metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m166-m167

catena-Poly[[[aqua­chlorido­manganese(II)]-bis­­[μ-1,1′-(oxydi-p-phenyl­ene)di-1H-imidazole-κ2N3:N3′]] chloride di­methyl­formamide mono­solvate monohydrate]

aCollege of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: hxmuxl@mail.ahnu.edu.cn

(Received 29 November 2010; accepted 27 December 2010; online 15 January 2011)

The title coordination polymer, {[MnCl(C18H14N4O)2(H2O)]Cl·C3H7NO·H2O}n, obtained by the solvothermal reaction of BIDPE and manganese(II) salt in H2O/DMF (DMF is dimethyl­formamide), is composed of a chain of [Mn2(BIDPE)2] [BIDPE is 1,1′-(oxydi-p-phenyl­ene)di-1H-imidazole] metallocyclic rings that exhibit inversion symmetry. The coordination about the Mn(II) ions is distorted octahedral with a MnClN4O coordination set. In the crystal, the polymeric chains are linked by O—H⋯Cl hydrogen bonds, forming a two-dimensional network parallel to (100). A number of C—H⋯Cl and C—H⋯O inter­actions are also present.

Related literature

For potential applications of metal-organic frameworks, see: Feng et al. (2009[Feng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296-5298.]); Bauer et al. (2007[Bauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136-7144.]); Kumagai et al. (2002[Kumagai, H., Kepert, C. J. & Kurmoo, M. (2002). Inorg. Chem. 41, 3410-3422.]); Bi et al. (2009[Bi, Y. F., Wang, X. T., Wang, B. W., Liao, W. P., Wang, X. F., Zhang, H. J., Gao, S. & Lia, D. Q. (2009). Dalton Trans. pp. 2250-2254.]); Reddy et al. (2010[Reddy, C. M., Krishna, G. R. & Ghosh, S. (2010). CrystEngComm, 12, 2296-2314.]); Cho et al. (2006[Cho, S. H., Ma, B. Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563-2565.]); Maji et al. (2005[Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436-2438.]); Zhang et al. (2009[Zhang, Y. B., Zhang, W. X., Feng, F. Y., Zhang, J. P. & Chen, X. M. (2009). Angew. Chem. Int. Ed. 48, 5287-5290.]). For the synthesis of the 4,4′-bis­(imidazol-1-yl) diphenyl ether (BIDPE) ligand, see: Hu et al. (2010[Hu, J. S., Shang, Y. J., Yao, X. Q., Qin, L., Li, Y. Z., Guo, Z. J., Zheng, H. G. & Xue, Z. L. (2010). Cryst. Growth Des. 10, 4135-4142.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl(C18H14N4O)2(H2O)]Cl·C3H7NO·H2O

  • Mr = 839.63

  • Triclinic, [P \overline 1]

  • a = 12.6167 (14) Å

  • b = 12.6183 (14) Å

  • c = 13.5274 (15) Å

  • α = 74.801 (2)°

  • β = 69.388 (2)°

  • γ = 85.582 (2)°

  • V = 1944.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 273 K

  • 0.32 × 0.30 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.857

  • 10456 measured reflections

  • 7427 independent reflections

  • 5475 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.08

  • 7427 reflections

  • 517 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Cl2i 0.86 (2) 2.29 (2) 3.1306 (19) 166 (2)
O3—H3B⋯Cl2 0.85 (2) 2.27 (2) 3.093 (2) 162 (3)
O5—H5A⋯Cl1ii 0.89 (2) 2.81 (5) 3.282 (3) 114 (4)
O5—H5B⋯Cl1iii 0.95 (3) 2.48 (4) 3.316 (4) 148 (5)
C17—H17⋯Cl2i 0.93 2.67 3.553 (3) 159
C18—H18⋯O5ii 0.93 2.50 3.418 (5) 170
C23—H23⋯O4iv 0.93 2.47 3.270 (6) 145
C35—H35⋯Cl1v 0.93 2.82 3.398 (3) 121
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) x, y, z+1; (v) x, y-1, z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of metal-organic frameworks (MOF's) from various molecular building blocks is of great interest due to their novel architectures and potential applications in, for example, photochemical areas (Feng et al., 2009; Bauer et al., 2007), molecular magnetism (Kumagai et al., 2002; Bi et al., 2009), heterogeneous catalysis (Reddy et al., 2010; Cho et al., 2006), and molecular sorption (Maji et al., 2005; Zhang et al., 2009). We recently designed and synthesized 4,4'-bis(imidazol-1-yl) diphenyl ether (BIDPE), a V-shaped imidazole molecule which can be regarded as a semi-flexible ligand (Hu et al., 2010). To test the ability of this ligand to give new architectures and topologies its reaction with a bivalent manganese(II) salt was studied solvothermally, and resulted in the synthesize of the new title coordination polymer.

The asymmetric unit of the title compound consists of one MnII ion, two BIDPE molecules, one coordinated Cl- anion and water molecule, and one lattice Cl- anion, one lattice water, and one DMF molecule (Fig. 1). The MnII ion is six-coordinate with a distorted octahedral geometry. It is coordinted to four N atoms from four BIDPE ligands, one Cl- anion, and one O atom from a water molecule. The Mn—N bond lengths vary from 2.227 (2) to 2.272 (2) Å, which is within the range reported for octahedral manganese(II) complexes.

Neighbouring MnII ions are linked by BIDPE ligands and Cl- anions to form an infinitely necklace-like one-dimensional chain. Two BIDPE ligands connect two MnII atoms to achieve a 32-membered [Mn2(BIDPE)2] macrocycle, exhibiting maximum dimensions of 15.90 × 10.88 Å (corresponding to the Mn···Mn distance and O···O separation, respectively). The angles N1–Mn1–N5 and N4–Mn1–N7 are 89.60 (7)° and 88.75 (8)°, respectively. The lattice water and DMF molecules are found located in the large [Mn2(BIDPE)2] metallocyclic ring cavities (Fig. 2).

Further inspection shows that the coordinated and lattice water molecules and the Cl- anions, are linked by strong O-H···Cl hydrogen bonds (Table 1 and Fig. 3). These interactions are also available for increasing the stability of the whole crystal structure. This extension of the structure into a two-dimensional network is accomplished by O-H···Cl hydrogen bonding, involving the coordinated Cl atoms and the water molecule of crystallization. There are also a number of C-H···O and C-H···Cl interactions present in the crystal structure (Table 1).

Related literature top

Forpotential applications of metal-organic frameworks, see: Feng et al. (2009); Bauer et al. (2007); Kumagai et al. (2002); Bi et al. (2009); Reddy et al. (2010); Cho et al. (2006); Maji et al. (2005); Zhang et al. (2009). For the synthesis of the 4,4'-bis(imidazol-1-yl) diphenyl ether (BIDPE) ligand, see: Hu et al. (2010).

Experimental top

A mixture of MnCl2.4H2O (19.8 mg, 0.1 mmol), BIDPE (56.8 mg, 0.1 mmol) was dissolved in10 ml of DMF/H2O(1:4, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (10 ml) under autogenous pressure and was heated at 363 K for 3 d. The clear solution obtained was volatilized over a period of a few weeks. A large quantity of colourless block-like crystals were obtained, which were washed with the mother liquor, and dried under ambient conditions (Yield: 53% based on Mn).

Refinement top

The water H-atoms were located from a Fourier differnce map and were refined with distance restraintes of O-H = 0.85 (2) Å, and H···H = 1.45 (2) Å with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were placed in geometrically idealized positions and treated as riding: C—H = 0.93 and 0.96 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the asymmetric unit and key symmetry-related atoms. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (a) x, -1 - y, 1 + z; (b) x, 1 + y, -1 + z.
[Figure 2] Fig. 2. A view of the necklace-like one-dimensional chains of the title compound, formed by BIDPE and MnII ions. The water and DMF molecules are located in the [Mn2(BIDPE)2] metallocyclic ring cavities.
[Figure 3] Fig. 3. A view of the two-dimensional hydrogen bonding network in the title compound (see Table 1 for details).
catena-Poly[[[aquachloridomanganese(II)]-bis[µ-1,1'-(oxydi-p- phenylene)di-1H-imidazole-κ2N3:N3']] chloride dimethylformamide monosolvate monohydrate] top
Crystal data top
[MnCl(C18H14N4O)2(H2O)]Cl·C3H7NO·H2OZ = 2
Mr = 839.63F(000) = 870
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.6167 (14) ÅCell parameters from 4541 reflections
b = 12.6183 (14) Åθ = 2.3–27.4°
c = 13.5274 (15) ŵ = 0.53 mm1
α = 74.801 (2)°T = 273 K
β = 69.388 (2)°Block, colourless
γ = 85.582 (2)°0.32 × 0.30 × 0.29 mm
V = 1944.9 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7427 independent reflections
Radiation source: fine-focus sealed tube5475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1514
Tmin = 0.843, Tmax = 0.857k = 1215
10456 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0723P)2]
where P = (Fo2 + 2Fc2)/3
7427 reflections(Δ/σ)max < 0.001
517 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.42 e Å3
Crystal data top
[MnCl(C18H14N4O)2(H2O)]Cl·C3H7NO·H2Oγ = 85.582 (2)°
Mr = 839.63V = 1944.9 (4) Å3
Triclinic, P1Z = 2
a = 12.6167 (14) ÅMo Kα radiation
b = 12.6183 (14) ŵ = 0.53 mm1
c = 13.5274 (15) ÅT = 273 K
α = 74.801 (2)°0.32 × 0.30 × 0.29 mm
β = 69.388 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7427 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5475 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.857Rint = 0.047
10456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.55 e Å3
7427 reflectionsΔρmin = 0.42 e Å3
517 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.77799 (3)0.67916 (3)0.73266 (3)0.0441 (1)
Cl10.96491 (6)0.77037 (6)0.59685 (5)0.0610 (2)
O10.8288 (2)0.10963 (14)0.97544 (16)0.0760 (8)
O20.67208 (19)1.45186 (14)0.49834 (14)0.0688 (7)
O30.60727 (16)0.60189 (14)0.84342 (14)0.0557 (6)
N10.83399 (18)1.64559 (16)0.12340 (16)0.0505 (7)
N20.83490 (17)1.59740 (15)0.04514 (15)0.0465 (7)
N30.65781 (17)1.01475 (15)0.72708 (16)0.0456 (6)
N40.69914 (18)0.83954 (15)0.76500 (16)0.0519 (7)
N50.83206 (16)0.50934 (15)0.71176 (15)0.0465 (7)
N60.85574 (16)0.33001 (15)0.74462 (15)0.0416 (6)
N70.71164 (18)0.29343 (16)1.59221 (16)0.0496 (7)
N80.69930 (17)0.24606 (16)1.42776 (16)0.0467 (7)
C10.9383 (2)1.6657 (2)0.1235 (2)0.0624 (10)
C20.7740 (2)1.6045 (2)0.0203 (2)0.0544 (9)
C30.9399 (2)1.6361 (3)0.0219 (2)0.0669 (11)
C40.6801 (2)1.5476 (2)0.2179 (2)0.0559 (9)
C50.7940 (2)1.55776 (18)0.16115 (19)0.0465 (8)
C60.8683 (3)1.5293 (3)0.2169 (2)0.0676 (11)
C70.8280 (3)1.4919 (3)0.3293 (2)0.0731 (11)
C80.7149 (3)1.48293 (19)0.3842 (2)0.0549 (9)
C90.6396 (3)1.5097 (2)0.3302 (2)0.0589 (9)
C100.6700 (2)1.34167 (18)0.54990 (19)0.0469 (8)
C110.6346 (2)1.31692 (19)0.66134 (19)0.0445 (8)
C120.6999 (2)1.2599 (2)0.4957 (2)0.0577 (9)
C130.6945 (2)1.1517 (2)0.5548 (2)0.0571 (9)
C140.63090 (19)1.20996 (18)0.72022 (19)0.0425 (7)
C150.66031 (19)1.12626 (18)0.66690 (19)0.0423 (7)
C160.5957 (2)0.9700 (2)0.8342 (2)0.0620 (9)
C170.6216 (3)0.8632 (2)0.8561 (2)0.0636 (10)
C180.7187 (2)0.93270 (19)0.6901 (2)0.0509 (8)
C190.8186 (2)0.41719 (19)0.78742 (19)0.0456 (8)
C200.8798 (2)0.4799 (2)0.6154 (2)0.0519 (8)
C210.8948 (2)0.3713 (2)0.6331 (2)0.0536 (9)
C220.84856 (19)0.21715 (18)0.80412 (19)0.0432 (8)
C230.7961 (3)0.1899 (2)0.9157 (2)0.0779 (12)
C240.7895 (3)0.0817 (2)0.9744 (2)0.0825 (12)
C250.8900 (2)0.13555 (19)0.7517 (2)0.0462 (8)
C260.8822 (2)0.0267 (2)0.8120 (2)0.0497 (8)
C270.8334 (2)0.0012 (2)0.9223 (2)0.0541 (9)
C280.7946 (3)0.1378 (2)1.0886 (2)0.0593 (10)
C290.8731 (3)0.1478 (4)1.1373 (3)0.1008 (16)
C300.6857 (3)0.1647 (3)1.1507 (3)0.0754 (12)
C310.6537 (3)0.1984 (3)1.2625 (3)0.0693 (11)
C320.8403 (3)0.1825 (4)1.2488 (3)0.1027 (16)
C330.7314 (2)0.20775 (19)1.3121 (2)0.0476 (8)
C340.5980 (2)0.2919 (3)1.5001 (3)0.0744 (13)
C350.7643 (2)0.2506 (2)1.4885 (2)0.0555 (9)
C360.6072 (2)0.3191 (3)1.5991 (2)0.0682 (10)
O40.7709 (4)0.3324 (4)0.0926 (4)0.168 (2)
N90.6951 (4)0.1770 (4)0.2291 (4)0.1182 (19)
C370.8015 (5)0.1377 (5)0.2378 (5)0.170 (4)
C380.5998 (6)0.1098 (5)0.3003 (5)0.170 (3)
C390.6847 (6)0.2690 (5)0.1628 (5)0.142 (3)
O50.0859 (3)1.0060 (3)0.5680 (3)0.1261 (14)
Cl20.53260 (6)0.35717 (5)0.92795 (5)0.0602 (2)
H10.999601.695700.185300.0750*
H20.698301.582800.004500.0650*
H31.001701.641000.000900.0800*
H3A0.563 (2)0.622 (2)0.8997 (19)0.0840*
H3B0.598 (3)0.5332 (15)0.853 (2)0.0840*
H40.629401.566500.180500.0670*
H60.945901.535100.179000.0810*
H70.878401.473000.367100.0880*
H90.562101.502500.368400.0710*
H110.613101.372800.697300.0530*
H120.723601.277100.420000.0690*
H130.714001.095800.518700.0690*
H140.608701.193500.795900.0510*
H160.545201.006500.882600.0740*
H170.591200.812800.923200.0760*
H180.769200.940900.619100.0610*
H190.787200.412300.861900.0550*
H200.899100.528700.546700.0620*
H210.925500.331700.580700.0640*
H230.765100.244600.951700.0940*
H240.754900.063801.049900.0990*
H250.923300.152800.676100.0550*
H260.910600.028700.776500.0600*
H290.948900.131401.095400.1210*
H300.631700.160501.117600.0910*
H310.578000.214801.304400.0830*
H320.894700.188701.281700.1240*
H340.534500.302201.483700.0890*
H350.839200.225901.459700.0670*
H360.549700.351101.663600.0820*
H37A0.854500.137700.166600.2550*
H37B0.791800.064400.283800.2550*
H37C0.829700.184700.268800.2550*
H38A0.531700.147900.297200.2550*
H38B0.600400.093100.373500.2550*
H38C0.602700.042800.278400.2550*
H390.612200.291400.164900.1710*
H5A0.020 (3)1.036 (4)0.569 (5)0.1890*
H5B0.075 (4)0.9290 (15)0.588 (5)0.1890*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0548 (2)0.0355 (2)0.0343 (2)0.0009 (2)0.0104 (2)0.0032 (2)
Cl10.0563 (4)0.0623 (4)0.0507 (4)0.0080 (3)0.0080 (3)0.0035 (3)
O10.1391 (19)0.0409 (10)0.0501 (12)0.0153 (11)0.0398 (12)0.0088 (8)
O20.1201 (17)0.0417 (10)0.0388 (10)0.0261 (10)0.0261 (10)0.0092 (8)
O30.0631 (12)0.0446 (10)0.0442 (10)0.0052 (9)0.0009 (8)0.0111 (8)
N10.0627 (14)0.0466 (11)0.0370 (11)0.0064 (10)0.0129 (10)0.0093 (9)
N20.0541 (12)0.0433 (11)0.0392 (11)0.0091 (9)0.0153 (10)0.0088 (9)
N30.0521 (12)0.0367 (10)0.0414 (11)0.0039 (9)0.0115 (9)0.0061 (8)
N40.0667 (14)0.0382 (11)0.0427 (12)0.0023 (10)0.0131 (10)0.0051 (9)
N50.0520 (12)0.0410 (11)0.0377 (11)0.0012 (9)0.0075 (9)0.0065 (9)
N60.0436 (11)0.0415 (10)0.0360 (10)0.0045 (8)0.0110 (8)0.0083 (8)
N70.0559 (13)0.0480 (11)0.0424 (12)0.0009 (10)0.0155 (10)0.0093 (9)
N80.0494 (12)0.0455 (11)0.0468 (12)0.0013 (9)0.0207 (10)0.0086 (9)
C10.0549 (17)0.0725 (18)0.0451 (16)0.0057 (14)0.0078 (12)0.0047 (13)
C20.0600 (16)0.0605 (16)0.0391 (14)0.0027 (13)0.0164 (12)0.0065 (12)
C30.0534 (17)0.085 (2)0.0570 (18)0.0036 (15)0.0198 (14)0.0089 (15)
C40.0616 (17)0.0607 (16)0.0427 (14)0.0002 (13)0.0217 (13)0.0030 (12)
C50.0632 (16)0.0364 (12)0.0405 (13)0.0110 (11)0.0204 (12)0.0101 (10)
C60.0632 (18)0.087 (2)0.0526 (17)0.0195 (15)0.0246 (14)0.0165 (15)
C70.083 (2)0.089 (2)0.0544 (18)0.0326 (18)0.0382 (17)0.0187 (16)
C80.088 (2)0.0369 (13)0.0369 (13)0.0153 (13)0.0230 (14)0.0065 (10)
C90.0710 (18)0.0526 (16)0.0446 (15)0.0004 (13)0.0158 (13)0.0033 (12)
C100.0602 (15)0.0402 (13)0.0404 (13)0.0145 (11)0.0220 (12)0.0080 (10)
C110.0502 (14)0.0429 (13)0.0418 (13)0.0116 (10)0.0166 (11)0.0152 (10)
C120.089 (2)0.0469 (14)0.0353 (13)0.0180 (13)0.0226 (13)0.0103 (11)
C130.086 (2)0.0427 (13)0.0432 (14)0.0161 (13)0.0233 (14)0.0146 (11)
C140.0446 (13)0.0451 (13)0.0344 (12)0.0049 (10)0.0116 (10)0.0081 (10)
C150.0454 (13)0.0397 (12)0.0399 (13)0.0055 (10)0.0155 (10)0.0072 (10)
C160.0716 (18)0.0495 (15)0.0473 (15)0.0047 (13)0.0013 (13)0.0103 (12)
C170.083 (2)0.0442 (15)0.0436 (15)0.0056 (13)0.0059 (14)0.0021 (12)
C180.0585 (15)0.0408 (13)0.0435 (14)0.0051 (11)0.0099 (11)0.0062 (11)
C190.0492 (14)0.0438 (13)0.0376 (13)0.0026 (11)0.0074 (10)0.0107 (10)
C200.0611 (16)0.0463 (14)0.0350 (13)0.0012 (12)0.0054 (11)0.0036 (11)
C210.0671 (17)0.0480 (14)0.0368 (13)0.0043 (12)0.0074 (12)0.0116 (11)
C220.0477 (14)0.0391 (12)0.0423 (13)0.0064 (10)0.0176 (11)0.0080 (10)
C230.134 (3)0.0428 (15)0.0407 (15)0.0193 (17)0.0119 (17)0.0138 (12)
C240.148 (3)0.0470 (16)0.0349 (15)0.0156 (18)0.0157 (17)0.0068 (12)
C250.0493 (14)0.0463 (13)0.0414 (13)0.0062 (11)0.0132 (11)0.0133 (11)
C260.0583 (15)0.0448 (13)0.0491 (15)0.0110 (11)0.0198 (12)0.0183 (11)
C270.0780 (18)0.0400 (13)0.0465 (15)0.0105 (12)0.0286 (13)0.0076 (11)
C280.096 (2)0.0367 (13)0.0478 (16)0.0071 (14)0.0328 (16)0.0058 (11)
C290.082 (2)0.160 (4)0.0516 (19)0.047 (2)0.0217 (18)0.000 (2)
C300.082 (2)0.089 (2)0.066 (2)0.0223 (19)0.0447 (19)0.0168 (17)
C310.0574 (17)0.090 (2)0.0640 (19)0.0093 (15)0.0315 (15)0.0129 (16)
C320.065 (2)0.185 (4)0.0519 (19)0.045 (2)0.0275 (16)0.004 (2)
C330.0572 (15)0.0385 (12)0.0489 (15)0.0020 (11)0.0242 (12)0.0061 (11)
C340.0487 (16)0.112 (3)0.0601 (19)0.0149 (16)0.0154 (14)0.0175 (18)
C350.0522 (15)0.0619 (16)0.0492 (16)0.0068 (12)0.0206 (13)0.0024 (12)
C360.0571 (17)0.093 (2)0.0488 (17)0.0147 (15)0.0073 (13)0.0191 (15)
O40.222 (5)0.140 (3)0.162 (4)0.001 (3)0.062 (3)0.076 (3)
N90.127 (3)0.115 (3)0.144 (4)0.022 (3)0.058 (3)0.075 (3)
C370.167 (6)0.189 (6)0.227 (7)0.055 (5)0.119 (5)0.118 (6)
C380.183 (6)0.162 (6)0.181 (6)0.023 (5)0.039 (5)0.095 (5)
C390.174 (6)0.112 (4)0.152 (6)0.013 (4)0.042 (5)0.076 (4)
O50.132 (3)0.106 (2)0.111 (2)0.0022 (18)0.011 (2)0.020 (2)
Cl20.0623 (4)0.0513 (4)0.0494 (4)0.0023 (3)0.0038 (3)0.0143 (3)
Geometric parameters (Å, º) top
Mn1—Cl12.5535 (9)C16—C171.342 (4)
Mn1—O32.263 (2)C20—C211.338 (4)
Mn1—N42.264 (2)C22—C251.369 (3)
Mn1—N52.257 (2)C22—C231.376 (3)
Mn1—N1i2.227 (2)C23—C241.380 (4)
Mn1—N7ii2.272 (2)C24—C271.360 (4)
O1—C271.390 (3)C25—C261.392 (4)
O1—C281.389 (3)C26—C271.357 (3)
O2—C81.399 (3)C28—C301.349 (5)
O2—C101.380 (3)C28—C291.352 (5)
O3—H3B0.85 (2)C29—C321.371 (5)
O3—H3A0.86 (2)C30—C311.375 (5)
O4—C391.317 (9)C31—C331.352 (5)
O5—H5A0.88 (5)C32—C331.349 (5)
O5—H5B0.95 (3)C34—C361.337 (4)
N1—C21.313 (3)C1—H10.9300
N1—C11.359 (4)C2—H20.9300
N2—C31.356 (3)C3—H30.9300
N2—C21.345 (3)C4—H40.9300
N2—C51.427 (3)C6—H60.9300
N3—C161.368 (3)C7—H70.9300
N3—C181.338 (3)C9—H90.9300
N3—C151.425 (3)C11—H110.9300
N4—C181.309 (3)C12—H120.9300
N4—C171.365 (3)C13—H130.9300
N5—C201.366 (3)C14—H140.9300
N5—C191.309 (3)C16—H160.9300
N6—C211.376 (3)C17—H170.9300
N6—C221.432 (3)C18—H180.9300
N6—C191.352 (3)C19—H190.9300
N7—C361.347 (4)C20—H200.9300
N7—C351.305 (3)C21—H210.9300
N8—C341.365 (4)C23—H230.9300
N8—C351.339 (3)C24—H240.9300
N8—C331.426 (3)C25—H250.9300
N9—C371.428 (9)C26—H260.9300
N9—C381.416 (9)C29—H290.9300
N9—C391.297 (8)C30—H300.9300
C1—C31.333 (4)C31—H310.9300
C4—C91.381 (3)C32—H320.9300
C4—C51.368 (4)C34—H340.9300
C5—C61.371 (4)C35—H350.9300
C6—C71.382 (3)C36—H360.9300
C7—C81.355 (5)C37—H37C0.9600
C8—C91.364 (5)C37—H37A0.9600
C10—C121.374 (3)C37—H37B0.9600
C10—C111.368 (3)C38—H38A0.9600
C11—C141.370 (3)C38—H38B0.9600
C12—C131.383 (4)C38—H38C0.9600
C13—C151.376 (3)C39—H390.9300
C14—C151.387 (3)
Cl1—Mn1—O3175.97 (5)O1—C27—C26116.2 (2)
Cl1—Mn1—N493.74 (6)O1—C28—C30121.0 (3)
Cl1—Mn1—N593.94 (6)O1—C28—C29119.5 (3)
Cl1—Mn1—N1i94.66 (6)C29—C28—C30119.2 (3)
Cl1—Mn1—N7ii88.74 (6)C28—C29—C32119.6 (4)
O3—Mn1—N485.63 (7)C28—C30—C31120.7 (4)
O3—Mn1—N586.57 (7)C30—C31—C33120.6 (4)
O3—Mn1—N1i89.34 (8)C29—C32—C33121.9 (4)
O3—Mn1—N7ii87.27 (7)N8—C33—C31120.8 (3)
N4—Mn1—N5172.07 (8)N8—C33—C32121.1 (3)
N1i—Mn1—N491.75 (8)C31—C33—C32118.1 (3)
N4—Mn1—N7ii88.75 (8)N8—C34—C36107.1 (3)
N1i—Mn1—N589.60 (7)N7—C35—N8113.0 (2)
N5—Mn1—N7ii89.44 (7)N7—C36—C34110.3 (2)
N1i—Mn1—N7ii176.52 (8)C3—C1—H1125.00
C27—O1—C28117.9 (2)N1—C1—H1125.00
C8—O2—C10118.23 (19)N1—C2—H2124.00
H3A—O3—H3B109 (2)N2—C2—H2124.00
Mn1—O3—H3B118 (2)N2—C3—H3126.00
Mn1—O3—H3A125.6 (18)C1—C3—H3126.00
H5A—O5—H5B107 (5)C5—C4—H4120.00
Mn1ii—N1—C2128.12 (19)C9—C4—H4120.00
C1—N1—C2104.9 (2)C5—C6—H6120.00
Mn1ii—N1—C1127.02 (16)C7—C6—H6120.00
C2—N2—C3105.7 (2)C6—C7—H7120.00
C3—N2—C5128.5 (2)C8—C7—H7120.00
C2—N2—C5125.8 (2)C4—C9—H9120.00
C16—N3—C18105.9 (2)C8—C9—H9121.00
C15—N3—C16127.6 (2)C14—C11—H11120.00
C15—N3—C18126.5 (2)C10—C11—H11120.00
Mn1—N4—C17131.48 (16)C10—C12—H12120.00
Mn1—N4—C18123.34 (17)C13—C12—H12120.00
C17—N4—C18105.1 (2)C12—C13—H13120.00
C19—N5—C20104.9 (2)C15—C13—H13120.00
Mn1—N5—C20126.71 (16)C11—C14—H14120.00
Mn1—N5—C19128.22 (16)C15—C14—H14120.00
C19—N6—C21106.1 (2)C17—C16—H16127.00
C21—N6—C22127.4 (2)N3—C16—H16127.00
C19—N6—C22126.41 (19)N4—C17—H17125.00
C35—N7—C36104.8 (2)C16—C17—H17125.00
Mn1i—N7—C36126.59 (16)N4—C18—H18124.00
Mn1i—N7—C35128.65 (19)N3—C18—H18124.00
C33—N8—C34127.7 (2)N5—C19—H19124.00
C33—N8—C35127.4 (2)N6—C19—H19124.00
C34—N8—C35104.9 (2)C21—C20—H20125.00
C38—N9—C39121.6 (6)N5—C20—H20125.00
C37—N9—C39123.0 (6)N6—C21—H21127.00
C37—N9—C38115.4 (5)C20—C21—H21127.00
N1—C1—C3110.0 (2)C22—C23—H23120.00
N1—C2—N2112.0 (2)C24—C23—H23120.00
N2—C3—C1107.4 (2)C23—C24—H24120.00
C5—C4—C9120.8 (3)C27—C24—H24120.00
N2—C5—C6120.5 (2)C26—C25—H25120.00
N2—C5—C4120.3 (2)C22—C25—H25120.00
C4—C5—C6119.3 (2)C25—C26—H26120.00
C5—C6—C7120.1 (3)C27—C26—H26120.00
C6—C7—C8119.8 (3)C32—C29—H29120.00
O2—C8—C7120.8 (3)C28—C29—H29120.00
O2—C8—C9118.1 (3)C31—C30—H30120.00
C7—C8—C9121.0 (2)C28—C30—H30120.00
C4—C9—C8119.1 (3)C33—C31—H31120.00
O2—C10—C11115.6 (2)C30—C31—H31120.00
O2—C10—C12123.8 (2)C29—C32—H32119.00
C11—C10—C12120.6 (2)C33—C32—H32119.00
C10—C11—C14120.2 (2)N8—C34—H34127.00
C10—C12—C13119.4 (2)C36—C34—H34126.00
C12—C13—C15120.3 (2)N8—C35—H35123.00
C11—C14—C15120.0 (2)N7—C35—H35124.00
C13—C15—C14119.5 (2)N7—C36—H36125.00
N3—C15—C13119.9 (2)C34—C36—H36125.00
N3—C15—C14120.5 (2)O4—C39—N9123.8 (7)
N3—C16—C17106.8 (2)N9—C37—H37B109.00
N4—C17—C16109.8 (2)N9—C37—H37C109.00
N3—C18—N4112.4 (2)H37A—C37—H37B110.00
N5—C19—N6112.1 (2)H37A—C37—H37C109.00
N5—C20—C21110.9 (2)H37B—C37—H37C109.00
N6—C21—C20106.1 (2)N9—C37—H37A109.00
N6—C22—C23119.4 (2)N9—C38—H38A109.00
N6—C22—C25121.2 (2)N9—C38—H38C109.00
C23—C22—C25119.4 (2)H38A—C38—H38B110.00
C22—C23—C24120.2 (2)H38A—C38—H38C109.00
C23—C24—C27120.3 (2)H38B—C38—H38C109.00
C22—C25—C26119.8 (2)N9—C38—H38B109.00
C25—C26—C27120.3 (2)O4—C39—H39118.00
C24—C27—C26120.1 (2)N9—C39—H39118.00
O1—C27—C24123.7 (2)
Cl1—Mn1—N4—C17148.6 (3)C19—N5—C20—C210.0 (3)
Cl1—Mn1—N4—C1835.1 (2)C21—N6—C19—N50.4 (3)
O3—Mn1—N4—C1735.4 (3)C22—N6—C19—N5176.8 (2)
O3—Mn1—N4—C18140.9 (2)C19—N6—C21—C200.4 (3)
N1i—Mn1—N4—C1753.9 (3)C22—N6—C21—C20176.7 (2)
N1i—Mn1—N4—C18129.9 (2)C19—N6—C22—C232.4 (4)
N7ii—Mn1—N4—C17122.7 (3)C19—N6—C22—C25179.6 (3)
N7ii—Mn1—N4—C1853.5 (2)C21—N6—C22—C23173.2 (3)
Cl1—Mn1—N5—C19135.7 (2)C21—N6—C22—C254.9 (4)
Cl1—Mn1—N5—C2049.0 (2)C36—N7—C35—N80.6 (3)
O3—Mn1—N5—C1948.3 (2)Mn1i—N7—C35—N8179.58 (16)
O3—Mn1—N5—C20127.0 (2)C35—N7—C36—C340.1 (4)
N1i—Mn1—N5—C1941.1 (2)Mn1i—N7—C36—C34179.7 (2)
N1i—Mn1—N5—C20143.6 (2)C34—N8—C33—C3110.3 (4)
N7ii—Mn1—N5—C19135.6 (2)C34—N8—C33—C32168.0 (4)
N7ii—Mn1—N5—C2039.7 (2)C35—N8—C33—C31173.8 (3)
Cl1—Mn1—N1i—C1i3.7 (2)C35—N8—C33—C327.9 (4)
Cl1—Mn1—N1i—C2i174.9 (2)C33—N8—C34—C36177.7 (3)
O3—Mn1—N1i—C1i176.9 (2)C35—N8—C34—C361.1 (4)
O3—Mn1—N1i—C2i4.6 (2)C33—N8—C35—N7177.7 (2)
N4—Mn1—N1i—C1i97.6 (2)C34—N8—C35—N71.1 (3)
N4—Mn1—N1i—C2i81.0 (2)C38—N9—C39—O4177.6 (6)
N5—Mn1—N1i—C1i90.3 (2)C37—N9—C39—O44.0 (10)
N5—Mn1—N1i—C2i91.2 (2)N1—C1—C3—N20.7 (4)
Cl1—Mn1—N7ii—C35ii2.4 (2)C9—C4—C5—C60.3 (4)
Cl1—Mn1—N7ii—C36ii177.9 (3)C9—C4—C5—N2179.8 (2)
O3—Mn1—N7ii—C35ii178.2 (2)C5—C4—C9—C80.4 (4)
O3—Mn1—N7ii—C36ii1.6 (3)C4—C5—C6—C70.7 (5)
N4—Mn1—N7ii—C35ii96.2 (2)N2—C5—C6—C7179.4 (3)
N4—Mn1—N7ii—C36ii84.1 (3)C5—C6—C7—C80.3 (5)
N5—Mn1—N7ii—C35ii91.6 (2)C6—C7—C8—C90.4 (5)
N5—Mn1—N7ii—C36ii88.2 (3)C6—C7—C8—O2176.0 (3)
C28—O1—C27—C2411.0 (5)O2—C8—C9—C4175.7 (2)
C28—O1—C27—C26170.9 (3)C7—C8—C9—C40.7 (4)
C27—O1—C28—C2991.0 (4)C12—C10—C11—C141.4 (4)
C27—O1—C28—C3094.8 (4)O2—C10—C11—C14179.1 (2)
C10—O2—C8—C780.4 (4)C11—C10—C12—C130.3 (4)
C10—O2—C8—C9103.1 (3)O2—C10—C12—C13179.7 (3)
C8—O2—C10—C11175.7 (3)C10—C11—C14—C151.7 (4)
C8—O2—C10—C124.9 (4)C10—C12—C13—C150.5 (4)
C2—N1—C1—C30.4 (3)C12—C13—C15—C140.2 (4)
Mn1ii—N1—C1—C3179.2 (2)C12—C13—C15—N3178.4 (2)
C1—N1—C2—N20.0 (3)C11—C14—C15—N3179.4 (2)
Mn1ii—N1—C2—N2178.81 (16)C11—C14—C15—C130.9 (4)
C3—N2—C2—N10.4 (3)N3—C16—C17—N40.2 (4)
C5—N2—C2—N1179.1 (2)N5—C20—C21—N60.3 (3)
C2—N2—C3—C10.6 (3)C25—C22—C23—C242.6 (5)
C5—N2—C3—C1178.8 (2)N6—C22—C25—C26179.7 (2)
C2—N2—C5—C415.7 (4)N6—C22—C23—C24179.3 (3)
C2—N2—C5—C6164.2 (3)C23—C22—C25—C262.3 (4)
C3—N2—C5—C4163.6 (3)C22—C23—C24—C270.9 (6)
C3—N2—C5—C616.5 (4)C23—C24—C27—O1179.1 (3)
C16—N3—C15—C13157.7 (3)C23—C24—C27—C261.2 (5)
C16—N3—C15—C1423.7 (4)C22—C25—C26—C270.2 (4)
C18—N3—C15—C1324.1 (4)C25—C26—C27—C241.5 (4)
C18—N3—C15—C14154.5 (3)C25—C26—C27—O1179.6 (3)
C15—N3—C16—C17179.0 (3)O1—C28—C29—C32175.8 (4)
C18—N3—C16—C170.5 (3)C29—C28—C30—C312.2 (6)
C15—N3—C18—N4179.2 (2)C30—C28—C29—C321.5 (6)
C16—N3—C18—N40.6 (3)O1—C28—C30—C31176.4 (3)
Mn1—N4—C17—C16176.5 (2)C28—C29—C32—C330.3 (7)
C18—N4—C17—C160.2 (4)C28—C30—C31—C331.6 (6)
Mn1—N4—C18—N3176.56 (17)C30—C31—C33—C320.4 (5)
C17—N4—C18—N30.5 (3)C30—C31—C33—N8178.0 (3)
Mn1—N5—C19—N6176.38 (16)C29—C32—C33—N8178.6 (4)
C20—N5—C19—N60.3 (3)C29—C32—C33—C310.3 (6)
Mn1—N5—C20—C21176.18 (18)N8—C34—C36—N70.8 (4)
Symmetry codes: (i) x, y1, z+1; (ii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl2iii0.86 (2)2.29 (2)3.1306 (19)166 (2)
O3—H3B···Cl20.85 (2)2.27 (2)3.093 (2)162 (3)
O5—H5A···Cl1iv0.89 (2)2.81 (5)3.282 (3)114 (4)
O5—H5B···Cl1v0.95 (3)2.48 (4)3.316 (4)148 (5)
C17—H17···Cl2iii0.932.673.553 (3)159
C18—H18···O5iv0.932.503.418 (5)170
C23—H23···O4vi0.932.473.270 (6)145
C35—H35···Cl1i0.932.823.398 (3)121
Symmetry codes: (i) x, y1, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+2, z+1; (v) x1, y, z; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[MnCl(C18H14N4O)2(H2O)]Cl·C3H7NO·H2O
Mr839.63
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)12.6167 (14), 12.6183 (14), 13.5274 (15)
α, β, γ (°)74.801 (2), 69.388 (2), 85.582 (2)
V3)1944.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.32 × 0.30 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.843, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
10456, 7427, 5475
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.08
No. of reflections7427
No. of parameters517
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.42

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···Cl2i0.86 (2)2.29 (2)3.1306 (19)166 (2)
O3—H3B···Cl20.85 (2)2.27 (2)3.093 (2)162 (3)
O5—H5A···Cl1ii0.89 (2)2.81 (5)3.282 (3)114 (4)
O5—H5B···Cl1iii0.95 (3)2.48 (4)3.316 (4)148 (5)
C17—H17···Cl2i0.932.673.553 (3)159
C18—H18···O5ii0.932.503.418 (5)170
C23—H23···O4iv0.932.473.270 (6)145
C35—H35···Cl1v0.932.823.398 (3)121
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x, y1, z+1.
 

References

First citationBauer, C. A., Timofeeva, T. V., Settersten, T. B., Patterson, B. D., Liu, V. H., Simmons, B. A. & Allendorf, M. D. (2007). J. Am. Chem. Soc. 129, 7136–7144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBi, Y. F., Wang, X. T., Wang, B. W., Liao, W. P., Wang, X. F., Zhang, H. J., Gao, S. & Lia, D. Q. (2009). Dalton Trans. pp. 2250–2254.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, S. H., Ma, B. Q., Nguyen, S. T., Hupp, J. T. & Albrecht-Schmitt, T. E. (2006). Chem. Commun. pp. 2563–2565.  Web of Science CSD CrossRef Google Scholar
First citationFeng, R., Jiang, F. L., Chen, L., Yan, C. F., Wu, M. Y. & Hong, M. C. (2009). Chem. Commun. pp. 5296–5298.  Web of Science CSD CrossRef Google Scholar
First citationHu, J. S., Shang, Y. J., Yao, X. Q., Qin, L., Li, Y. Z., Guo, Z. J., Zheng, H. G. & Xue, Z. L. (2010). Cryst. Growth Des. 10, 4135–4142.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumagai, H., Kepert, C. J. & Kurmoo, M. (2002). Inorg. Chem. 41, 3410–3422.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). Chem. Commun. pp. 2436–2438.  Web of Science CSD CrossRef Google Scholar
First citationReddy, C. M., Krishna, G. R. & Ghosh, S. (2010). CrystEngComm, 12, 2296–2314.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. B., Zhang, W. X., Feng, F. Y., Zhang, J. P. & Chen, X. M. (2009). Angew. Chem. Int. Ed. 48, 5287–5290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m166-m167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds