 (4)C13—H130.9300
C15—C161.403 (3)C25—C261.375 (4)
C8—C131.387 (3)C25—H250.9300
C8—C91.404 (3)C19—C181.379 (4)
C14—C91.504 (3)C19—C201.388 (4)
C14—H14A0.9600C19—H190.9300
C14—H14B0.9600C7—H7A0.9601
C14—H14C0.9599C7—H7B0.9600
C10—C111.382 (4)C7—H7C0.9601
C10—C91.387 (3)C20—H200.9301
C10—H100.9300C26—H260.9300
C27—C261.389 (4)C28—H28A0.9601
C27—C221.393 (4)C28—H28B0.9600
C27—H270.9300C28—H28C0.9600
C23—C241.388 (4)C18—C171.386 (4)
C23—C221.396 (3)C18—H180.9300
C23—C281.504 (4)C5—C41.369 (4)
C1—C21.393 (3)C5—H50.9300
C1—C61.401 (3)C17—H170.9300
C2—C31.404 (4)C4—H40.9300
O2—P1—O1111.45 (10)C16—C21—H21C109.4
O2—P1—N111111.65 (10)H21A—C21—H21C109.5
O1—P1—N111105.22 (10)H21B—C21—H21C109.5
O2—P1—N112116.62 (11)C17—C16—C15117.3 (2)
O1—P1—N112101.05 (9)C17—C16—C21121.1 (2)
N111—P1—N112109.81 (10)C15—C16—C21121.6 (2)
O3—P2—O1111.48 (9)C5—C6—C1120.6 (3)
O3—P2—N113111.30 (10)C5—C6—H6119.7
O1—P2—N113106.40 (10)C1—C6—H6119.7
O3—P2—N114117.97 (11)C27—C22—C23120.6 (2)
O1—P2—N114100.12 (10)C27—C22—N114119.8 (2)
N113—P2—N114108.51 (11)C23—C22—N114119.6 (2)
C1—N111—P1122.72 (15)C12—C11—C10120.1 (2)
C1—N111—H111118.7C12—C11—H11119.9
P1—N111—H111118.6C10—C11—H11120.0
C8—N112—P1121.64 (15)C11—C12—C13119.7 (3)
C8—N112—H112119.2C11—C12—H12120.2
P1—N112—H112119.2C13—C12—H12120.2
P1—O1—P2133.31 (11)C4—C3—C2121.2 (3)
C15—N113—P2125.59 (16)C4—C3—H3119.3
C15—N113—H113117.2C2—C3—H3119.5
P2—N113—H113117.2C8—C13—C12119.9 (2)
C22—N114—P2123.54 (17)C8—C13—H13120.0
C22—N114—H114118.2C12—C13—H13120.1
P2—N114—H114118.3C26—C25—C24119.7 (3)
C20—C15—C16120.8 (2)C26—C25—H25120.2
C20—C15—N113120.2 (2)C24—C25—H25120.1
C16—C15—N113119.0 (2)C18—C19—C20119.5 (3)
C13—C8—C9121.0 (2)C18—C19—H19120.2
C13—C8—N112119.8 (2)C20—C19—H19120.3
C9—C8—N112119.2 (2)C2—C7—H7A109.5
C9—C14—H14A109.5C2—C7—H7B109.5
C9—C14—H14B109.4H7A—C7—H7B109.5
H14A—C14—H14B109.5C2—C7—H7C109.4
C9—C14—H14C109.5H7A—C7—H7C109.5
H14A—C14—H14C109.5H7B—C7—H7C109.5
H14B—C14—H14C109.5C15—C20—C19120.6 (3)
C11—C10—C9121.8 (2)C15—C20—H20119.8
C11—C10—H10119.1C19—C20—H20119.5
C9—C10—H10119.1C25—C26—C27120.0 (3)
C26—C27—C22119.9 (3)C25—C26—H26120.0
C26—C27—H27120.1C27—C26—H26120.0
C22—C27—H27120.0C23—C28—H28A109.6
C24—C23—C22117.9 (2)C23—C28—H28B109.3
C24—C23—C28121.3 (2)H28A—C28—H28B109.5
C22—C23—C28120.8 (2)C23—C28—H28C109.5
C2—C1—C6120.3 (2)H28A—C28—H28C109.5
C2—C1—N111121.0 (2)H28B—C28—H28C109.5
C6—C1—N111118.7 (2)C19—C18—C17119.8 (3)
C1—C2—C3117.8 (2)C19—C18—H18120.0
C1—C2—C7121.6 (2)C17—C18—H18120.1
C3—C2—C7120.6 (2)C4—C5—C6119.2 (3)
C10—C9—C8117.5 (2)C4—C5—H5120.3
C10—C9—C14121.1 (2)C6—C5—H5120.5
C8—C9—C14121.3 (2)C18—C17—C16122.0 (3)
C25—C24—C23121.8 (3)C18—C17—H17118.8
C25—C24—H24119.2C16—C17—H17119.2
C23—C24—H24119.0C5—C4—C3120.8 (3)
C16—C21—H21A109.5C5—C4—H4119.5
C16—C21—H21B109.4C3—C4—H4119.6
H21A—C21—H21B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N111—H111···O3i0.862.162.926 (2)149
N112—H112···O30.862.162.906 (2)144
N113—H113···O2ii0.861.972.814 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H32N4O3P2
Mr534.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)14.2621 (6), 15.7029 (11), 13.8401 (8)
β (°) 118.915 (4)
V3)2713.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.45 × 0.33 × 0.21
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
Gaussian integration (Coppens & Hamilton, 1970)
Tmin, Tmax0.942, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
19090, 6133, 4719
Rint0.047
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.121, 1.18
No. of reflections6133
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.51

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N111—H111···O3i0.862.162.926 (2)149
N112—H112···O30.862.162.906 (2)144
N113—H113···O2ii0.861.972.814 (2)167
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to thank the Ministry of Education of the Czech Republic for the Research University Grant (project No. VZ0021627501). Partial support of this work by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCameron, T. S., Cordes, R. E. & Jackman, F. A. (1978). Z. Naturforsch. Teil B, 33, 728–730.  Google Scholar
First citationCoppens, P. & Hamilton, W. C. (1970). Acta Cryst. A26, 71–83.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2010). Acta Cryst. E66, o450.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSabbaghi, F., Mancilla Percino, T., Pourayoubi, M. & Leyva, M. A. (2010). Acta Cryst. E66, o1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o450-o451
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds