metal-organic compounds
Bis(trimethylammonium) tetrachloridodiphenylstannate(IV)
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: dlibasse@gmail.com
The title compound, [(CH3)3NH]2[Sn(C6H5)2Cl4], consists of [(CH3)3NH]+ cations and [SnPh2Cl4]2− anions in which the Sn atom, located on a centre of inversion, is bonded to four Cl atoms and two phenyl rings, giving an octahedral geometry with the phenyl rings in trans positions. In the crystal, the cations and the anions are connected by N—H⋯Cl hydrogen bonds and C—H⋯Cl interactions.
Related literature
For background to organotin(IV) chemistry, see: Evans & Karpel (1985); Kapoor et al. (2005); Zhang et al. (2006). For compounds containing the [SnPh2Cl4]2− ion in the cis or trans configuration, see: Ouyang et al. (1998); Hazell et al. (1998); Fernandez et al. (2002); Venkatraman et al. (2004); Garcia-Seijo et al. (2001); Casas et al. (1996); Teoh et al. (1992). For related crystal structures, see: Casas et al. (1996); Ouyang et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811000870/su2238sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000870/su2238Isup2.hkl
The title compound was obtained as a white crystalline solid by reacting trimethylammonium chloride with diphenyltin dichloride in chloroform (2/1 ratio; M.p: 443 K). After slow evaporation of the solvent colourless crystals, suitable for X-ray
were obtained.The NH H-atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and k = 1.5 for CH3 H-atoms.
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).(C3H10N)2[Sn(C6H5)2Cl4] | F(000) = 540 |
Mr = 534.93 | Dx = 1.577 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7261 reflections |
a = 9.0072 (2) Å | θ = 2.9–27.5° |
b = 8.4125 (2) Å | µ = 1.61 mm−1 |
c = 14.9473 (4) Å | T = 150 K |
β = 96.046 (1)° | Block, colourless |
V = 1126.30 (5) Å3 | 0.25 × 0.25 × 0.20 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 2571 independent reflections |
Radiation source: fine-focus sealed tube | 2219 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
142 2.0 degree images with \v scans | θmax = 27.5°, θmin = 3.3° |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | h = −11→11 |
Tmin = 0.689, Tmax = 0.739 | k = −10→10 |
12905 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0339P)2 + 0.7419P] where P = (Fo2 + 2Fc2)/3 |
2571 reflections | (Δ/σ)max < 0.001 |
122 parameters | Δρmax = 2.36 e Å−3 |
0 restraints | Δρmin = −1.41 e Å−3 |
(C3H10N)2[Sn(C6H5)2Cl4] | V = 1126.30 (5) Å3 |
Mr = 534.93 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.0072 (2) Å | µ = 1.61 mm−1 |
b = 8.4125 (2) Å | T = 150 K |
c = 14.9473 (4) Å | 0.25 × 0.25 × 0.20 mm |
β = 96.046 (1)° |
Nonius KappaCCD diffractometer | 2571 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2219 reflections with I > 2σ(I) |
Tmin = 0.689, Tmax = 0.739 | Rint = 0.048 |
12905 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.072 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 2.36 e Å−3 |
2571 reflections | Δρmin = −1.41 e Å−3 |
122 parameters |
Experimental. multi-scan from symmetry-related measurements Sortav (Blessing 1995) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.50000 | 0.50000 | 0.50000 | 0.0152 (1) | |
Cl1 | 0.47692 (7) | 0.31690 (7) | 0.36079 (4) | 0.0227 (2) | |
Cl2 | 0.25333 (7) | 0.63136 (8) | 0.43640 (4) | 0.0256 (2) | |
C1 | 0.6252 (3) | 0.6661 (3) | 0.42855 (15) | 0.0158 (7) | |
C2 | 0.7359 (3) | 0.6103 (3) | 0.37812 (16) | 0.0192 (7) | |
C3 | 0.8137 (3) | 0.7152 (3) | 0.32797 (17) | 0.0233 (8) | |
C4 | 0.7807 (3) | 0.8763 (3) | 0.32840 (17) | 0.0251 (8) | |
C5 | 0.6730 (3) | 0.9329 (3) | 0.37967 (18) | 0.0245 (8) | |
C6 | 0.5941 (3) | 0.8278 (3) | 0.42938 (16) | 0.0202 (7) | |
N1 | 0.1432 (2) | 0.2116 (3) | 0.37059 (14) | 0.0237 (7) | |
C7 | 0.1802 (4) | 0.0396 (4) | 0.3674 (3) | 0.0423 (10) | |
C8 | 0.0931 (4) | 0.2743 (4) | 0.2800 (2) | 0.0424 (10) | |
C9 | 0.0323 (3) | 0.2447 (4) | 0.4350 (2) | 0.0328 (9) | |
H2 | 0.75850 | 0.50000 | 0.37790 | 0.0230* | |
H3 | 0.88900 | 0.67660 | 0.29360 | 0.0280* | |
H4 | 0.83220 | 0.94790 | 0.29340 | 0.0300* | |
H5 | 0.65260 | 1.04370 | 0.38110 | 0.0290* | |
H6 | 0.51900 | 0.86680 | 0.46380 | 0.0240* | |
H1 | 0.224 (3) | 0.258 (3) | 0.391 (2) | 0.022 (7)* | |
H7A | 0.09310 | −0.01930 | 0.34000 | 0.0630* | |
H7B | 0.20770 | 0.00040 | 0.42870 | 0.0630* | |
H7C | 0.26400 | 0.02430 | 0.33160 | 0.0630* | |
H8A | 0.16890 | 0.25150 | 0.23930 | 0.0640* | |
H8B | 0.07840 | 0.38950 | 0.28350 | 0.0640* | |
H8C | −0.00120 | 0.22340 | 0.25710 | 0.0640* | |
H9A | 0.01660 | 0.35970 | 0.43870 | 0.0490* | |
H9B | 0.06950 | 0.20380 | 0.49450 | 0.0490* | |
H9C | −0.06240 | 0.19260 | 0.41420 | 0.0490* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0147 (1) | 0.0171 (1) | 0.0144 (1) | −0.0006 (1) | 0.0041 (1) | 0.0010 (1) |
Cl1 | 0.0237 (3) | 0.0258 (3) | 0.0196 (3) | −0.0035 (2) | 0.0072 (2) | −0.0058 (2) |
Cl2 | 0.0181 (3) | 0.0304 (3) | 0.0286 (3) | 0.0049 (2) | 0.0043 (2) | 0.0089 (3) |
C1 | 0.0158 (11) | 0.0185 (12) | 0.0132 (11) | −0.0032 (9) | 0.0025 (8) | 0.0009 (8) |
C2 | 0.0196 (12) | 0.0212 (12) | 0.0169 (12) | −0.0013 (9) | 0.0030 (9) | 0.0000 (9) |
C3 | 0.0199 (12) | 0.0335 (15) | 0.0172 (12) | −0.0030 (10) | 0.0056 (9) | 0.0014 (10) |
C4 | 0.0240 (13) | 0.0290 (14) | 0.0215 (13) | −0.0092 (11) | −0.0009 (10) | 0.0070 (10) |
C5 | 0.0287 (14) | 0.0166 (12) | 0.0275 (13) | −0.0034 (10) | −0.0007 (11) | 0.0033 (10) |
C6 | 0.0211 (12) | 0.0191 (12) | 0.0204 (12) | 0.0005 (9) | 0.0028 (9) | −0.0018 (9) |
N1 | 0.0182 (11) | 0.0313 (12) | 0.0210 (11) | −0.0051 (9) | −0.0002 (9) | −0.0037 (9) |
C7 | 0.0308 (16) | 0.0350 (16) | 0.060 (2) | −0.0007 (13) | −0.0005 (15) | −0.0132 (15) |
C8 | 0.0371 (17) | 0.068 (2) | 0.0211 (15) | −0.0077 (15) | −0.0020 (13) | 0.0081 (14) |
C9 | 0.0277 (15) | 0.0436 (17) | 0.0282 (15) | −0.0044 (12) | 0.0078 (12) | −0.0067 (12) |
Sn1—Cl1 | 2.5796 (6) | C5—C6 | 1.397 (4) |
Sn1—Cl2 | 2.5722 (6) | C2—H2 | 0.9500 |
Sn1—C1 | 2.149 (3) | C3—H3 | 0.9500 |
Sn1—Cl1i | 2.5796 (6) | C4—H4 | 0.9500 |
Sn1—Cl2i | 2.5722 (6) | C5—H5 | 0.9500 |
Sn1—C1i | 2.149 (3) | C6—H6 | 0.9500 |
N1—C9 | 1.485 (3) | C7—H7A | 0.9800 |
N1—C7 | 1.487 (4) | C7—H7B | 0.9800 |
N1—C8 | 1.479 (4) | C7—H7C | 0.9800 |
N1—H1 | 0.85 (3) | C8—H8A | 0.9800 |
C1—C6 | 1.389 (4) | C8—H8B | 0.9800 |
C1—C2 | 1.393 (4) | C8—H8C | 0.9800 |
C2—C3 | 1.394 (4) | C9—H9A | 0.9800 |
C3—C4 | 1.388 (4) | C9—H9B | 0.9800 |
C4—C5 | 1.383 (4) | C9—H9C | 0.9800 |
Cl1—Sn1—Cl2 | 88.01 (2) | C1—C2—H2 | 120.00 |
Cl1—Sn1—C1 | 89.39 (6) | C3—C2—H2 | 120.00 |
Cl1—Sn1—Cl1i | 180.00 | C2—C3—H3 | 120.00 |
Cl1—Sn1—Cl2i | 91.99 (2) | C4—C3—H3 | 120.00 |
Cl1—Sn1—C1i | 90.61 (6) | C5—C4—H4 | 120.00 |
Cl2—Sn1—C1 | 90.86 (7) | C3—C4—H4 | 120.00 |
Cl1i—Sn1—Cl2 | 91.99 (2) | C4—C5—H5 | 120.00 |
Cl2—Sn1—Cl2i | 180.00 | C6—C5—H5 | 120.00 |
Cl2—Sn1—C1i | 89.14 (7) | C5—C6—H6 | 120.00 |
Cl1i—Sn1—C1 | 90.61 (6) | C1—C6—H6 | 120.00 |
Cl2i—Sn1—C1 | 89.14 (7) | N1—C7—H7A | 109.00 |
C1—Sn1—C1i | 180.00 | N1—C7—H7B | 109.00 |
Cl1i—Sn1—Cl2i | 88.01 (2) | N1—C7—H7C | 110.00 |
Cl1i—Sn1—C1i | 89.39 (6) | H7A—C7—H7B | 109.00 |
Cl2i—Sn1—C1i | 90.86 (7) | H7A—C7—H7C | 110.00 |
C7—N1—C8 | 111.4 (3) | H7B—C7—H7C | 109.00 |
C7—N1—C9 | 111.8 (2) | N1—C8—H8A | 109.00 |
C8—N1—C9 | 111.4 (2) | N1—C8—H8B | 109.00 |
C8—N1—H1 | 109.3 (19) | N1—C8—H8C | 109.00 |
C9—N1—H1 | 106.8 (19) | H8A—C8—H8B | 109.00 |
C7—N1—H1 | 105.7 (17) | H8A—C8—H8C | 109.00 |
C2—C1—C6 | 119.4 (2) | H8B—C8—H8C | 109.00 |
Sn1—C1—C2 | 119.52 (18) | N1—C9—H9A | 109.00 |
Sn1—C1—C6 | 121.02 (19) | N1—C9—H9B | 109.00 |
C1—C2—C3 | 120.4 (2) | N1—C9—H9C | 109.00 |
C2—C3—C4 | 119.7 (2) | H9A—C9—H9B | 109.00 |
C3—C4—C5 | 120.1 (2) | H9A—C9—H9C | 109.00 |
C4—C5—C6 | 120.2 (2) | H9B—C9—H9C | 110.00 |
C1—C6—C5 | 120.1 (2) | ||
Cl1—Sn1—C1—C2 | −43.53 (19) | Sn1—C1—C2—C3 | 177.05 (19) |
Cl1—Sn1—C1—C6 | 134.3 (2) | C6—C1—C2—C3 | −0.8 (4) |
Cl2—Sn1—C1—C2 | −131.53 (19) | Sn1—C1—C6—C5 | −177.54 (19) |
Cl2—Sn1—C1—C6 | 46.3 (2) | C2—C1—C6—C5 | 0.3 (4) |
Cl1i—Sn1—C1—C2 | 136.47 (19) | C1—C2—C3—C4 | 0.1 (4) |
Cl1i—Sn1—C1—C6 | −45.7 (2) | C2—C3—C4—C5 | 1.2 (4) |
Cl2i—Sn1—C1—C2 | 48.47 (19) | C3—C4—C5—C6 | −1.7 (4) |
Cl2i—Sn1—C1—C6 | −133.7 (2) | C4—C5—C6—C1 | 1.0 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.85 (3) | 2.42 (3) | 3.152 (2) | 144 (3) |
C5—H5···Cl1ii | 0.95 | 2.79 | 3.678 (3) | 156 |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C3H10N)2[Sn(C6H5)2Cl4] |
Mr | 534.93 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 9.0072 (2), 8.4125 (2), 14.9473 (4) |
β (°) | 96.046 (1) |
V (Å3) | 1126.30 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.61 |
Crystal size (mm) | 0.25 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.689, 0.739 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12905, 2571, 2219 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.072, 1.08 |
No. of reflections | 2571 |
No. of parameters | 122 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.36, −1.41 |
Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.85 (3) | 2.42 (3) | 3.152 (2) | 144 (3) |
C5—H5···Cl1i | 0.95 | 2.79 | 3.678 (3) | 156 |
Symmetry code: (i) x, y+1, z. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172. CSD CrossRef CAS Web of Science Google Scholar
Evans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435–4443. Web of Science PubMed CAS Google Scholar
Garcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855–868. CAS Google Scholar
Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kapoor, R. N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ouyang, J., Xu, Y. & Lian, E. K. (1998). J. Organomet. Chem. 561, 143–152. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teoh, S. G., Teo, S. B., Yeap, G. Y. & Declerq, J. P. (1992). Polyhedron, 11, 2351–2356. CSD CrossRef CAS Web of Science Google Scholar
Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our interest for organotin(IV) compounds is related to the various applications found for this family of compounds (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006). Many compounds containing the [SnPh2Cl4]2-ion in the cis or trans conformation have been reported (Ouyang et al., 1998; Hazell et al., 1998; Fernandez et al., 2002; Venkatraman et al., 2004; Garcia-Seijo et al., 2001; Teoh et al., 1992). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh2Cl2, which has yielded the title compound.
In the [Ph2SnCl4]2-anion, the tin atom is located on a centre of inversion and is bonded to four Cl atoms and two phenyl groups giving an octahedral geometry with the phenyl groups in trans- positions (Fig. 1). Consequently, the angle between the two trans groups is exactly 180 ° while the phenyl rings are almost perpendicular to the equitorial SnCl~4~ plane [C1—Sn1—Cl1 = 89.39 (6)°, C1—Sn1—Cl2 = 90.86 (7)°]. The two Sn—C (phenyl) bond distances are 2.149 (3) Å. The Sn—Cl bond distances [2.5722 (6) and 2.5796 (6) Å] are similar to those reported for [Hthiamine][SnPh2Cl4]. H2O (Casas et al., 1996), i.e. 2.573 (2) and 2.571 (2) Å. However, in 8-methoxyquinoliniumSnPh2Cl4 (Ouyang et al., 1998) these two bond lengths are slightly different [2.5727 (8) and 2.6099 (8) Å].
In the crystal the anion and the cations are linked by N—H···Cl hydrogen bonds (Fig. 1) and C—H···Cl intermolecular interactions (Table 1).