organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-[(2-Fluoro­anilino)carbon­yl]prop-2-enoic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, GC University, Faisalabad, Pakistan, and cInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*Correspondence e-mail: drsa54@yahoo.com

(Received 20 December 2010; accepted 8 January 2011; online 15 January 2011)

In the title mol­ecule, C10H8FNO3, the dihedral angle between the fluoro­phenyl group and the essentially planar [within 0.064 (3) Å] COC=CCOOH unit, which has a Z configuration, is 19.99 (14)°. There is an intra­molecular O—H⋯O bond in the mol­ecule involving the acid –OH group and the adjacent carbonyl O atom. In the crystal, inter­molecular N—H⋯O bonds lead to the formation of polymer chains propagating along [011].

Related literature

For the use of carb­oxy­lic acids containing N atoms as anti­biotics, see: Gould et al. (1980[Gould, S. J., Chang, C. C., Darling, D. S., Roberts, J. D. & Squillacote, M. (1980). J. Am. Chem. Soc. 102, 1707-1712.]). For the biological properties of compounds containing keto, ester, imide and carboxylc acid groups, see: Chen & Njoroge (2009[Chen, K. X. & Njoroge, F. G. (2009). Curr. Opin. Invest. Drugs, 10, 821-837.]); Shen & Walford (1972[Shen, T.-Y. & Walford, G. L. (1972). US Patent 3 655 692.]; 1980[Shen, T.-Y. & Walford, G. L. (1980). US Patent 3 547 948.]). For the structure of 3-[(4-bromo­anilino)carbon­yl]prop-2-enoic acid, see Parvez, Shahid et al. (2004[Parvez, M., Shahid, K., Shahzadi, S. & Ali, S. (2004). Acta Cryst. E60, o2079-o2081.]). For the structure of 3-[(2,4,6-tricholoroanilino)carbon­yl]prop-2-enoic acid, see Parvez, Shahzadi et al.(2004[Parvez, M., Shahzadi, S., Shahid, K. & Ali, S. (2004). Acta Cryst. E60, o2082-o2084.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8FNO3

  • Mr = 209.17

  • Orthorhombic, P n a 21

  • a = 20.282 (2) Å

  • b = 3.8025 (4) Å

  • c = 11.8183 (8) Å

  • V = 911.45 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 299 K

  • 0.57 × 0.21 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • 7575 measured reflections

  • 1075 independent reflections

  • 799 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.09

  • 1075 reflections

  • 132 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1 0.92 (8) 1.60 (8) 2.506 (4) 170 (7)
N1—H1A⋯O2i 0.83 (5) 2.10 (5) 2.929 (5) 175 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Carboxylic acids are good reducing agents and applied as an antioxidant agent and a precursor for the prevention of cancer. Carboxylic acids are used for therapeutic purposes and for other biological applications as well. Those carboxylic acids which contain N atoms are widely used as antibiotics (Gould et al., 1980). Compounds containing NH and carboxyl groups are of great interest for the synthesis of drugs due to their coordination to biological systems. Compounds containing keto, ester and imide are good anti-HCV agents (Chen et al., 2009). Carboxylic acids are also used as anti-inflammatories (Shen & Walford, 1980) and enzymetic inhibitors (Shen & Walford, 1972). We therefore used maleic anhydride to synthesize the title compound, by condensation with 2-fluoroaniline.

The molecular structure of the title compound is illustrated in Fig. 1. The bond distances and angles are close to those observed in simlar compounds; 3-[(4-bromoanilino)carbonyl]prop-2-enoic acid (Parvez, Shahid et al., 2004) and 3-[(2,4,6-Tricholoroanilino)carbonyl]prop-2-enoic acid (Parvez, Shahzadi et al., 2004). In the molecule there is an intramolecular O—H···O hydrogen bond involving the acid OH group and the adjacent carbonyl O-atom (Table 1). The COC=CCOOH moiety is essentially planar [atoms O1,C7—C10, O2,O3 planar to within 0.064 (3) Å], and has a Z configuration. It makes a dihedral angle of 19.99 (14) Å with the phenyl ring.

In the crystal there are intermolecular N–H···.O hydrogen bonds connecting symmetry related molecules yielding chains propagating along [011] (Table 1 and Fig. 2).

Related literature top

For the use carboxylic acids containing N atoms as antibiotics, see: Gould et al. (1980). For the biological properties of compounds containing keto, ester, imide and carboxylc acid groups, see: Chen et al. (2009); Shen & Walford (1972; 1980). For the structure of 3-[(4-bromoanilino)carbonyl]prop-2-enoic acid, see Parvez, Shahid et al. (2004). For the structure of 3-[(2,4,6-tricholoroanilino)carbonyl]prop-2-enoic acid, see Parvez, Shahzadi et al.(2004).

Experimental top

A solution of maleic anhydride (5 g, 1 mmol) in (300 ml glacial acetic acid) was added to a solution of 2-fluoroaniline (5 ml, 1 mmol) (150 ml glacial acetic acid) in 500 ml beaker at room temperature and the mixture was stirred in fuming hood at room temperature overnight. The light yellow precipitates formed were filtered off, washed with cold distilled H2O (200 ml) and air dried. The yellow crystals, suitable for X-ray diffraction analysis, were obtained by recrystallization in acetone:n-hexane (1:1).

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 719 Friedel pairs were merged and Δf " set to zero. The OH and NH H-atoms were located from a difference Fourier map and were freely refined: O3—H3B = 0.92 (8) Å, N1—H1A = 0.83 (5) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellipsoids are drawn at the 50% probability level. The intramolecular O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed cyan lines (see Table 1 for details).
(Z)-3-[(2-Fluoroanilino)carbonyl]prop-2-enoic acid top
Crystal data top
C10H8FNO3F(000) = 432
Mr = 209.17Dx = 1.524 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 49 reflections
a = 20.282 (2) Åθ = 6.2–19.7°
b = 3.8025 (4) ŵ = 0.13 mm1
c = 11.8183 (8) ÅT = 299 K
V = 911.45 (15) Å3Plate, yellow
Z = 40.57 × 0.21 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
799 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.5°, θmin = 5.3°
ϕ and ω scansh = 2426
7575 measured reflectionsk = 44
1075 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3218P]
where P = (Fo2 + 2Fc2)/3
1075 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C10H8FNO3V = 911.45 (15) Å3
Mr = 209.17Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.282 (2) ŵ = 0.13 mm1
b = 3.8025 (4) ÅT = 299 K
c = 11.8183 (8) Å0.57 × 0.21 × 0.06 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
799 reflections with I > 2σ(I)
7575 measured reflectionsRint = 0.066
1075 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.27 e Å3
1075 reflectionsΔρmin = 0.27 e Å3
132 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.06487 (13)0.1290 (8)0.1972 (2)0.0682 (9)
O10.13208 (13)0.4940 (9)0.5666 (2)0.0568 (9)
O20.31277 (15)1.0159 (9)0.6674 (3)0.0608 (10)
O30.21896 (15)0.7409 (10)0.6947 (3)0.0609 (12)
N10.11309 (15)0.4479 (9)0.3789 (3)0.0380 (10)
C10.04662 (8)0.3316 (7)0.38017 (19)0.0339 (10)
C20.02363 (10)0.1799 (7)0.28070 (18)0.0440 (12)
C30.04193 (11)0.0770 (7)0.2720 (2)0.0510 (16)
C40.08451 (9)0.1257 (8)0.3629 (2)0.0500 (15)
C50.06152 (10)0.2773 (8)0.4623 (2)0.0491 (15)
C60.00405 (11)0.3803 (7)0.47100 (17)0.0436 (11)
C70.15083 (18)0.5352 (10)0.4677 (3)0.0376 (11)
C80.21585 (19)0.6799 (11)0.4379 (3)0.0418 (11)
C90.26209 (19)0.8086 (11)0.5039 (3)0.0426 (11)
C100.2656 (2)0.8609 (12)0.6285 (3)0.0433 (14)
H1A0.132 (2)0.467 (11)0.317 (4)0.040 (12)*
H30.057300.024500.205500.0610*
H3B0.190 (4)0.630 (18)0.647 (7)0.11 (2)*
H40.128400.056800.357100.0600*
H50.090000.309900.523100.0590*
H60.019400.481700.537600.0520*
H80.225700.680400.361000.0500*
H90.299700.880700.465500.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0578 (14)0.107 (2)0.0399 (13)0.0096 (15)0.0025 (12)0.0258 (14)
O10.0460 (14)0.096 (2)0.0283 (14)0.0165 (15)0.0017 (13)0.0017 (16)
O20.0468 (16)0.093 (2)0.0425 (17)0.0111 (16)0.0097 (14)0.0176 (17)
O30.0479 (16)0.101 (3)0.0337 (15)0.0106 (18)0.0026 (14)0.0121 (19)
N10.0357 (15)0.050 (2)0.0284 (16)0.0003 (14)0.0007 (15)0.0046 (16)
C10.0368 (17)0.0353 (18)0.0297 (19)0.0044 (15)0.0042 (16)0.0032 (16)
C20.044 (2)0.046 (2)0.042 (2)0.0008 (18)0.003 (2)0.001 (2)
C30.052 (2)0.049 (3)0.052 (3)0.0084 (19)0.017 (2)0.003 (2)
C40.0400 (19)0.054 (3)0.056 (3)0.0057 (18)0.007 (2)0.017 (2)
C50.0363 (18)0.062 (3)0.049 (3)0.0049 (18)0.0005 (19)0.015 (2)
C60.0417 (19)0.049 (2)0.040 (2)0.0044 (18)0.0049 (18)0.001 (2)
C70.0366 (19)0.046 (2)0.0302 (19)0.0001 (16)0.0000 (17)0.0015 (19)
C80.043 (2)0.058 (2)0.0244 (17)0.0028 (19)0.0019 (16)0.0086 (17)
C90.0339 (18)0.059 (2)0.035 (2)0.0034 (18)0.0026 (16)0.0062 (19)
C100.037 (2)0.059 (3)0.034 (2)0.0081 (19)0.0041 (18)0.008 (2)
Geometric parameters (Å, º) top
F1—C21.308 (3)C4—C51.3892
O1—C71.239 (4)C5—C61.3902
O2—C101.214 (5)C7—C81.472 (5)
O3—C101.310 (5)C8—C91.314 (5)
O3—H3B0.92 (8)C9—C101.488 (5)
N1—C11.419 (4)C3—H30.9300
N1—C71.341 (5)C4—H40.9300
N1—H1A0.83 (5)C5—H50.9300
C1—C61.3900C6—H60.9300
C1—C21.3900C8—H80.9300
C2—C31.3899C9—H90.9300
C3—C41.3908
C10—O3—H3B105 (5)C7—C8—C9129.5 (3)
C1—N1—C7127.7 (3)C8—C9—C10132.2 (4)
C1—N1—H1A118 (3)O2—C10—O3120.8 (4)
C7—N1—H1A114 (3)O2—C10—C9118.5 (4)
N1—C1—C2116.1 (2)O3—C10—C9120.7 (4)
N1—C1—C6123.8 (2)C2—C3—H3120.00
C2—C1—C6120.00C4—C3—H3120.00
C1—C2—C3120.02C3—C4—H4120.00
F1—C2—C1119.0 (2)C5—C4—H4120.00
F1—C2—C3121.0 (2)C4—C5—H5120.00
C2—C3—C4119.96C6—C5—H5120.00
C3—C4—C5120.00C1—C6—H6120.00
C4—C5—C6120.04C5—C6—H6120.00
C1—C6—C5119.97C7—C8—H8115.00
O1—C7—N1122.1 (3)C9—C8—H8115.00
O1—C7—C8123.2 (3)C8—C9—H9114.00
N1—C7—C8114.6 (3)C10—C9—H9114.00
C7—N1—C1—C2165.3 (3)F1—C2—C3—C4178.4 (3)
C7—N1—C1—C618.5 (5)C1—C2—C3—C40.04
C1—N1—C7—O16.3 (6)C2—C3—C4—C50.04
C1—N1—C7—C8174.2 (3)C3—C4—C5—C60.02
N1—C1—C2—F15.3 (4)C4—C5—C6—C10.00
N1—C1—C2—C3176.3 (3)O1—C7—C8—C95.0 (7)
C6—C1—C2—F1178.4 (3)N1—C7—C8—C9175.4 (4)
C6—C1—C2—C30.03C7—C8—C9—C101.3 (8)
N1—C1—C6—C5176.0 (3)C8—C9—C10—O2173.7 (5)
C2—C1—C6—C50.02C8—C9—C10—O36.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O10.92 (8)1.60 (8)2.506 (4)170 (7)
N1—H1A···O2i0.83 (5)2.10 (5)2.929 (5)175 (4)
Symmetry code: (i) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H8FNO3
Mr209.17
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)299
a, b, c (Å)20.282 (2), 3.8025 (4), 11.8183 (8)
V3)911.45 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.57 × 0.21 × 0.06
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7575, 1075, 799
Rint0.066
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.09
No. of reflections1075
No. of parameters132
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: COLLECT (Nonius, 1998), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···O10.92 (8)1.60 (8)2.506 (4)170 (7)
N1—H1A···O2i0.83 (5)2.10 (5)2.929 (5)175 (4)
Symmetry code: (i) x+1/2, y1/2, z1/2.
 

Acknowledgements

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support. The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, K. X. & Njoroge, F. G. (2009). Curr. Opin. Invest. Drugs, 10, 821–837.  CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGould, S. J., Chang, C. C., Darling, D. S., Roberts, J. D. & Squillacote, M. (1980). J. Am. Chem. Soc. 102, 1707–1712.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationParvez, M., Shahid, K., Shahzadi, S. & Ali, S. (2004). Acta Cryst. E60, o2079–o2081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParvez, M., Shahzadi, S., Shahid, K. & Ali, S. (2004). Acta Cryst. E60, o2082–o2084.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, T.-Y. & Walford, G. L. (1972). US Patent 3 655 692.  Google Scholar
First citationShen, T.-Y. & Walford, G. L. (1980). US Patent 3 547 948.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds