metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}zinc(II)

aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and bThe Miyun High School Attached to Capital Normal University, Beijing 101500, People's Republic of China
*Correspondence e-mail: dingyanwei@sohu.com

(Received 17 January 2011; accepted 20 January 2011; online 26 January 2011)

In the title complex, [ZnBr2(C13H19N3O)], the ZnII atom is five-coordinated by the three N-donor atoms of the Schiff base ligand and by two Br atoms in a distorted square-pyramidal geometry. The morpholine ring adopts a chair conformation.

Related literature

For background to Schiff base complexes, see: Dhar & Chakravarty (2003[Dhar, S. & Chakravarty, A. R. (2003). Inorg. Chem. 42, 2483-2485.]); Das et al. (2006[Das, S., Nag, A., Goswami, D. & Bharadwaj, P. K. (2006). J. Am. Chem. Soc. 128, 402-403.]); Nayak et al. (2006[Nayak, M., Koner, R., Lin, H.-H., Flörke, U., Wei, H.-H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]). For the crystal structures of similar Schiff base–zinc(II) complexes, see: Wang (2010[Wang, F.-M. (2010). Acta Cryst. E66, m778-m779.]); Zhu et al. (2007[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431-m1432.]); Li & Zhang (2004[Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.]); Zhu & Yang (2008[Zhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1094-m1095.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C13H19N3O)]

  • Mr = 458.50

  • Monoclinic, P 21 /n

  • a = 9.831 (4) Å

  • b = 13.985 (6) Å

  • c = 12.183 (5) Å

  • β = 106.626 (4)°

  • V = 1604.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.51 mm−1

  • T = 298 K

  • 0.35 × 0.32 × 0.32 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.209, Tmax = 0.230

  • 12426 measured reflections

  • 3411 independent reflections

  • 2159 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.177

  • S = 1.05

  • 3411 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the last few years, considerable attention has focused on the preparation and properties of Schiff base complexes (Dhar & Chakravarty, 2003; Das et al., 2006; Nayak et al., 2006). Herein we report on the crystal structure of a new Schiff base zinc(II) complex.

The molecular structure of the title mononuclear zinc(II) complex is shown in Fig. 1. The Zn atom is five-coordinated by the three N-donor atoms of the Schiff base ligand, and by two Br atoms in a distorted square-pyramidal geometry. All the coordinate bond lengths are within normal values and are comparable to those in similar zinc(II) complexes with Schiff bases (Wang, 2010; Zhu et al., 2007; Li & Zhang, 2004; Zhu & Yang, 2008). As expected, the morpholine ring adopts a chair conformation.

Related literature top

For background to Schiff base complexes, see: Dhar & Chakravarty (2003); Das et al. (2006); Nayak et al. (2006). For the crystal structures of similar Schiff base–zinc(II) complexes, see: Wang (2010); Zhu et al. (2007); Li & Zhang (2004); Zhu & Yang (2008).

Experimental top

The title complex was prepared by the reaction of 2-acetylpyridine (0.20 g, 1.65 mmol), 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol), and zinc bromide (0.37 g, 1.65 mmol) in methanol at ambient temperature. Colourless block-like single crytals were formed by slow evaporation of the solution in air.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.2 for CH and CH2 H-atoms, and 1.5 for CH3 H-atoms. The highest residual density peak, 1.35 e Å-2, is 0.58 Å from atom Zn1, while the deepest residual density hole, -1.26 e Å-2, is 0.62 Å from atom Br1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Dibromido{2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}zinc(II) top
Crystal data top
[ZnBr2(C13H19N3O)]F(000) = 904
Mr = 458.50Dx = 1.898 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1887 reflections
a = 9.831 (4) Åθ = 2.3–25.1°
b = 13.985 (6) ŵ = 6.51 mm1
c = 12.183 (5) ÅT = 298 K
β = 106.626 (4)°Block, colourless
V = 1604.9 (11) Å30.35 × 0.32 × 0.32 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube2159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.209, Tmax = 0.230k = 1717
12426 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0584P)2 + 5.9893P]
where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[ZnBr2(C13H19N3O)]V = 1604.9 (11) Å3
Mr = 458.50Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.831 (4) ŵ = 6.51 mm1
b = 13.985 (6) ÅT = 298 K
c = 12.183 (5) Å0.35 × 0.32 × 0.32 mm
β = 106.626 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3411 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2159 reflections with I > 2σ(I)
Tmin = 0.209, Tmax = 0.230Rint = 0.108
12426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.05Δρmax = 1.35 e Å3
3411 reflectionsΔρmin = 1.26 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27265 (9)0.91109 (6)0.83908 (8)0.0207 (3)
Br10.45896 (10)0.79761 (8)0.87089 (9)0.0448 (3)
Br20.04314 (10)0.86043 (7)0.72941 (9)0.0418 (3)
O10.3163 (7)0.9365 (6)0.4853 (6)0.0490 (19)
N10.2385 (7)0.8835 (5)1.0100 (6)0.0247 (16)
N20.2537 (7)1.0444 (5)0.9095 (6)0.0252 (16)
N30.3418 (6)1.0118 (5)0.7105 (5)0.0227 (15)
C10.1995 (7)0.9617 (6)1.0565 (6)0.0210 (18)
C20.1623 (9)0.9559 (7)1.1573 (7)0.033 (2)
H20.13491.01051.18890.040*
C30.1660 (11)0.8680 (8)1.2116 (8)0.044 (3)
H30.13940.86301.27880.053*
C40.2089 (10)0.7900 (8)1.1649 (8)0.042 (3)
H40.21550.73071.20060.051*
C50.2422 (10)0.8003 (7)1.0642 (8)0.036 (2)
H50.26900.74601.03140.043*
C60.2071 (8)1.0522 (6)0.9937 (7)0.0251 (19)
C70.1620 (9)1.1447 (6)1.0362 (8)0.036 (2)
H7A0.24391.17701.08400.054*
H7B0.09671.13151.07970.054*
H7C0.11671.18470.97210.054*
C80.2824 (10)1.1260 (6)0.8452 (8)0.036 (2)
H8A0.32041.17850.89690.043*
H8B0.19541.14720.79020.043*
C90.3870 (10)1.0959 (6)0.7849 (8)0.037 (2)
H9A0.40311.14890.73880.045*
H9B0.47641.08150.84140.045*
C100.4615 (9)0.9792 (7)0.6732 (8)0.038 (2)
H10A0.53390.95380.73840.045*
H10B0.50201.03310.64340.045*
C110.4195 (12)0.9037 (7)0.5826 (9)0.046 (3)
H11A0.50260.88350.56100.055*
H11B0.38290.84870.61350.055*
C120.1956 (11)0.9629 (8)0.5184 (8)0.048 (3)
H12A0.15940.90730.54850.057*
H12B0.12230.98500.45160.057*
C130.2283 (9)1.0409 (7)0.6081 (8)0.036 (2)
H13A0.25731.09820.57590.043*
H13B0.14321.05580.62980.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0158 (5)0.0246 (5)0.0212 (5)0.0006 (4)0.0046 (4)0.0044 (4)
Br10.0322 (6)0.0540 (7)0.0475 (7)0.0094 (5)0.0102 (5)0.0007 (5)
Br20.0264 (5)0.0500 (6)0.0486 (7)0.0049 (4)0.0101 (4)0.0081 (5)
O10.038 (4)0.083 (5)0.030 (4)0.004 (4)0.016 (3)0.002 (4)
N10.022 (4)0.032 (4)0.019 (4)0.004 (3)0.004 (3)0.001 (3)
N20.024 (4)0.027 (4)0.022 (4)0.000 (3)0.001 (3)0.004 (3)
N30.018 (3)0.028 (4)0.020 (4)0.003 (3)0.004 (3)0.005 (3)
C10.007 (4)0.037 (5)0.015 (4)0.000 (3)0.003 (3)0.005 (3)
C20.025 (5)0.049 (6)0.027 (5)0.005 (4)0.007 (4)0.015 (4)
C30.046 (6)0.070 (8)0.014 (5)0.009 (5)0.006 (4)0.002 (5)
C40.052 (6)0.049 (6)0.025 (5)0.006 (5)0.010 (5)0.009 (5)
C50.035 (5)0.034 (5)0.036 (6)0.006 (4)0.007 (4)0.000 (4)
C60.021 (4)0.028 (4)0.023 (5)0.003 (3)0.002 (4)0.010 (4)
C70.028 (5)0.034 (5)0.047 (6)0.010 (4)0.014 (4)0.012 (4)
C80.051 (6)0.026 (5)0.031 (5)0.008 (4)0.012 (5)0.006 (4)
C90.040 (6)0.032 (5)0.037 (6)0.023 (4)0.006 (4)0.002 (4)
C100.020 (5)0.055 (6)0.041 (6)0.003 (4)0.011 (4)0.008 (5)
C110.051 (6)0.055 (7)0.041 (6)0.007 (5)0.027 (5)0.003 (5)
C120.043 (6)0.072 (8)0.023 (5)0.005 (5)0.002 (5)0.003 (5)
C130.030 (5)0.042 (6)0.035 (5)0.002 (4)0.007 (4)0.008 (4)
Geometric parameters (Å, º) top
Zn1—N22.083 (7)C4—H40.9300
Zn1—N12.235 (7)C5—H50.9300
Zn1—N32.347 (6)C6—C71.507 (11)
Zn1—Br12.3701 (15)C7—H7A0.9600
Zn1—Br22.3775 (15)C7—H7B0.9600
O1—C111.398 (12)C7—H7C0.9600
O1—C121.407 (12)C8—C91.485 (13)
N1—C51.334 (11)C8—H8A0.9700
N1—C11.337 (10)C8—H8B0.9700
N2—C61.241 (11)C9—H9A0.9700
N2—C81.457 (11)C9—H9B0.9700
N3—C101.451 (11)C10—C111.496 (13)
N3—C131.474 (10)C10—H10A0.9700
N3—C91.474 (10)C10—H10B0.9700
C1—C21.380 (12)C11—H11A0.9700
C1—C61.492 (11)C11—H11B0.9700
C2—C31.391 (14)C12—C131.512 (13)
C2—H20.9300C12—H12A0.9700
C3—C41.352 (14)C12—H12B0.9700
C3—H30.9300C13—H13A0.9700
C4—C51.365 (13)C13—H13B0.9700
N2—Zn1—N173.5 (3)C6—C7—H7B109.5
N2—Zn1—N379.4 (3)H7A—C7—H7B109.5
N1—Zn1—N3151.0 (2)C6—C7—H7C109.5
N2—Zn1—Br1133.48 (18)H7A—C7—H7C109.5
N1—Zn1—Br192.70 (17)H7B—C7—H7C109.5
N3—Zn1—Br198.80 (16)N2—C8—C9108.2 (7)
N2—Zn1—Br2108.40 (19)N2—C8—H8A110.1
N1—Zn1—Br295.80 (18)C9—C8—H8A110.1
N3—Zn1—Br2102.32 (16)N2—C8—H8B110.1
Br1—Zn1—Br2117.20 (6)C9—C8—H8B110.1
C11—O1—C12108.1 (7)H8A—C8—H8B108.4
C5—N1—C1118.3 (8)N3—C9—C8113.6 (7)
C5—N1—Zn1128.4 (6)N3—C9—H9A108.8
C1—N1—Zn1113.1 (5)C8—C9—H9A108.8
C6—N2—C8123.3 (7)N3—C9—H9B108.8
C6—N2—Zn1121.2 (6)C8—C9—H9B108.8
C8—N2—Zn1115.2 (5)H9A—C9—H9B107.7
C10—N3—C13107.9 (7)N3—C10—C11112.0 (7)
C10—N3—C9108.4 (7)N3—C10—H10A109.2
C13—N3—C9108.8 (7)C11—C10—H10A109.2
C10—N3—Zn1115.9 (5)N3—C10—H10B109.2
C13—N3—Zn1115.9 (5)C11—C10—H10B109.2
C9—N3—Zn199.3 (5)H10A—C10—H10B107.9
N1—C1—C2120.6 (8)O1—C11—C10112.0 (8)
N1—C1—C6114.4 (7)O1—C11—H11A109.2
C2—C1—C6124.9 (8)C10—C11—H11A109.2
C1—C2—C3119.9 (9)O1—C11—H11B109.2
C1—C2—H2120.1C10—C11—H11B109.2
C3—C2—H2120.1H11A—C11—H11B107.9
C4—C3—C2118.7 (9)O1—C12—C13112.0 (8)
C4—C3—H3120.6O1—C12—H12A109.2
C2—C3—H3120.6C13—C12—H12A109.2
C3—C4—C5118.5 (9)O1—C12—H12B109.2
C3—C4—H4120.7C13—C12—H12B109.2
C5—C4—H4120.7H12A—C12—H12B107.9
N1—C5—C4123.9 (9)N3—C13—C12111.5 (8)
N1—C5—H5118.1N3—C13—H13A109.3
C4—C5—H5118.1C12—C13—H13A109.3
N2—C6—C1115.7 (7)N3—C13—H13B109.3
N2—C6—C7125.1 (8)C12—C13—H13B109.3
C1—C6—C7119.3 (8)H13A—C13—H13B108.0
C6—C7—H7A109.5

Experimental details

Crystal data
Chemical formula[ZnBr2(C13H19N3O)]
Mr458.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.831 (4), 13.985 (6), 12.183 (5)
β (°) 106.626 (4)
V3)1604.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)6.51
Crystal size (mm)0.35 × 0.32 × 0.32
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.209, 0.230
No. of measured, independent and
observed [I > 2σ(I)] reflections
12426, 3411, 2159
Rint0.108
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.177, 1.05
No. of reflections3411
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 1.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

 

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, S., Nag, A., Goswami, D. & Bharadwaj, P. K. (2006). J. Am. Chem. Soc. 128, 402–403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDhar, S. & Chakravarty, A. R. (2003). Inorg. Chem. 42, 2483–2485.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNayak, M., Koner, R., Lin, H.-H., Flörke, U., Wei, H.-H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-M. (2010). Acta Cryst. E66, m778–m779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1094–m1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds