metal-organic compounds
Bis(acetato-κ2O,O′)bis[4-(dimethylamino)pyridine-κN]copper(II)
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 05 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr
In the mononuclear title complex, [Cu(CH3COO)2(C7H10N2)2], the CuII ion, located on a crystallographic inversion centre, is six coordinated by two N atoms of two 4-(dimethylamino)pyridine (DMAP) ligands in apical positions and four O atoms from two symmetry-related opposite acetate anions, which are asymmetrically bonded in the equatorial plane. The complex and the crystal packing of the complex are stabilized by intra- and intermolecular C—H⋯O hydrogen bonds, giving R42(10) rings and generating a layer-like structure.
Related literature
For the importance of copper(II) carboxylate complexes in biology, see: Lippard & Berg (1994). For coordination properties of carboxylates, see: Deacon & Phillips (1980). For a similar structure, see: Li et al. (2009). For bond lengths in related copper complexes, see: Cui et al. (2009); Zaleski et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.
Supporting information
10.1107/S1600536811002017/su2247sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811002017/su2247Isup2.hkl
To a solution of Cu(CH3CO2)2.H2O (0.2 g, 1 mmol) in methanol (40 cm3) at room temperature was added solid 4-(Dimethylamino)pyridine (DMAP) (0.122 g, 1 mmol) in small portions under constant stirring. the mixture was then filtered and the filtrate allowed to stand for 20 days, after which small blue block-like crystals of the title complex were obtained. They were filtered and dried under vacuum.
All the C-bound H-atoms were located in difference Fourier maps but were treated as riding on their parent atoms: C-H = 0.917 - 0.974 Å with Uiso(H) = 1.2Ueq(C-aromatic) or Uiso(H) = 1.5Ueq(C-methyl).
Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell
CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).[Cu(C2H3O2)2(C7H10N2)2] | Z = 1 |
Mr = 425.98 | F(000) = 223 |
Triclinic, P1 | Dx = 1.441 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6930 (2) Å | Cell parameters from 10054 reflections |
b = 7.8331 (2) Å | θ = 3.4–29.0° |
c = 8.2206 (2) Å | µ = 1.14 mm−1 |
α = 90.701 (2)° | T = 180 K |
β = 96.992 (2)° | Plate, blue |
γ = 92.949 (2)° | 0.48 × 0.37 × 0.12 mm |
V = 490.95 (2) Å3 |
Agilent Xcalibur Eos Gemini-ultra diffractometer | 2362 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2307 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 16.1978 pixels mm-1 | θmax = 29.1°, θmin = 3.4° |
ω scans | h = −10→10 |
Absorption correction: multi-scan [ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)] | k = −10→10 |
Tmin = 0.608, Tmax = 0.872 | l = −11→11 |
10140 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.115 | Method = Modified Sheldrick w = 1/[σ2(F2) + (0.1P)2 + 0.0P], where P = p(6)*max(Fo2,0) + (1-p(6))Fc2 |
S = 1.11 | (Δ/σ)max = 0.001 |
2362 reflections | Δρmax = 0.40 e Å−3 |
124 parameters | Δρmin = −0.36 e Å−3 |
0 restraints |
[Cu(C2H3O2)2(C7H10N2)2] | γ = 92.949 (2)° |
Mr = 425.98 | V = 490.95 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.6930 (2) Å | Mo Kα radiation |
b = 7.8331 (2) Å | µ = 1.14 mm−1 |
c = 8.2206 (2) Å | T = 180 K |
α = 90.701 (2)° | 0.48 × 0.37 × 0.12 mm |
β = 96.992 (2)° |
Agilent Xcalibur Eos Gemini-ultra diffractometer | 2362 independent reflections |
Absorption correction: multi-scan [ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)] | 2307 reflections with I > 2σ(I) |
Tmin = 0.608, Tmax = 0.872 | Rint = 0.018 |
10140 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.40 e Å−3 |
2362 reflections | Δρmin = −0.36 e Å−3 |
124 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0192 | |
O2 | 0.44954 (15) | 0.32890 (15) | 0.66419 (14) | 0.0229 | |
C3 | 0.5609 (2) | 0.3691 (2) | 0.79019 (19) | 0.0222 | |
O4 | 0.67659 (17) | 0.48560 (17) | 0.78860 (16) | 0.0321 | |
C5 | 0.5412 (3) | 0.2708 (3) | 0.9440 (2) | 0.0328 | |
N6 | 0.32934 (17) | 0.65325 (17) | 0.58644 (16) | 0.0204 | |
C7 | 0.1803 (2) | 0.5914 (2) | 0.6416 (2) | 0.0244 | |
C8 | 0.0597 (2) | 0.6918 (2) | 0.6986 (2) | 0.0247 | |
C9 | 0.0888 (2) | 0.8714 (2) | 0.70624 (18) | 0.0217 | |
C10 | 0.2452 (2) | 0.9354 (2) | 0.64866 (19) | 0.0226 | |
C11 | 0.3565 (2) | 0.8244 (2) | 0.59137 (19) | 0.0228 | |
N12 | −0.0240 (2) | 0.9759 (2) | 0.7651 (2) | 0.0320 | |
C13 | −0.1935 (3) | 0.9125 (3) | 0.8063 (3) | 0.0419 | |
C14 | 0.0055 (3) | 1.1609 (2) | 0.7637 (2) | 0.0338 | |
H51 | 0.6487 | 0.2899 | 1.0188 | 0.0450* | |
H53 | 0.4473 | 0.3138 | 0.9949 | 0.0447* | |
H52 | 0.5228 | 0.1509 | 0.9233 | 0.0442* | |
H71 | 0.1609 | 0.4749 | 0.6399 | 0.0287* | |
H81 | −0.0432 | 0.6385 | 0.7331 | 0.0283* | |
H101 | 0.2738 | 1.0521 | 0.6478 | 0.0252* | |
H111 | 0.4575 | 0.8681 | 0.5535 | 0.0258* | |
H132 | −0.2467 | 0.9992 | 0.8633 | 0.0610* | |
H131 | −0.1792 | 0.8177 | 0.8754 | 0.0606* | |
H133 | −0.2691 | 0.8797 | 0.7128 | 0.0611* | |
H142 | −0.0664 | 1.2144 | 0.8370 | 0.0514* | |
H141 | 0.1245 | 1.1930 | 0.8012 | 0.0513* | |
H143 | −0.0217 | 1.1993 | 0.6517 | 0.0513* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02144 (19) | 0.01507 (18) | 0.02130 (19) | −0.00171 (11) | 0.00403 (11) | 0.00410 (11) |
O2 | 0.0263 (6) | 0.0200 (5) | 0.0222 (5) | −0.0024 (4) | 0.0037 (4) | 0.0049 (4) |
C3 | 0.0243 (7) | 0.0201 (7) | 0.0236 (7) | 0.0039 (6) | 0.0072 (5) | 0.0023 (6) |
O4 | 0.0290 (6) | 0.0317 (7) | 0.0348 (7) | −0.0083 (5) | 0.0055 (5) | −0.0006 (5) |
C5 | 0.0434 (10) | 0.0332 (10) | 0.0233 (8) | 0.0038 (8) | 0.0085 (7) | 0.0068 (7) |
N6 | 0.0203 (6) | 0.0167 (6) | 0.0245 (6) | −0.0022 (5) | 0.0047 (5) | 0.0027 (5) |
C7 | 0.0250 (8) | 0.0176 (7) | 0.0305 (8) | −0.0049 (6) | 0.0043 (6) | 0.0045 (6) |
C8 | 0.0206 (7) | 0.0203 (7) | 0.0331 (8) | −0.0051 (5) | 0.0053 (6) | 0.0035 (6) |
C9 | 0.0213 (7) | 0.0203 (7) | 0.0226 (7) | −0.0017 (5) | 0.0001 (5) | 0.0024 (6) |
C10 | 0.0243 (7) | 0.0170 (7) | 0.0258 (7) | −0.0040 (5) | 0.0030 (6) | 0.0019 (6) |
C11 | 0.0225 (7) | 0.0196 (8) | 0.0259 (8) | −0.0049 (6) | 0.0035 (6) | 0.0037 (6) |
N12 | 0.0270 (7) | 0.0237 (7) | 0.0470 (9) | −0.0012 (6) | 0.0119 (6) | 0.0003 (7) |
C13 | 0.0266 (9) | 0.0430 (11) | 0.0583 (12) | −0.0011 (8) | 0.0158 (8) | 0.0032 (9) |
C14 | 0.0341 (9) | 0.0229 (8) | 0.0446 (10) | 0.0044 (7) | 0.0050 (7) | 0.0000 (7) |
Cu1—O2 | 1.9715 (11) | C7—H71 | 0.917 |
Cu1—C3 | 2.6076 (16) | C8—C9 | 1.413 (2) |
Cu1—O4 | 2.5932 (13) | C8—H81 | 0.951 |
Cu1—N6 | 2.0095 (13) | C9—C10 | 1.416 (2) |
Cu1—O4i | 2.5932 (13) | C9—N12 | 1.350 (2) |
Cu1—C3i | 2.6076 (16) | C10—C11 | 1.370 (2) |
Cu1—N6i | 2.0095 (13) | C10—H101 | 0.929 |
Cu1—O2i | 1.9715 (11) | C11—H111 | 0.923 |
O2—C3 | 1.286 (2) | N12—C13 | 1.451 (2) |
C3—O4 | 1.243 (2) | N12—C14 | 1.455 (2) |
C3—C5 | 1.507 (2) | C13—H132 | 0.958 |
C5—H51 | 0.972 | C13—H131 | 0.943 |
C5—H53 | 0.951 | C13—H133 | 0.931 |
C5—H52 | 0.953 | C14—H142 | 0.972 |
N6—C7 | 1.353 (2) | C14—H141 | 0.950 |
N6—C11 | 1.3452 (19) | C14—H143 | 0.974 |
C7—C8 | 1.367 (2) | ||
O4i—Cu1—C3i | 27.66 (5) | H51—C5—H53 | 108.3 |
O4i—Cu1—N6i | 91.06 (5) | C3—C5—H52 | 112.4 |
C3i—Cu1—N6i | 89.28 (5) | H51—C5—H52 | 108.0 |
O4i—Cu1—O2i | 56.16 (4) | H53—C5—H52 | 110.7 |
C3i—Cu1—O2i | 28.54 (5) | Cu1—N6—C7 | 122.31 (11) |
N6i—Cu1—O2i | 89.50 (5) | Cu1—N6—C11 | 121.62 (10) |
O4i—Cu1—O2 | 123.84 (4) | C7—N6—C11 | 116.07 (13) |
C3i—Cu1—O2 | 151.46 (5) | N6—C7—C8 | 123.95 (14) |
N6i—Cu1—O2 | 90.50 (5) | N6—C7—H71 | 116.8 |
O2i—Cu1—O2 | 179.994 | C8—C7—H71 | 119.2 |
O4i—Cu1—C3 | 152.34 (5) | C7—C8—C9 | 120.21 (14) |
C3i—Cu1—C3 | 179.996 | C7—C8—H81 | 118.9 |
N6i—Cu1—C3 | 90.72 (5) | C9—C8—H81 | 120.9 |
O2i—Cu1—C3 | 151.46 (5) | C8—C9—C10 | 115.59 (14) |
O2—Cu1—C3 | 28.54 (5) | C8—C9—N12 | 122.54 (14) |
O4i—Cu1—O4 | 179.996 | C10—C9—N12 | 121.87 (14) |
C3i—Cu1—O4 | 152.34 (5) | C9—C10—C11 | 119.82 (14) |
N6i—Cu1—O4 | 88.94 (5) | C9—C10—H101 | 121.3 |
O2i—Cu1—O4 | 123.84 (4) | C11—C10—H101 | 118.9 |
O2—Cu1—O4 | 56.16 (4) | C10—C11—N6 | 124.35 (14) |
O4i—Cu1—N6 | 88.94 (5) | C10—C11—H111 | 118.8 |
C3i—Cu1—N6 | 90.72 (5) | N6—C11—H111 | 116.8 |
N6i—Cu1—N6 | 179.994 | C9—N12—C13 | 121.83 (16) |
O2i—Cu1—N6 | 90.50 (5) | C9—N12—C14 | 121.12 (15) |
O2—Cu1—N6 | 89.50 (5) | C13—N12—C14 | 116.23 (16) |
C3—Cu1—O4 | 27.66 (5) | N12—C13—H132 | 110.3 |
C3—Cu1—N6 | 89.28 (5) | N12—C13—H131 | 109.8 |
O4—Cu1—N6 | 91.06 (5) | H132—C13—H131 | 108.1 |
Cu1—O2—C3 | 104.37 (9) | N12—C13—H133 | 111.4 |
Cu1—C3—O2 | 47.09 (7) | H132—C13—H133 | 108.3 |
Cu1—C3—O4 | 75.53 (10) | H131—C13—H133 | 109.0 |
O2—C3—O4 | 122.50 (15) | N12—C14—H142 | 110.0 |
Cu1—C3—C5 | 162.83 (12) | N12—C14—H141 | 110.5 |
O2—C3—C5 | 116.55 (14) | H142—C14—H141 | 107.5 |
O4—C3—C5 | 120.92 (15) | N12—C14—H143 | 108.7 |
Cu1—O4—C3 | 76.82 (9) | H142—C14—H143 | 111.3 |
C3—C5—H51 | 108.2 | H141—C14—H143 | 108.8 |
C3—C5—H53 | 109.2 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H81···O4ii | 0.95 | 2.51 | 3.452 (2) | 173 |
C10—H101···O2iii | 0.93 | 2.49 | 3.381 (2) | 161 |
C11—H111···O2i | 0.92 | 2.54 | 2.9946 (19) | 111 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H3O2)2(C7H10N2)2] |
Mr | 425.98 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 7.6930 (2), 7.8331 (2), 8.2206 (2) |
α, β, γ (°) | 90.701 (2), 96.992 (2), 92.949 (2) |
V (Å3) | 490.95 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.14 |
Crystal size (mm) | 0.48 × 0.37 × 0.12 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos Gemini-ultra diffractometer |
Absorption correction | Multi-scan [ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)] |
Tmin, Tmax | 0.608, 0.872 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10140, 2362, 2307 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.684 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.115, 1.11 |
No. of reflections | 2362 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.36 |
Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H81···O4i | 0.95 | 2.51 | 3.452 (2) | 173 |
C10—H101···O2ii | 0.93 | 2.49 | 3.381 (2) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z. |
Acknowledgements
This work was supported by Mentouri-Constantine University, Algeria.
References
Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Cui, Y.-M., Dai, X.-B., Zha, R.-H. & Zeng, Q.-F. (2009). Acta Cryst. E65, m1163. Web of Science CSD CrossRef IUCr Journals Google Scholar
Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books. Google Scholar
Zaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151–m154. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lewis based coordinated CuII carboxylate complexes are an important class of coordination compounds due to their relevance as structural and functional models for biologically important metalloenzymes (Lippard & Berg,1994). Anionic carboxylates are highly flexible and versatile O-donor ligands since a range of substituents may be introduced on the alkyl chain to modulate their reactivity and coordination propensity, and result in a variety of coordination modes such as monodentate, bidentate bridging, chelating, monoatomic bridging and chelating bridging (Deacon & Phillips, 1980). The Lewis base 4-Dimethylaminopyridine (DMAP) is a derivative of pyridine that is widely used in hypernucleophilic acylation for a variety of reactions, such as esterifications with anhydrides. We report herein on the molecular structure of a novel compound, namely bis(acetate-κ2O,O')bis(4-dimethylaminepyridine-κN)] Copper(II).
In the title complex the CuII cation lies on an inversion centre, as a consequence of which the asymmetric unit comprises one half-molecule (Fig. 1). The CuII ion is octahedrally coordinated by two (DMAP) ligands and two acetate units. It adopts a Jahn-Teller-distorted trans-CuO4N2 octahedral coordination similar to our previously reported CuII compound with the 4-(pyridine-4-yl)pyrimidine-2-sulfonate ligand (Li et al., 2009). The four O atoms [O2, O4, and the symmetry-related atoms, O2I, O4I (symmetry code: (I) -x + 1,-y + 1,-z + 1)] are located in the equatorial plane while the two N atoms of the (DMAP) ligands (N6, N6I) are in the axial positions. The Cu1—N6 bond length of 2.0095 (13) Å agrees well with that reported for related copper complexes (Cui et al., 2009, Zaleski et al., 2005), while the Cu1—O2 and Cu1—O4 bond lengths are 1.9715 (11) and 2.5932 (13) Å, respectively. The dihedral angles formed between the mean planes through the four O atoms and the pyridine ring is 88.59 (1)°.
In the crystal, the packing is consolidated by C—H···O interactions involving aromatic H-atoms (Table 1, Fig 2), in which R42(10) (Bernstein et al.,1995) hydrogen-bonded rings are formed, generating a two-dimensional layer-like structure.