organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N′-(4-hy­dr­oxy-3-nitro­benzyl­­idene)benzohydrazide

aExperimental Center, Linyi University, Linyi Shandong 276005, People's Republic of China
*Correspondence e-mail: zhangzhen_lynu@126.com

(Received 28 December 2010; accepted 4 January 2011; online 8 January 2011)

The title compound, C14H11N3O5, crystallized with two independent mol­ecules per asymmetric unit. Each mol­ecule assumes an E configuration with respect to the methyl­idene unit. Intra­molecular O—H⋯O and N—H⋯O hydrogen bonds are present in each mol­ecule and they are linked by an O—H⋯O hydrogen bond. The dihedral angles between the mean planes of the two benzene rings are 4.45 (16) and 1.7 (2)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological applications of hydrazone compounds, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Avaji et al. (2009[Avaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552-3559.]); Fan et al. (2010[Fan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438-1446.]); Rasras et al. (2010[Rasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307-2313.]). For similar hydrazone compounds, see: Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.]); Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Shalash et al. (2010[Shalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126-o3127.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O5

  • Mr = 301.26

  • Monoclinic, P 2/c

  • a = 13.769 (2) Å

  • b = 13.089 (2) Å

  • c = 19.999 (3) Å

  • β = 131.426 (3)°

  • V = 2702.5 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.977

  • 20705 measured reflections

  • 5704 independent reflections

  • 3336 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.074

  • wR(F2) = 0.165

  • S = 1.07

  • 5704 reflections

  • 407 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7i 0.82 1.86 2.650 (3) 162
O5—H5⋯O4 0.82 1.94 2.621 (3) 140
O5—H5⋯O4ii 0.82 2.30 2.997 (3) 143
O5—H5⋯N3 0.82 2.51 2.928 (3) 112
O6—H6⋯O2 0.82 1.91 2.713 (3) 168
O10—H10⋯O9 0.82 1.91 2.596 (3) 140
O10—H10⋯N6 0.82 2.50 2.909 (4) 112
N4—H4⋯O6 0.90 (1) 1.93 (3) 2.640 (3) 134 (3)
N1—H1⋯O1 0.90 (1) 1.84 (2) 2.599 (3) 141 (3)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds have received much attention due to their potential applications in biological chemistry (Ajani et al., 2010; Avaji et al., 2009; Fan et al., 2010; Rasras et al., 2010). As a continuous work on the hydrazone compounds, a new hydrazone compound, N'-(4-hydroxy-3-nitrobenzylidene)-2-hydroxybenzohydrazide, was prepared and structurally characterized.

The title compound contains two independent molecules (Fig. 1). Each molecule (A abd B) assumes an E configuration with respect to the methylidene unit. Intramolecular O—H···O and N—H···O hydrogen bonds are present in the molecules and they are linked by a O-H···O hydrogen bond (Table 1 and Fig. 1). The bond lengths are comparable to those observed in similar hydrazone compounds (Ahmad et al., 2010; Ban, 2010; Ji & Lu, 2010; Shalash et al., 2010). The dihedral angles between the mean planes of the two benzene rings are 4.45 (16)) and 1.7 (2)° for molecules A and B, respectively.

The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1).

Related literature top

For the biological applications of hydrazone compounds, see: Ajani et al. (2010); Avaji et al. (2009); Fan et al. (2010); Rasras et al. (2010). For similar hydrazone compounds, see: Ahmad et al. (2010); Ban (2010); Ji & Lu (2010); Shalash et al. (2010).

Experimental top

An ethanol solution (50 ml) of 2-hydroxybenzohydrazide (0.01 mol) and 4-hydroxy-3-nitrobenzaldehyde (0.01 mol) was stirred at room temperature for 30 min to give a yellow solution. Yellow block-shaped single crystals, suitable for X-ray diffraction, were formed by slow evaporation of the solution in air.

Refinement top

The amino H-atoms, H1 and H4, were located from a difference Fourier map and were refined with N—H distance restraints of 0.90 (1) Å. The remaining H atoms were positioned geometrically and refined using the riding-model approximation: C—H = 0.93 Å, and O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(parent C-atoms) and 1.5Ueq(parent O-atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing displacement ellipsoids at the 30% probability level. Intramolecular O—H···O and N—H···O hydrogen bonds are shown as dashed lines.
2-Hydroxy-N'-(4-hydroxy-3-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H11N3O5F(000) = 1248
Mr = 301.26Dx = 1.481 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 13.769 (2) ÅCell parameters from 2499 reflections
b = 13.089 (2) Åθ = 2.5–24.5°
c = 19.999 (3) ŵ = 0.12 mm1
β = 131.426 (3)°T = 298 K
V = 2702.5 (7) Å3Block, yellow
Z = 80.23 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5704 independent reflections
Radiation source: fine-focus sealed tube3336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1717
Tmin = 0.974, Tmax = 0.977k = 1616
20705 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.059P)2 + 0.7268P]
where P = (Fo2 + 2Fc2)/3
5704 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H11N3O5V = 2702.5 (7) Å3
Mr = 301.26Z = 8
Monoclinic, P2/cMo Kα radiation
a = 13.769 (2) ŵ = 0.12 mm1
b = 13.089 (2) ÅT = 298 K
c = 19.999 (3) Å0.23 × 0.21 × 0.20 mm
β = 131.426 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3336 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.977Rint = 0.063
20705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0742 restraints
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
5704 reflectionsΔρmin = 0.24 e Å3
407 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2000 (3)0.18864 (15)0.83343 (17)0.0670 (7)
H1A0.17780.12910.81780.100*
O20.1875 (2)0.50089 (14)0.86317 (14)0.0588 (6)
O30.4530 (4)0.29706 (19)0.5827 (2)0.1199 (13)
O40.4754 (2)0.42998 (17)0.53343 (16)0.0676 (7)
O50.4360 (2)0.61199 (15)0.56619 (16)0.0591 (6)
H50.46480.57410.55020.089*
O60.2115 (2)0.69519 (14)0.82854 (13)0.0543 (6)
H60.20370.63400.83290.082*
O70.1398 (2)1.00436 (14)0.76080 (14)0.0621 (7)
O80.7151 (3)0.85882 (19)1.33786 (16)0.0998 (10)
O90.8001 (3)0.99999 (19)1.40763 (16)0.0896 (9)
O100.7080 (2)1.17289 (16)1.32351 (15)0.0645 (6)
H100.76411.13851.36740.097*
N10.2146 (3)0.37642 (17)0.79853 (17)0.0477 (6)
N20.2490 (2)0.44197 (17)0.76341 (15)0.0450 (6)
N30.4419 (3)0.3884 (2)0.56981 (18)0.0582 (7)
N40.2472 (3)0.89030 (17)0.87275 (16)0.0480 (6)
N50.3115 (2)0.96498 (17)0.93740 (17)0.0465 (6)
N60.7213 (3)0.9512 (2)1.33793 (19)0.0682 (8)
C10.1415 (3)0.3304 (2)0.87495 (17)0.0387 (7)
C20.1469 (3)0.2249 (2)0.86681 (19)0.0457 (7)
C30.1009 (3)0.1584 (2)0.8941 (2)0.0602 (9)
H30.10420.08830.88810.072*
C40.0508 (3)0.1945 (3)0.9297 (2)0.0618 (9)
H4A0.02020.14880.94770.074*
C50.0451 (3)0.2982 (3)0.9393 (2)0.0609 (9)
H5A0.01130.32280.96390.073*
C60.0900 (3)0.3642 (2)0.91194 (19)0.0509 (8)
H6A0.08600.43410.91830.061*
C70.1842 (3)0.4105 (2)0.84622 (17)0.0398 (7)
C80.2731 (3)0.3978 (2)0.7192 (2)0.0498 (8)
H80.26660.32700.71410.060*
C90.3104 (3)0.4536 (2)0.67645 (18)0.0418 (7)
C100.3520 (3)0.3994 (2)0.64042 (19)0.0468 (8)
H10A0.35140.32840.64120.056*
C110.3948 (3)0.4498 (2)0.60285 (18)0.0432 (7)
C120.3946 (3)0.5558 (2)0.59936 (18)0.0425 (7)
C130.3491 (3)0.6095 (2)0.6339 (2)0.0488 (8)
H130.34620.68050.63110.059*
C140.3088 (3)0.5604 (2)0.67171 (19)0.0469 (8)
H140.27980.59840.69480.056*
C150.0970 (3)0.8290 (2)0.72103 (18)0.0370 (7)
C160.1181 (3)0.7249 (2)0.74221 (19)0.0391 (7)
C170.0450 (3)0.6528 (2)0.6754 (2)0.0500 (8)
H170.05870.58370.68990.060*
C180.0476 (3)0.6822 (2)0.5879 (2)0.0571 (9)
H180.09670.63290.54360.069*
C190.0682 (3)0.7839 (3)0.5651 (2)0.0579 (9)
H190.12980.80360.50570.070*
C200.0033 (3)0.8557 (2)0.6311 (2)0.0470 (8)
H200.01100.92450.61550.056*
C210.1630 (3)0.9152 (2)0.7860 (2)0.0426 (7)
C220.3914 (3)0.9314 (2)1.0165 (2)0.0625 (10)
H220.39970.86091.02460.075*
C230.4704 (3)0.9952 (2)1.0952 (2)0.0507 (8)
C240.5549 (3)0.9492 (2)1.1772 (2)0.0553 (9)
H240.55810.87821.18070.066*
C250.6354 (3)1.0058 (2)1.2550 (2)0.0477 (8)
C260.6330 (3)1.1123 (2)1.2519 (2)0.0474 (8)
C270.5487 (3)1.1584 (2)1.1691 (2)0.0546 (9)
H270.54651.22941.16550.066*
C280.4687 (3)1.1026 (2)1.0926 (2)0.0535 (8)
H280.41231.13601.03790.064*
H40.270 (3)0.8247 (11)0.891 (2)0.080*
H10.212 (3)0.3085 (9)0.791 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.106 (2)0.0290 (11)0.1044 (19)0.0067 (12)0.0862 (18)0.0046 (12)
O20.1030 (19)0.0292 (11)0.0670 (15)0.0012 (11)0.0659 (15)0.0023 (10)
O30.236 (4)0.0329 (15)0.207 (4)0.0015 (18)0.196 (3)0.0109 (17)
O40.102 (2)0.0600 (15)0.0793 (17)0.0028 (13)0.0762 (17)0.0017 (12)
O50.0926 (18)0.0406 (12)0.0772 (16)0.0044 (12)0.0703 (15)0.0040 (11)
O60.0733 (15)0.0324 (11)0.0437 (12)0.0010 (10)0.0329 (12)0.0067 (9)
O70.0910 (18)0.0302 (12)0.0582 (14)0.0079 (11)0.0464 (14)0.0088 (10)
O80.144 (3)0.0431 (15)0.0596 (16)0.0069 (15)0.0448 (18)0.0106 (12)
O90.108 (2)0.0700 (18)0.0492 (15)0.0010 (16)0.0340 (16)0.0077 (14)
O100.0732 (17)0.0485 (13)0.0689 (16)0.0015 (11)0.0457 (14)0.0152 (12)
N10.0712 (18)0.0307 (13)0.0543 (16)0.0025 (13)0.0470 (15)0.0010 (12)
N20.0614 (17)0.0371 (14)0.0429 (14)0.0034 (12)0.0371 (14)0.0033 (11)
N30.088 (2)0.0385 (16)0.0702 (19)0.0048 (14)0.0617 (19)0.0090 (14)
N40.0687 (18)0.0288 (13)0.0442 (15)0.0018 (13)0.0363 (15)0.0000 (12)
N50.0598 (17)0.0347 (13)0.0506 (16)0.0011 (12)0.0389 (15)0.0003 (12)
N60.092 (2)0.0496 (18)0.0515 (19)0.0032 (17)0.0423 (19)0.0013 (15)
C10.0458 (18)0.0343 (15)0.0319 (15)0.0022 (13)0.0240 (15)0.0047 (12)
C20.055 (2)0.0394 (17)0.0470 (18)0.0043 (14)0.0354 (17)0.0009 (14)
C30.071 (2)0.0397 (18)0.074 (2)0.0056 (16)0.050 (2)0.0032 (16)
C40.065 (2)0.060 (2)0.067 (2)0.0036 (18)0.046 (2)0.0138 (18)
C50.076 (3)0.069 (2)0.058 (2)0.0092 (19)0.053 (2)0.0136 (18)
C60.069 (2)0.0422 (17)0.0472 (18)0.0098 (15)0.0409 (18)0.0092 (14)
C70.0517 (19)0.0307 (15)0.0330 (15)0.0028 (13)0.0264 (15)0.0033 (12)
C80.065 (2)0.0366 (16)0.0512 (19)0.0047 (15)0.0402 (19)0.0023 (14)
C90.0488 (19)0.0411 (16)0.0340 (16)0.0051 (14)0.0268 (15)0.0053 (13)
C100.064 (2)0.0286 (15)0.0454 (18)0.0038 (14)0.0348 (17)0.0031 (13)
C110.059 (2)0.0355 (16)0.0425 (17)0.0022 (14)0.0365 (17)0.0071 (13)
C120.054 (2)0.0386 (16)0.0389 (17)0.0060 (14)0.0324 (16)0.0035 (13)
C130.072 (2)0.0296 (15)0.058 (2)0.0021 (15)0.0486 (19)0.0044 (14)
C140.065 (2)0.0380 (17)0.0490 (18)0.0005 (14)0.0423 (18)0.0032 (14)
C150.0509 (18)0.0341 (15)0.0427 (17)0.0035 (13)0.0381 (16)0.0051 (12)
C160.0521 (19)0.0352 (15)0.0412 (17)0.0038 (14)0.0355 (16)0.0072 (13)
C170.068 (2)0.0314 (15)0.052 (2)0.0003 (15)0.0404 (19)0.0002 (14)
C180.071 (2)0.052 (2)0.0433 (19)0.0020 (17)0.0358 (19)0.0067 (16)
C190.067 (2)0.063 (2)0.0369 (18)0.0123 (18)0.0312 (18)0.0081 (16)
C200.061 (2)0.0405 (17)0.0484 (18)0.0102 (15)0.0402 (18)0.0099 (15)
C210.056 (2)0.0362 (16)0.0511 (19)0.0041 (14)0.0418 (18)0.0041 (14)
C220.089 (3)0.0291 (16)0.050 (2)0.0015 (16)0.038 (2)0.0028 (15)
C230.063 (2)0.0377 (17)0.0480 (19)0.0021 (15)0.0353 (18)0.0006 (15)
C240.078 (2)0.0312 (16)0.053 (2)0.0012 (16)0.0414 (19)0.0007 (15)
C250.055 (2)0.0412 (17)0.0488 (19)0.0033 (15)0.0349 (18)0.0023 (15)
C260.054 (2)0.0385 (17)0.062 (2)0.0003 (15)0.0438 (19)0.0102 (16)
C270.066 (2)0.0302 (16)0.074 (2)0.0070 (15)0.049 (2)0.0027 (16)
C280.066 (2)0.0382 (17)0.057 (2)0.0048 (16)0.0414 (19)0.0063 (16)
Geometric parameters (Å, º) top
O1—C21.361 (3)C6—H6A0.9300
O1—H1A0.8200C8—C91.454 (4)
O2—C71.224 (3)C8—H80.9300
O3—N31.211 (3)C9—C101.377 (4)
O4—N31.217 (3)C9—C141.400 (4)
O5—C121.344 (3)C10—C111.391 (4)
O5—H50.8200C10—H10A0.9300
O6—C161.359 (3)C11—C121.389 (4)
O6—H60.8200C12—C131.391 (4)
O7—C211.227 (3)C13—C141.358 (4)
O8—N61.213 (3)C13—H130.9300
O9—N61.235 (3)C14—H140.9300
O10—C261.337 (3)C15—C201.397 (4)
O10—H100.8200C15—C161.399 (4)
N1—C71.346 (3)C15—C211.491 (4)
N1—N21.377 (3)C16—C171.381 (4)
N1—H10.898 (10)C17—C181.373 (4)
N2—C81.269 (3)C17—H170.9300
N3—C111.439 (4)C18—C191.374 (4)
N4—C211.342 (4)C18—H180.9300
N4—N51.377 (3)C19—C201.369 (4)
N4—H40.903 (10)C19—H190.9300
N5—C221.266 (4)C20—H200.9300
N6—C251.438 (4)C22—C231.446 (4)
C1—C61.393 (4)C22—H220.9300
C1—C21.398 (4)C23—C241.371 (4)
C1—C71.490 (4)C23—C281.407 (4)
C2—C31.385 (4)C24—C251.384 (4)
C3—C41.361 (4)C24—H240.9300
C3—H30.9300C25—C261.394 (4)
C4—C51.381 (5)C26—C271.383 (4)
C4—H4A0.9300C27—C281.364 (4)
C5—C61.370 (4)C27—H270.9300
C5—H5A0.9300C28—H280.9300
C2—O1—H1A109.5O5—C12—C11125.7 (3)
C12—O5—H5109.5O5—C12—C13116.5 (3)
C16—O6—H6109.5C11—C12—C13117.8 (3)
C26—O10—H10109.5C14—C13—C12121.4 (3)
C7—N1—N2121.9 (2)C14—C13—H13119.3
C7—N1—H1117 (2)C12—C13—H13119.3
N2—N1—H1121 (2)C13—C14—C9121.1 (3)
C8—N2—N1114.1 (2)C13—C14—H14119.5
O3—N3—O4121.6 (3)C9—C14—H14119.5
O3—N3—C11119.1 (3)C20—C15—C16117.6 (3)
O4—N3—C11119.2 (3)C20—C15—C21116.3 (2)
C21—N4—N5120.7 (2)C16—C15—C21126.0 (3)
C21—N4—H4121 (2)O6—C16—C17120.3 (2)
N5—N4—H4118 (2)O6—C16—C15119.7 (3)
C22—N5—N4114.5 (2)C17—C16—C15120.0 (3)
O8—N6—O9121.7 (3)C18—C17—C16120.6 (3)
O8—N6—C25119.4 (3)C18—C17—H17119.7
O9—N6—C25118.9 (3)C16—C17—H17119.7
C6—C1—C2117.4 (3)C17—C18—C19120.5 (3)
C6—C1—C7116.8 (2)C17—C18—H18119.7
C2—C1—C7125.8 (3)C19—C18—H18119.7
O1—C2—C3120.6 (3)C20—C19—C18119.1 (3)
O1—C2—C1119.3 (3)C20—C19—H19120.4
C3—C2—C1120.1 (3)C18—C19—H19120.4
C4—C3—C2120.7 (3)C19—C20—C15122.1 (3)
C4—C3—H3119.7C19—C20—H20119.0
C2—C3—H3119.7C15—C20—H20119.0
C3—C4—C5120.7 (3)O7—C21—N4121.9 (3)
C3—C4—H4A119.7O7—C21—C15121.3 (3)
C5—C4—H4A119.7N4—C21—C15116.7 (2)
C6—C5—C4118.8 (3)N5—C22—C23124.4 (3)
C6—C5—H5A120.6N5—C22—H22117.8
C4—C5—H5A120.6C23—C22—H22117.8
C5—C6—C1122.3 (3)C24—C23—C28117.6 (3)
C5—C6—H6A118.8C24—C23—C22118.7 (3)
C1—C6—H6A118.8C28—C23—C22123.6 (3)
O2—C7—N1123.0 (3)C23—C24—C25121.5 (3)
O2—C7—C1121.7 (3)C23—C24—H24119.2
N1—C7—C1115.3 (2)C25—C24—H24119.2
N2—C8—C9122.5 (3)C24—C25—C26120.6 (3)
N2—C8—H8118.8C24—C25—N6117.8 (3)
C9—C8—H8118.8C26—C25—N6121.6 (3)
C10—C9—C14118.2 (3)O10—C26—C27117.7 (3)
C10—C9—C8118.7 (3)O10—C26—C25124.6 (3)
C14—C9—C8123.1 (3)C27—C26—C25117.7 (3)
C9—C10—C11120.7 (3)C28—C27—C26121.7 (3)
C9—C10—H10A119.7C28—C27—H27119.2
C11—C10—H10A119.7C26—C27—H27119.2
C12—C11—C10120.9 (3)C27—C28—C23120.8 (3)
C12—C11—N3121.5 (3)C27—C28—H28119.6
C10—C11—N3117.7 (3)C23—C28—H28119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7i0.821.862.650 (3)162
O5—H5···O40.821.942.621 (3)140
O5—H5···O4ii0.822.302.997 (3)143
O5—H5···N30.822.512.928 (3)112
O6—H6···O20.821.912.713 (3)168
O10—H10···O90.821.912.596 (3)140
O10—H10···N60.822.502.909 (4)112
N4—H4···O60.90 (1)1.93 (3)2.640 (3)134 (3)
N1—H1···O10.90 (1)1.84 (2)2.599 (3)141 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H11N3O5
Mr301.26
Crystal system, space groupMonoclinic, P2/c
Temperature (K)298
a, b, c (Å)13.769 (2), 13.089 (2), 19.999 (3)
β (°) 131.426 (3)
V3)2702.5 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.974, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
20705, 5704, 3336
Rint0.063
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.165, 1.07
No. of reflections5704
No. of parameters407
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXL97 (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O7i0.821.862.650 (3)162
O5—H5···O40.821.942.621 (3)140
O5—H5···O4ii0.822.302.997 (3)143
O5—H5···N30.822.512.928 (3)112
O6—H6···O20.821.912.713 (3)168
O10—H10···O90.821.912.596 (3)140
O10—H10···N60.822.502.909 (4)112
N4—H4···O60.903 (10)1.93 (3)2.640 (3)134 (3)
N1—H1···O10.898 (10)1.84 (2)2.599 (3)141 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The author thanks the Experimental Center of Linyi University for supporting this work.

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAvaji, P. G., Kumar, C. H. V., Patil, S. A., Shivananda, K. N. & Nagaraju, C. (2009). Eur. J. Med. Chem. 44, 3552–3559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, C. D., Su, H., Zhao, J., Zhao, B. X., Zhang, S. L. & Miao, J. Y. (2010). Eur. J. Med. Chem. 45, 1438–1446.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRasras, A. J. M., Al-Tel, T. H., Amal, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShalash, M., Salhin, A., Adnan, R., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o3126–o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds