metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m203-m204

Bis(tri­methyl­ammonium) tetra­chlorido­di­phenyl­stannate(IV)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: dlibasse@gmail.com

(Received 14 December 2010; accepted 6 January 2011; online 15 January 2011)

The title compound, [(CH3)3NH]2[Sn(C6H5)2Cl4], consists of [(CH3)3NH]+ cations and [SnPh2Cl4]2− anions in which the Sn atom, located on a centre of inversion, is bonded to four Cl atoms and two phenyl rings, giving an octa­hedral geometry with the phenyl rings in trans positions. In the crystal, the cations and the anions are connected by N—H⋯Cl hydrogen bonds and C—H⋯Cl inter­actions.

Related literature

For background to organotin(IV) chemistry, see: Evans & Karpel (1985[Evans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.]); Kapoor et al. (2005[Kapoor, R. N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510-517.]); Zhang et al. (2006[Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460-m461.]). For compounds containing the [SnPh2Cl4]2− ion in the cis or trans configuration, see: Ouyang et al. (1998[Ouyang, J., Xu, Y. & Lian, E. K. (1998). J. Organomet. Chem. 561, 143-152.]); Hazell et al. (1998[Hazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728-732.]); Fernandez et al. (2002[Fernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435-4443.]); Venkatraman et al. (2004[Venkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035-m1037.]); Garcia-Seijo et al. (2001[Garcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855-868.]); Casas et al. (1996[Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165-172.]); Teoh et al. (1992[Teoh, S. G., Teo, S. B., Yeap, G. Y. & Declerq, J. P. (1992). Polyhedron, 11, 2351-2356.]). For related crystal structures, see: Casas et al. (1996[Casas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165-172.]); Ouyang et al. (1998[Ouyang, J., Xu, Y. & Lian, E. K. (1998). J. Organomet. Chem. 561, 143-152.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H10N)2[Sn(C6H5)2Cl4]

  • Mr = 534.93

  • Monoclinic, P 21 /n

  • a = 9.0072 (2) Å

  • b = 8.4125 (2) Å

  • c = 14.9473 (4) Å

  • β = 96.046 (1)°

  • V = 1126.30 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.689, Tmax = 0.739

  • 12905 measured reflections

  • 2571 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.08

  • 2571 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.36 e Å−3

  • Δρmin = −1.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.85 (3) 2.42 (3) 3.152 (2) 144 (3)
C5—H5⋯Cl1i 0.95 2.79 3.678 (3) 156
Symmetry code: (i) x, y+1, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our interest for organotin(IV) compounds is related to the various applications found for this family of compounds (Evans & Karpel, 1985; Kapoor et al., 2005; Zhang et al., 2006). Many compounds containing the [SnPh2Cl4]2-ion in the cis or trans conformation have been reported (Ouyang et al., 1998; Hazell et al., 1998; Fernandez et al., 2002; Venkatraman et al., 2004; Garcia-Seijo et al., 2001; Teoh et al., 1992). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH3)3N.HCl and SnPh2Cl2, which has yielded the title compound.

In the [Ph2SnCl4]2-anion, the tin atom is located on a centre of inversion and is bonded to four Cl atoms and two phenyl groups giving an octahedral geometry with the phenyl groups in trans- positions (Fig. 1). Consequently, the angle between the two trans groups is exactly 180 ° while the phenyl rings are almost perpendicular to the equitorial SnCl~4~ plane [C1—Sn1—Cl1 = 89.39 (6)°, C1—Sn1—Cl2 = 90.86 (7)°]. The two Sn—C (phenyl) bond distances are 2.149 (3) Å. The Sn—Cl bond distances [2.5722 (6) and 2.5796 (6) Å] are similar to those reported for [Hthiamine][SnPh2Cl4]. H2O (Casas et al., 1996), i.e. 2.573 (2) and 2.571 (2) Å. However, in 8-methoxyquinoliniumSnPh2Cl4 (Ouyang et al., 1998) these two bond lengths are slightly different [2.5727 (8) and 2.6099 (8) Å].

In the crystal the anion and the cations are linked by N—H···Cl hydrogen bonds (Fig. 1) and C—H···Cl intermolecular interactions (Table 1).

Related literature top

For background to organotin(IV) chemistry, see: Evans et al. (1985); Kapoor et al. (2005); Zhang et al. (2006). For compounds containing the [SnPh2Cl4]2-ion in the cis or trans conformation, see: Ouyang et al. (1998); Hazell et al. (1998); Fernandez et al. (2002); Venkatraman et al. (2004); Garcia-Seijo et al. (2001); Casas et al. (1996); Teoh et al. (1992). For related crystal structures, see: Casas et al. (1996); Ouyang et al. (1998).

Experimental top

The title compound was obtained as a white crystalline solid by reacting trimethylammonium chloride with diphenyltin dichloride in chloroform (2/1 ratio; M.p: 443 K). After slow evaporation of the solvent colourless crystals, suitable for X-ray diffraction analysis, were obtained.

Refinement top

The NH H-atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calculated positions and treated as riding: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH H-atoms, and k = 1.5 for CH3 H-atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [the C-bound H-atoms have been omitted for clarity; symmetry code: (') = -x + 1, -y + 1, -z + 1].
Bis(trimethylammonium) tetrachloridodiphenylstannate(IV) top
Crystal data top
(C3H10N)2[Sn(C6H5)2Cl4]F(000) = 540
Mr = 534.93Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7261 reflections
a = 9.0072 (2) Åθ = 2.9–27.5°
b = 8.4125 (2) ŵ = 1.61 mm1
c = 14.9473 (4) ÅT = 150 K
β = 96.046 (1)°Block, colourless
V = 1126.30 (5) Å30.25 × 0.25 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2571 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
142 2.0 degree images with \v scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1111
Tmin = 0.689, Tmax = 0.739k = 1010
12905 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.7419P]
where P = (Fo2 + 2Fc2)/3
2571 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 2.36 e Å3
0 restraintsΔρmin = 1.41 e Å3
Crystal data top
(C3H10N)2[Sn(C6H5)2Cl4]V = 1126.30 (5) Å3
Mr = 534.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.0072 (2) ŵ = 1.61 mm1
b = 8.4125 (2) ÅT = 150 K
c = 14.9473 (4) Å0.25 × 0.25 × 0.20 mm
β = 96.046 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2571 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2219 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.739Rint = 0.048
12905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 2.36 e Å3
2571 reflectionsΔρmin = 1.41 e Å3
122 parameters
Special details top

Experimental. multi-scan from symmetry-related measurements Sortav (Blessing 1995)

Geometry. Bond distances, angles etc. have been calculated using the

rounded fractional coordinates. All su's are estimated

from the variances of the (full) variance-covariance matrix.

The cell e.s.d.'s are taken into account in the estimation of

distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.500000.500000.500000.0152 (1)
Cl10.47692 (7)0.31690 (7)0.36079 (4)0.0227 (2)
Cl20.25333 (7)0.63136 (8)0.43640 (4)0.0256 (2)
C10.6252 (3)0.6661 (3)0.42855 (15)0.0158 (7)
C20.7359 (3)0.6103 (3)0.37812 (16)0.0192 (7)
C30.8137 (3)0.7152 (3)0.32797 (17)0.0233 (8)
C40.7807 (3)0.8763 (3)0.32840 (17)0.0251 (8)
C50.6730 (3)0.9329 (3)0.37967 (18)0.0245 (8)
C60.5941 (3)0.8278 (3)0.42938 (16)0.0202 (7)
N10.1432 (2)0.2116 (3)0.37059 (14)0.0237 (7)
C70.1802 (4)0.0396 (4)0.3674 (3)0.0423 (10)
C80.0931 (4)0.2743 (4)0.2800 (2)0.0424 (10)
C90.0323 (3)0.2447 (4)0.4350 (2)0.0328 (9)
H20.758500.500000.377900.0230*
H30.889000.676600.293600.0280*
H40.832200.947900.293400.0300*
H50.652601.043700.381100.0290*
H60.519000.866800.463800.0240*
H10.224 (3)0.258 (3)0.391 (2)0.022 (7)*
H7A0.093100.019300.340000.0630*
H7B0.207700.000400.428700.0630*
H7C0.264000.024300.331600.0630*
H8A0.168900.251500.239300.0640*
H8B0.078400.389500.283500.0640*
H8C0.001200.223400.257100.0640*
H9A0.016600.359700.438700.0490*
H9B0.069500.203800.494500.0490*
H9C0.062400.192600.414200.0490*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0147 (1)0.0171 (1)0.0144 (1)0.0006 (1)0.0041 (1)0.0010 (1)
Cl10.0237 (3)0.0258 (3)0.0196 (3)0.0035 (2)0.0072 (2)0.0058 (2)
Cl20.0181 (3)0.0304 (3)0.0286 (3)0.0049 (2)0.0043 (2)0.0089 (3)
C10.0158 (11)0.0185 (12)0.0132 (11)0.0032 (9)0.0025 (8)0.0009 (8)
C20.0196 (12)0.0212 (12)0.0169 (12)0.0013 (9)0.0030 (9)0.0000 (9)
C30.0199 (12)0.0335 (15)0.0172 (12)0.0030 (10)0.0056 (9)0.0014 (10)
C40.0240 (13)0.0290 (14)0.0215 (13)0.0092 (11)0.0009 (10)0.0070 (10)
C50.0287 (14)0.0166 (12)0.0275 (13)0.0034 (10)0.0007 (11)0.0033 (10)
C60.0211 (12)0.0191 (12)0.0204 (12)0.0005 (9)0.0028 (9)0.0018 (9)
N10.0182 (11)0.0313 (12)0.0210 (11)0.0051 (9)0.0002 (9)0.0037 (9)
C70.0308 (16)0.0350 (16)0.060 (2)0.0007 (13)0.0005 (15)0.0132 (15)
C80.0371 (17)0.068 (2)0.0211 (15)0.0077 (15)0.0020 (13)0.0081 (14)
C90.0277 (15)0.0436 (17)0.0282 (15)0.0044 (12)0.0078 (12)0.0067 (12)
Geometric parameters (Å, º) top
Sn1—Cl12.5796 (6)C5—C61.397 (4)
Sn1—Cl22.5722 (6)C2—H20.9500
Sn1—C12.149 (3)C3—H30.9500
Sn1—Cl1i2.5796 (6)C4—H40.9500
Sn1—Cl2i2.5722 (6)C5—H50.9500
Sn1—C1i2.149 (3)C6—H60.9500
N1—C91.485 (3)C7—H7A0.9800
N1—C71.487 (4)C7—H7B0.9800
N1—C81.479 (4)C7—H7C0.9800
N1—H10.85 (3)C8—H8A0.9800
C1—C61.389 (4)C8—H8B0.9800
C1—C21.393 (4)C8—H8C0.9800
C2—C31.394 (4)C9—H9A0.9800
C3—C41.388 (4)C9—H9B0.9800
C4—C51.383 (4)C9—H9C0.9800
Cl1—Sn1—Cl288.01 (2)C1—C2—H2120.00
Cl1—Sn1—C189.39 (6)C3—C2—H2120.00
Cl1—Sn1—Cl1i180.00C2—C3—H3120.00
Cl1—Sn1—Cl2i91.99 (2)C4—C3—H3120.00
Cl1—Sn1—C1i90.61 (6)C5—C4—H4120.00
Cl2—Sn1—C190.86 (7)C3—C4—H4120.00
Cl1i—Sn1—Cl291.99 (2)C4—C5—H5120.00
Cl2—Sn1—Cl2i180.00C6—C5—H5120.00
Cl2—Sn1—C1i89.14 (7)C5—C6—H6120.00
Cl1i—Sn1—C190.61 (6)C1—C6—H6120.00
Cl2i—Sn1—C189.14 (7)N1—C7—H7A109.00
C1—Sn1—C1i180.00N1—C7—H7B109.00
Cl1i—Sn1—Cl2i88.01 (2)N1—C7—H7C110.00
Cl1i—Sn1—C1i89.39 (6)H7A—C7—H7B109.00
Cl2i—Sn1—C1i90.86 (7)H7A—C7—H7C110.00
C7—N1—C8111.4 (3)H7B—C7—H7C109.00
C7—N1—C9111.8 (2)N1—C8—H8A109.00
C8—N1—C9111.4 (2)N1—C8—H8B109.00
C8—N1—H1109.3 (19)N1—C8—H8C109.00
C9—N1—H1106.8 (19)H8A—C8—H8B109.00
C7—N1—H1105.7 (17)H8A—C8—H8C109.00
C2—C1—C6119.4 (2)H8B—C8—H8C109.00
Sn1—C1—C2119.52 (18)N1—C9—H9A109.00
Sn1—C1—C6121.02 (19)N1—C9—H9B109.00
C1—C2—C3120.4 (2)N1—C9—H9C109.00
C2—C3—C4119.7 (2)H9A—C9—H9B109.00
C3—C4—C5120.1 (2)H9A—C9—H9C109.00
C4—C5—C6120.2 (2)H9B—C9—H9C110.00
C1—C6—C5120.1 (2)
Cl1—Sn1—C1—C243.53 (19)Sn1—C1—C2—C3177.05 (19)
Cl1—Sn1—C1—C6134.3 (2)C6—C1—C2—C30.8 (4)
Cl2—Sn1—C1—C2131.53 (19)Sn1—C1—C6—C5177.54 (19)
Cl2—Sn1—C1—C646.3 (2)C2—C1—C6—C50.3 (4)
Cl1i—Sn1—C1—C2136.47 (19)C1—C2—C3—C40.1 (4)
Cl1i—Sn1—C1—C645.7 (2)C2—C3—C4—C51.2 (4)
Cl2i—Sn1—C1—C248.47 (19)C3—C4—C5—C61.7 (4)
Cl2i—Sn1—C1—C6133.7 (2)C4—C5—C6—C11.0 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.85 (3)2.42 (3)3.152 (2)144 (3)
C5—H5···Cl1ii0.952.793.678 (3)156
Symmetry code: (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C3H10N)2[Sn(C6H5)2Cl4]
Mr534.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.0072 (2), 8.4125 (2), 14.9473 (4)
β (°) 96.046 (1)
V3)1126.30 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.689, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
12905, 2571, 2219
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.08
No. of reflections2571
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.36, 1.41

Computer programs: COLLECT (Nonius, 1998), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.85 (3)2.42 (3)3.152 (2)144 (3)
C5—H5···Cl1i0.952.793.678 (3)156
Symmetry code: (i) x, y+1, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCasas, J., Castineiras, A., Couce, M. D., Martinez, G., Sordo, J. & Varela, J. M. (1996). J. Organomet. Chem. 517, 165–172.  CSD CrossRef CAS Web of Science Google Scholar
First citationEvans, J. C. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandez, D., Garcia-Seijo, M. I., Kegl, T., Petocz, G., Kollar, L. & Garcia-Fermandez, M. E. (2002). Inorg. Chem. 41, 4435–4443.  Web of Science PubMed CAS Google Scholar
First citationGarcia-Seijo, M. I., Castineiras, A., Mahieu, B., Janosi, J., Berente, Z., Kollar, L. & Fernandez, G. (2001). Polyhedron, 20, 855–868.  CAS Google Scholar
First citationHazell, A., Khoo, L. E., Ouyang, J., Rausch, B. J. & Tavares, Z. M. (1998). Acta Cryst. C54, 728–732.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKapoor, R. N., Guillory, P., Schulte, L., Cervantes- Lee, F., Haiduc, I., Parkanyi, L. & Pannell, K. H. (2005). Appl. Organomet. Chem. 19, 510–517.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C.W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOuyang, J., Xu, Y. & Lian, E. K. (1998). J. Organomet. Chem. 561, 143–152.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeoh, S. G., Teo, S. B., Yeap, G. Y. & Declerq, J. P. (1992). Polyhedron, 11, 2351–2356.  CSD CrossRef CAS Web of Science Google Scholar
First citationVenkatraman, R., Ray, P. C. & Fronczek, F. R. (2004). Acta Cryst. E60, m1035–m1037.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m203-m204
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds