metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(acetato-κ2O,O′)bis­­[4-(di­methyl­amino)­pyridine-κN]copper(II)

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté des Sciences Exactes, Département de Chimie, Université Mentouri de Constantine, 25000 Constantine, Algeria, and bLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 05 route de Narbonne, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: b_meriem80@yahoo.fr

(Received 10 January 2011; accepted 13 January 2011; online 22 January 2011)

In the mononuclear title complex, [Cu(CH3COO)2(C7H10N2)2], the CuII ion, located on a crystallographic inversion centre, is six coordinated by two N atoms of two 4-(dimethyl­amino)­pyridine (DMAP) ligands in apical positions and four O atoms from two symmetry-related opposite acetate anions, which are asymmetrically bonded in the equatorial plane. The complex and the crystal packing of the complex are stabilized by intra- and inter­molecular C—H⋯O hydrogen bonds, giving R42(10) rings and generating a layer-like structure.

Related literature

For the importance of copper(II) carboxyl­ate complexes in biology, see: Lippard & Berg (1994[Lippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books.]). For coordination properties of carboxyl­ates, see: Deacon & Phillips (1980[Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.]). For a similar structure, see: Li et al. (2009[Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.]). For bond lengths in related copper complexes, see: Cui et al. (2009[Cui, Y.-M., Dai, X.-B., Zha, R.-H. & Zeng, Q.-F. (2009). Acta Cryst. E65, m1163.]); Zaleski et al. (2005[Zaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151-m154.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H3O2)2(C7H10N2)2]

  • Mr = 425.98

  • Triclinic, [P \overline 1]

  • a = 7.6930 (2) Å

  • b = 7.8331 (2) Å

  • c = 8.2206 (2) Å

  • α = 90.701 (2)°

  • β = 96.992 (2)°

  • γ = 92.949 (2)°

  • V = 490.95 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 180 K

  • 0.48 × 0.37 × 0.12 mm

Data collection
  • Agilent Xcalibur Eos Gemini-ultra diffractometer

  • Absorption correction: multi-scan [ABSPACK in CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])] Tmin = 0.608, Tmax = 0.872

  • 10140 measured reflections

  • 2362 independent reflections

  • 2307 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.115

  • S = 1.11

  • 2362 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H81⋯O4i 0.95 2.51 3.452 (2) 173
C10—H101⋯O2ii 0.93 2.49 3.381 (2) 161
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent Technologies, 2010[Agilent Technologies (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Lewis based coordinated CuII carboxylate complexes are an important class of coordination compounds due to their relevance as structural and functional models for biologically important metalloenzymes (Lippard & Berg,1994). Anionic carboxylates are highly flexible and versatile O-donor ligands since a range of substituents may be introduced on the alkyl chain to modulate their reactivity and coordination propensity, and result in a variety of coordination modes such as monodentate, bidentate bridging, chelating, monoatomic bridging and chelating bridging (Deacon & Phillips, 1980). The Lewis base 4-Dimethylaminopyridine (DMAP) is a derivative of pyridine that is widely used in hypernucleophilic acylation for a variety of reactions, such as esterifications with anhydrides. We report herein on the molecular structure of a novel compound, namely bis(acetate-κ2O,O')bis(4-dimethylaminepyridine-κN)] Copper(II).

In the title complex the CuII cation lies on an inversion centre, as a consequence of which the asymmetric unit comprises one half-molecule (Fig. 1). The CuII ion is octahedrally coordinated by two (DMAP) ligands and two acetate units. It adopts a Jahn-Teller-distorted trans-CuO4N2 octahedral coordination similar to our previously reported CuII compound with the 4-(pyridine-4-yl)pyrimidine-2-sulfonate ligand (Li et al., 2009). The four O atoms [O2, O4, and the symmetry-related atoms, O2I, O4I (symmetry code: (I) -x + 1,-y + 1,-z + 1)] are located in the equatorial plane while the two N atoms of the (DMAP) ligands (N6, N6I) are in the axial positions. The Cu1—N6 bond length of 2.0095 (13) Å agrees well with that reported for related copper complexes (Cui et al., 2009, Zaleski et al., 2005), while the Cu1—O2 and Cu1—O4 bond lengths are 1.9715 (11) and 2.5932 (13) Å, respectively. The dihedral angles formed between the mean planes through the four O atoms and the pyridine ring is 88.59 (1)°.

In the crystal, the packing is consolidated by C—H···O interactions involving aromatic H-atoms (Table 1, Fig 2), in which R42(10) (Bernstein et al.,1995) hydrogen-bonded rings are formed, generating a two-dimensional layer-like structure.

Related literature top

For the importance of copper(II) carboxylate complexes in biology, see: Lippard & Berg (1994). For coordination properties of anionic carboxylates, see: Deacon & Phillips(1980). For a similar structure, see: Li et al. (2009). For bond lengths in related copper complexes, see: Cui et al. (2009); Zaleski et al. (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of Cu(CH3CO2)2.H2O (0.2 g, 1 mmol) in methanol (40 cm3) at room temperature was added solid 4-(Dimethylamino)pyridine (DMAP) (0.122 g, 1 mmol) in small portions under constant stirring. the mixture was then filtered and the filtrate allowed to stand for 20 days, after which small blue block-like crystals of the title complex were obtained. They were filtered and dried under vacuum.

Refinement top

All the C-bound H-atoms were located in difference Fourier maps but were treated as riding on their parent atoms: C-H = 0.917 - 0.974 Å with Uiso(H) = 1.2Ueq(C-aromatic) or Uiso(H) = 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent Technologies, 2010); cell refinement: CrysAlis PRO (Agilent Technologies, 2010); data reduction: CrysAlis PRO (Agilent Technologies, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius [Symmetry code: (I) = -x + 1,-y + 1,-z + 1].
[Figure 2] Fig. 2. A view along the a-axis of the crystal structure of the title compound showing the formation of R42(10) rings. The C-H···O hydrogen bonds are shown as dashed lines; H-atoms no involved in the C-H..O interactions have been omitted for clarity.
Bis(acetato-κ2O,O')bis[4-(dimethylamino)pyridine- κN]copper(II) top
Crystal data top
[Cu(C2H3O2)2(C7H10N2)2]Z = 1
Mr = 425.98F(000) = 223
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6930 (2) ÅCell parameters from 10054 reflections
b = 7.8331 (2) Åθ = 3.4–29.0°
c = 8.2206 (2) ŵ = 1.14 mm1
α = 90.701 (2)°T = 180 K
β = 96.992 (2)°Plate, blue
γ = 92.949 (2)°0.48 × 0.37 × 0.12 mm
V = 490.95 (2) Å3
Data collection top
Agilent Xcalibur Eos Gemini-ultra
diffractometer
2362 independent reflections
Radiation source: Enhance (Mo) X-ray Source2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1978 pixels mm-1θmax = 29.1°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)]
k = 1010
Tmin = 0.608, Tmax = 0.872l = 1111
10140 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.115 Method = Modified Sheldrick w = 1/[σ2(F2) + (0.1P)2 + 0.0P],
where P = p(6)*max(Fo2,0) + (1-p(6))Fc2
S = 1.11(Δ/σ)max = 0.001
2362 reflectionsΔρmax = 0.40 e Å3
124 parametersΔρmin = 0.36 e Å3
0 restraints
Crystal data top
[Cu(C2H3O2)2(C7H10N2)2]γ = 92.949 (2)°
Mr = 425.98V = 490.95 (2) Å3
Triclinic, P1Z = 1
a = 7.6930 (2) ÅMo Kα radiation
b = 7.8331 (2) ŵ = 1.14 mm1
c = 8.2206 (2) ÅT = 180 K
α = 90.701 (2)°0.48 × 0.37 × 0.12 mm
β = 96.992 (2)°
Data collection top
Agilent Xcalibur Eos Gemini-ultra
diffractometer
2362 independent reflections
Absorption correction: multi-scan
[ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)]
2307 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.872Rint = 0.018
10140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.11Δρmax = 0.40 e Å3
2362 reflectionsΔρmin = 0.36 e Å3
124 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0192
O20.44954 (15)0.32890 (15)0.66419 (14)0.0229
C30.5609 (2)0.3691 (2)0.79019 (19)0.0222
O40.67659 (17)0.48560 (17)0.78860 (16)0.0321
C50.5412 (3)0.2708 (3)0.9440 (2)0.0328
N60.32934 (17)0.65325 (17)0.58644 (16)0.0204
C70.1803 (2)0.5914 (2)0.6416 (2)0.0244
C80.0597 (2)0.6918 (2)0.6986 (2)0.0247
C90.0888 (2)0.8714 (2)0.70624 (18)0.0217
C100.2452 (2)0.9354 (2)0.64866 (19)0.0226
C110.3565 (2)0.8244 (2)0.59137 (19)0.0228
N120.0240 (2)0.9759 (2)0.7651 (2)0.0320
C130.1935 (3)0.9125 (3)0.8063 (3)0.0419
C140.0055 (3)1.1609 (2)0.7637 (2)0.0338
H510.64870.28991.01880.0450*
H530.44730.31380.99490.0447*
H520.52280.15090.92330.0442*
H710.16090.47490.63990.0287*
H810.04320.63850.73310.0283*
H1010.27381.05210.64780.0252*
H1110.45750.86810.55350.0258*
H1320.24670.99920.86330.0610*
H1310.17920.81770.87540.0606*
H1330.26910.87970.71280.0611*
H1420.06641.21440.83700.0514*
H1410.12451.19300.80120.0513*
H1430.02171.19930.65170.0513*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02144 (19)0.01507 (18)0.02130 (19)0.00171 (11)0.00403 (11)0.00410 (11)
O20.0263 (6)0.0200 (5)0.0222 (5)0.0024 (4)0.0037 (4)0.0049 (4)
C30.0243 (7)0.0201 (7)0.0236 (7)0.0039 (6)0.0072 (5)0.0023 (6)
O40.0290 (6)0.0317 (7)0.0348 (7)0.0083 (5)0.0055 (5)0.0006 (5)
C50.0434 (10)0.0332 (10)0.0233 (8)0.0038 (8)0.0085 (7)0.0068 (7)
N60.0203 (6)0.0167 (6)0.0245 (6)0.0022 (5)0.0047 (5)0.0027 (5)
C70.0250 (8)0.0176 (7)0.0305 (8)0.0049 (6)0.0043 (6)0.0045 (6)
C80.0206 (7)0.0203 (7)0.0331 (8)0.0051 (5)0.0053 (6)0.0035 (6)
C90.0213 (7)0.0203 (7)0.0226 (7)0.0017 (5)0.0001 (5)0.0024 (6)
C100.0243 (7)0.0170 (7)0.0258 (7)0.0040 (5)0.0030 (6)0.0019 (6)
C110.0225 (7)0.0196 (8)0.0259 (8)0.0049 (6)0.0035 (6)0.0037 (6)
N120.0270 (7)0.0237 (7)0.0470 (9)0.0012 (6)0.0119 (6)0.0003 (7)
C130.0266 (9)0.0430 (11)0.0583 (12)0.0011 (8)0.0158 (8)0.0032 (9)
C140.0341 (9)0.0229 (8)0.0446 (10)0.0044 (7)0.0050 (7)0.0000 (7)
Geometric parameters (Å, º) top
Cu1—O21.9715 (11)C7—H710.917
Cu1—C32.6076 (16)C8—C91.413 (2)
Cu1—O42.5932 (13)C8—H810.951
Cu1—N62.0095 (13)C9—C101.416 (2)
Cu1—O4i2.5932 (13)C9—N121.350 (2)
Cu1—C3i2.6076 (16)C10—C111.370 (2)
Cu1—N6i2.0095 (13)C10—H1010.929
Cu1—O2i1.9715 (11)C11—H1110.923
O2—C31.286 (2)N12—C131.451 (2)
C3—O41.243 (2)N12—C141.455 (2)
C3—C51.507 (2)C13—H1320.958
C5—H510.972C13—H1310.943
C5—H530.951C13—H1330.931
C5—H520.953C14—H1420.972
N6—C71.353 (2)C14—H1410.950
N6—C111.3452 (19)C14—H1430.974
C7—C81.367 (2)
O4i—Cu1—C3i27.66 (5)H51—C5—H53108.3
O4i—Cu1—N6i91.06 (5)C3—C5—H52112.4
C3i—Cu1—N6i89.28 (5)H51—C5—H52108.0
O4i—Cu1—O2i56.16 (4)H53—C5—H52110.7
C3i—Cu1—O2i28.54 (5)Cu1—N6—C7122.31 (11)
N6i—Cu1—O2i89.50 (5)Cu1—N6—C11121.62 (10)
O4i—Cu1—O2123.84 (4)C7—N6—C11116.07 (13)
C3i—Cu1—O2151.46 (5)N6—C7—C8123.95 (14)
N6i—Cu1—O290.50 (5)N6—C7—H71116.8
O2i—Cu1—O2179.994C8—C7—H71119.2
O4i—Cu1—C3152.34 (5)C7—C8—C9120.21 (14)
C3i—Cu1—C3179.996C7—C8—H81118.9
N6i—Cu1—C390.72 (5)C9—C8—H81120.9
O2i—Cu1—C3151.46 (5)C8—C9—C10115.59 (14)
O2—Cu1—C328.54 (5)C8—C9—N12122.54 (14)
O4i—Cu1—O4179.996C10—C9—N12121.87 (14)
C3i—Cu1—O4152.34 (5)C9—C10—C11119.82 (14)
N6i—Cu1—O488.94 (5)C9—C10—H101121.3
O2i—Cu1—O4123.84 (4)C11—C10—H101118.9
O2—Cu1—O456.16 (4)C10—C11—N6124.35 (14)
O4i—Cu1—N688.94 (5)C10—C11—H111118.8
C3i—Cu1—N690.72 (5)N6—C11—H111116.8
N6i—Cu1—N6179.994C9—N12—C13121.83 (16)
O2i—Cu1—N690.50 (5)C9—N12—C14121.12 (15)
O2—Cu1—N689.50 (5)C13—N12—C14116.23 (16)
C3—Cu1—O427.66 (5)N12—C13—H132110.3
C3—Cu1—N689.28 (5)N12—C13—H131109.8
O4—Cu1—N691.06 (5)H132—C13—H131108.1
Cu1—O2—C3104.37 (9)N12—C13—H133111.4
Cu1—C3—O247.09 (7)H132—C13—H133108.3
Cu1—C3—O475.53 (10)H131—C13—H133109.0
O2—C3—O4122.50 (15)N12—C14—H142110.0
Cu1—C3—C5162.83 (12)N12—C14—H141110.5
O2—C3—C5116.55 (14)H142—C14—H141107.5
O4—C3—C5120.92 (15)N12—C14—H143108.7
Cu1—O4—C376.82 (9)H142—C14—H143111.3
C3—C5—H51108.2H141—C14—H143108.8
C3—C5—H53109.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···O4ii0.952.513.452 (2)173
C10—H101···O2iii0.932.493.381 (2)161
C11—H111···O2i0.922.542.9946 (19)111
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H3O2)2(C7H10N2)2]
Mr425.98
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)7.6930 (2), 7.8331 (2), 8.2206 (2)
α, β, γ (°)90.701 (2), 96.992 (2), 92.949 (2)
V3)490.95 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.48 × 0.37 × 0.12
Data collection
DiffractometerAgilent Xcalibur Eos Gemini-ultra
diffractometer
Absorption correctionMulti-scan
[ABSPACK in CrysAlis PRO (Agilent Technologies, 2010)]
Tmin, Tmax0.608, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
10140, 2362, 2307
Rint0.018
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.115, 1.11
No. of reflections2362
No. of parameters124
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.36

Computer programs: CrysAlis PRO (Agilent Technologies, 2010), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H81···O4i0.952.513.452 (2)173
C10—H101···O2ii0.932.493.381 (2)161
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by Mentouri-Constantine University, Algeria.

References

First citationAgilent Technologies (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCui, Y.-M., Dai, X.-B., Zha, R.-H. & Zeng, Q.-F. (2009). Acta Cryst. E65, m1163.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLippard, S. J. & Berg, J. M. (1994). Principles of Bioinorganic Chemistry. Mill Valley, CA: University Science Books.  Google Scholar
First citationZaleski, J., Gabryszewski, M. & Zarychta, B. (2005). Acta Cryst. C61, m151–m154.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds