organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Cyclo­hexyl­meth­yl-5-ethyl-2-[(2-oxo-2-phenyl­eth­yl)sulfan­yl]pyrimidin-4(3H)-one

aSchool of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resources (Ministry of Education), Yunnan University, Kunming 650091, People's Republic of China, and bLaboratory of Molecular Medicine, College of Pharmaceutical Science, Soochow University, Suzhou 215123, People's Republic of China
*Correspondence e-mail: ypinghe@126.com

(Received 18 January 2011; accepted 24 January 2011; online 29 January 2011)

In the title compound, C21H26N2O2S, the cyclo­hexane ring adopts a chair conformation. The angle at the methyl­ene bridge linking the pyrimidine and cyclo­hexane rings is 113.41 (13)°. This is in the range considered optimal for maximum activity of non-nucleoside reverse transcriptase inhibitors. In the crystal, mol­ecules are connected into centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds.

Related literature

For the biological activity of 2-alkyl­sulfanyl-6-benzyl-3,4-dihydro­pyrimidin-4(3H)-one derivatives, which show remarkable anti-HIV-1 activity, see: He et al. (2011[He, Y. P., Long, J., Zhang, S. S., Li, C., Lai, C., Zhang, C. S., Li, D. X., Zhang, D. H., Wang, H., Cai, Q. Q. & Zheng, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 694-697.]); Ettorre et al. (1996[Ettorre, A., Mai, A., Artico, M., Massa, S., De Montis, A. & La Colla, P. (1996). Acta Cryst. C52, 2115-2117.]). For related structures, see: Ettorre et al. (1998[Ettorre, A., Mai, A., Sbardella, G., Artico, M., La Colla, P. & Massa, S. (1998). Z. Kristallogr. New Cryst. Struct. 213, 593-595.]); Rao et al. (2007[Rao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.]); Zhang et al. (2008[Zhang, C.-S., Li, D.-X., Zhang, D.-H., He, Y.-P. & Li, C. (2008). Acta Cryst. E64, o1768.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O2S

  • Mr = 370.50

  • Triclinic, [P \overline 1]

  • a = 7.516 (5) Å

  • b = 10.960 (5) Å

  • c = 12.490 (5) Å

  • α = 84.082 (5)°

  • β = 78.925 (5)°

  • γ = 80.267 (5)°

  • V = 992.5 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.46 × 0.23 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.975

  • 7097 measured reflections

  • 4158 independent reflections

  • 3203 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.129

  • S = 1.03

  • 4158 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 1.90 2.743 (2) 168
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of on-going investigations of S-DABO analogues, e.g. 2-alkylsulfanyl-6-benzyl-3,4-dihydropyrimidin-4(3H) -one derivatives, which comprise a potent family of non-nucleoside reverse transcriptase inhibitors (NNRTI's), the title compound was synthesized as a novel inhibitor which shows remarkable anti-HIV-1 activity (He et al., 2011).

The molecular structure is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The C12—C15—C16 angle is 113.41 (13)°, which is in the range considered optimal for maximum activity of NNRTI's, viz. 110–115° (Ettorre et al., 1996).

A comparison of the molecular structure of the title compound with some reported S-DABO's show that their spatial arrangement are similar (Ettorre et al., 1998; Rao et al., 2007; Zhang et al., 2008). Although these molecules assume similar conformations, they show differences in their activities. Thus, further structural investigations are needed in order to establish a structure-activity relationship.

In the crystal, molecules are connected into centrosymmetric dimers via N—H···O hydrogen bonds, Table 1.

Related literature top

For the biological activity of 2-alkylsulfanyl-6-benzyl-3,4-dihydropyrimidin-4(3H)-one derivatives, see: He et al. (2011); Ettorre et al. (1996). For related structures, see: Ettorre et al. (1998); Rao et al. (2007); Zhang et al. (2008).

Experimental top

With 2-cyclohexylacetonitrile as the starting material, the title compound was synthesized according to the procedure of He et al. (2011). Single crystals of the title compound were obtained from the slow evaporation at room temperature of its ethyl acetate/petroleum ether solution.

Refinement top

Methyl-H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angles were refined to fit the electron density; Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and 30% probability displacement ellipsoids.
6-Cyclohexylmethyl-5-ethyl-2-[(2-oxo-2-phenylethyl)sulfanyl]pyrimidin- 4(3H)-one top
Crystal data top
C21H26N2O2SZ = 2
Mr = 370.50F(000) = 396
Triclinic, P1Dx = 1.240 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.516 (5) ÅCell parameters from 2756 reflections
b = 10.960 (5) Åθ = 2.4–27.3°
c = 12.490 (5) ŵ = 0.18 mm1
α = 84.082 (5)°T = 293 K
β = 78.925 (5)°Block, colourless
γ = 80.267 (5)°0.46 × 0.23 × 0.17 mm
V = 992.5 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4158 independent reflections
Radiation source: fine-focus sealed tube3203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.944, Tmax = 0.975k = 1414
7097 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.0929P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4158 reflectionsΔρmax = 0.18 e Å3
237 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (4)
Crystal data top
C21H26N2O2Sγ = 80.267 (5)°
Mr = 370.50V = 992.5 (9) Å3
Triclinic, P1Z = 2
a = 7.516 (5) ÅMo Kα radiation
b = 10.960 (5) ŵ = 0.18 mm1
c = 12.490 (5) ÅT = 293 K
α = 84.082 (5)°0.46 × 0.23 × 0.17 mm
β = 78.925 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4158 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3203 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.975Rint = 0.019
7097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
4158 reflectionsΔρmin = 0.18 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc, and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0651 (2)0.34455 (19)0.37479 (16)0.0637 (5)
H10.07400.27860.42760.076*
C20.0742 (3)0.3611 (2)0.31452 (19)0.0768 (6)
H20.15630.30440.32550.092*
C30.0931 (3)0.4597 (2)0.23879 (17)0.0735 (6)
H30.18830.47090.19920.088*
C40.0298 (3)0.5416 (2)0.22211 (17)0.0707 (6)
H40.01740.60920.17110.085*
C50.1713 (3)0.52527 (17)0.27987 (16)0.0622 (5)
H50.25430.58150.26710.075*
C60.1917 (2)0.42627 (15)0.35661 (13)0.0483 (4)
C70.3555 (2)0.40826 (14)0.41151 (14)0.0490 (4)
C80.3441 (2)0.33926 (16)0.52377 (14)0.0518 (4)
H8A0.26440.27720.52840.062*
H8B0.28760.39750.57840.062*
C90.6130 (2)0.14968 (13)0.46180 (12)0.0409 (3)
C100.8364 (2)0.02021 (14)0.39454 (12)0.0451 (4)
C110.7259 (2)0.02517 (14)0.31332 (12)0.0436 (4)
C120.5655 (2)0.05556 (14)0.31667 (12)0.0426 (4)
C130.8014 (3)0.12053 (17)0.23150 (14)0.0548 (4)
H13A0.70580.12990.19210.066*
H13B0.83550.19970.27040.066*
C140.9669 (3)0.0886 (2)0.14963 (16)0.0727 (6)
H14A0.93520.00950.11160.109*
H14B1.00480.15120.09800.109*
H14C1.06550.08490.18740.109*
C150.4356 (2)0.06173 (16)0.23778 (14)0.0529 (4)
H15A0.31340.05680.27890.063*
H15B0.47230.00960.19420.063*
C160.4293 (2)0.18009 (16)0.16104 (13)0.0504 (4)
H160.38730.25070.20650.060*
C170.6149 (3)0.19746 (19)0.09419 (16)0.0658 (5)
H17A0.66290.12630.05140.079*
H17B0.69920.20170.14310.079*
C180.6038 (4)0.3151 (2)0.0178 (2)0.0849 (7)
H18A0.56720.38690.06080.102*
H18B0.72380.32110.02590.102*
C190.4667 (4)0.3152 (2)0.05721 (19)0.0914 (8)
H19A0.45700.39300.10190.110*
H19B0.50990.24850.10570.110*
C200.2831 (4)0.2987 (2)0.00690 (19)0.0825 (7)
H20A0.20100.29310.04300.099*
H20B0.23350.37090.04810.099*
C210.2904 (3)0.1827 (2)0.08558 (17)0.0692 (6)
H21A0.32330.10980.04390.083*
H21B0.16970.17970.12960.083*
N20.77310 (18)0.07257 (11)0.46550 (10)0.0446 (3)
H2A0.83720.08170.51340.054*
N10.50716 (18)0.14361 (12)0.39265 (10)0.0448 (3)
O10.49051 (17)0.45336 (12)0.36902 (12)0.0662 (4)
O20.98026 (18)0.09226 (11)0.40372 (10)0.0621 (4)
S10.56039 (6)0.26398 (4)0.55656 (3)0.05176 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0452 (10)0.0686 (12)0.0717 (12)0.0097 (9)0.0091 (9)0.0197 (9)
C20.0499 (11)0.0943 (16)0.0845 (14)0.0205 (11)0.0142 (10)0.0214 (12)
C30.0470 (11)0.0964 (16)0.0684 (12)0.0058 (11)0.0100 (9)0.0057 (11)
C40.0724 (14)0.0637 (12)0.0646 (12)0.0105 (11)0.0110 (10)0.0120 (9)
C50.0633 (12)0.0491 (10)0.0674 (11)0.0028 (9)0.0045 (9)0.0042 (8)
C60.0420 (9)0.0427 (8)0.0527 (9)0.0021 (7)0.0018 (7)0.0016 (7)
C70.0457 (9)0.0372 (8)0.0592 (10)0.0009 (7)0.0011 (7)0.0055 (7)
C80.0487 (10)0.0530 (9)0.0509 (9)0.0024 (8)0.0029 (7)0.0107 (7)
C90.0456 (9)0.0369 (7)0.0395 (7)0.0058 (6)0.0076 (6)0.0002 (6)
C100.0532 (10)0.0387 (8)0.0439 (8)0.0027 (7)0.0134 (7)0.0029 (6)
C110.0516 (9)0.0411 (8)0.0393 (8)0.0107 (7)0.0093 (6)0.0013 (6)
C120.0472 (9)0.0437 (8)0.0390 (7)0.0127 (7)0.0099 (6)0.0015 (6)
C130.0617 (11)0.0549 (10)0.0488 (9)0.0067 (8)0.0091 (8)0.0131 (7)
C140.0771 (14)0.0703 (13)0.0607 (11)0.0026 (11)0.0067 (10)0.0082 (9)
C150.0548 (10)0.0564 (10)0.0533 (9)0.0147 (8)0.0184 (8)0.0041 (8)
C160.0554 (10)0.0515 (9)0.0475 (9)0.0019 (8)0.0197 (7)0.0093 (7)
C170.0657 (12)0.0642 (12)0.0646 (11)0.0061 (10)0.0143 (9)0.0076 (9)
C180.0946 (18)0.0703 (14)0.0837 (15)0.0142 (13)0.0134 (13)0.0207 (12)
C190.134 (2)0.0711 (15)0.0622 (13)0.0098 (15)0.0294 (14)0.0062 (11)
C200.1008 (19)0.0758 (14)0.0750 (14)0.0137 (13)0.0477 (14)0.0086 (11)
C210.0726 (14)0.0746 (13)0.0682 (12)0.0044 (11)0.0350 (10)0.0099 (10)
N20.0524 (8)0.0418 (7)0.0421 (7)0.0032 (6)0.0171 (6)0.0049 (5)
N10.0461 (8)0.0456 (7)0.0443 (7)0.0062 (6)0.0122 (6)0.0038 (5)
O10.0512 (8)0.0637 (8)0.0807 (9)0.0157 (6)0.0052 (6)0.0069 (7)
O20.0699 (9)0.0519 (7)0.0667 (8)0.0136 (6)0.0314 (6)0.0164 (6)
S10.0566 (3)0.0501 (3)0.0499 (3)0.00196 (19)0.01321 (19)0.01319 (18)
Geometric parameters (Å, º) top
C1—C21.380 (3)C13—C141.516 (3)
C1—C61.386 (2)C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.368 (3)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.368 (3)C14—H14C0.9600
C3—H30.9300C15—C161.531 (2)
C4—C51.374 (3)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.380 (3)C16—C171.513 (3)
C5—H50.9300C16—C211.530 (2)
C6—C71.497 (3)C16—H160.9800
C7—O11.210 (2)C17—C181.523 (3)
C7—C81.517 (2)C17—H17A0.9700
C8—S11.795 (2)C17—H17B0.9700
C8—H8A0.9700C18—C191.520 (3)
C8—H8B0.9700C18—H18A0.9700
C9—N11.295 (2)C18—H18B0.9700
C9—N21.354 (2)C19—C201.486 (4)
C9—S11.7563 (16)C19—H19A0.9700
C10—O21.243 (2)C19—H19B0.9700
C10—N21.381 (2)C20—C211.524 (3)
C10—C111.440 (2)C20—H20A0.9700
C11—C121.366 (2)C20—H20B0.9700
C11—C131.502 (2)C21—H21A0.9700
C12—N11.382 (2)C21—H21B0.9700
C12—C151.504 (2)N2—H2A0.8600
C2—C1—C6120.01 (18)H14A—C14—H14C109.5
C2—C1—H1120.0H14B—C14—H14C109.5
C6—C1—H1120.0C12—C15—C16113.41 (13)
C3—C2—C1120.9 (2)C12—C15—H15A108.9
C3—C2—H2119.5C16—C15—H15A108.9
C1—C2—H2119.5C12—C15—H15B108.9
C4—C3—C2119.1 (2)C16—C15—H15B108.9
C4—C3—H3120.5H15A—C15—H15B107.7
C2—C3—H3120.5C17—C16—C21110.13 (16)
C3—C4—C5120.76 (19)C17—C16—C15113.00 (15)
C3—C4—H4119.6C21—C16—C15110.86 (15)
C5—C4—H4119.6C17—C16—H16107.5
C4—C5—C6120.67 (19)C21—C16—H16107.5
C4—C5—H5119.7C15—C16—H16107.5
C6—C5—H5119.7C16—C17—C18111.75 (17)
C5—C6—C1118.49 (18)C16—C17—H17A109.3
C5—C6—C7118.30 (16)C18—C17—H17A109.3
C1—C6—C7123.11 (16)C16—C17—H17B109.3
O1—C7—C6120.20 (16)C18—C17—H17B109.3
O1—C7—C8121.06 (16)H17A—C17—H17B107.9
C6—C7—C8118.65 (14)C19—C18—C17111.2 (2)
C7—C8—S1114.80 (12)C19—C18—H18A109.4
C7—C8—H8A108.6C17—C18—H18A109.4
S1—C8—H8A108.6C19—C18—H18B109.4
C7—C8—H8B108.6C17—C18—H18B109.4
S1—C8—H8B108.6H18A—C18—H18B108.0
H8A—C8—H8B107.5C20—C19—C18111.0 (2)
N1—C9—N2123.68 (14)C20—C19—H19A109.4
N1—C9—S1121.55 (12)C18—C19—H19A109.4
N2—C9—S1114.75 (11)C20—C19—H19B109.4
O2—C10—N2119.81 (14)C18—C19—H19B109.4
O2—C10—C11124.65 (14)H19A—C19—H19B108.0
N2—C10—C11115.54 (14)C19—C20—C21112.29 (19)
C12—C11—C10118.33 (14)C19—C20—H20A109.1
C12—C11—C13126.18 (15)C21—C20—H20A109.1
C10—C11—C13115.48 (15)C19—C20—H20B109.1
C11—C12—N1122.99 (14)C21—C20—H20B109.1
C11—C12—C15124.59 (14)H20A—C20—H20B107.9
N1—C12—C15112.40 (14)C20—C21—C16112.09 (17)
C11—C13—C14113.75 (15)C20—C21—H21A109.2
C11—C13—H13A108.8C16—C21—H21A109.2
C14—C13—H13A108.8C20—C21—H21B109.2
C11—C13—H13B108.8C16—C21—H21B109.2
C14—C13—H13B108.8H21A—C21—H21B107.9
H13A—C13—H13B107.7C9—N2—C10121.91 (13)
C13—C14—H14A109.5C9—N2—H2A119.0
C13—C14—H14B109.5C10—N2—H2A119.0
H14A—C14—H14B109.5C9—N1—C12117.43 (14)
C13—C14—H14C109.5C9—S1—C899.15 (8)
C6—C1—C2—C32.0 (4)C11—C12—C15—C16110.85 (18)
C1—C2—C3—C40.9 (4)N1—C12—C15—C1667.63 (19)
C2—C3—C4—C50.4 (3)C12—C15—C16—C1757.7 (2)
C3—C4—C5—C60.5 (3)C12—C15—C16—C21178.14 (15)
C4—C5—C6—C10.6 (3)C21—C16—C17—C1854.8 (2)
C4—C5—C6—C7175.91 (16)C15—C16—C17—C18179.37 (17)
C2—C1—C6—C51.9 (3)C16—C17—C18—C1956.5 (3)
C2—C1—C6—C7174.50 (18)C17—C18—C19—C2055.8 (3)
C5—C6—C7—O121.6 (2)C18—C19—C20—C2154.8 (3)
C1—C6—C7—O1154.81 (18)C19—C20—C21—C1654.2 (2)
C5—C6—C7—C8154.89 (16)C17—C16—C21—C2053.3 (2)
C1—C6—C7—C828.7 (2)C15—C16—C21—C20179.13 (18)
O1—C7—C8—S129.6 (2)N1—C9—N2—C100.1 (2)
C6—C7—C8—S1153.97 (12)S1—C9—N2—C10178.32 (11)
O2—C10—C11—C12176.35 (16)O2—C10—N2—C9176.98 (14)
N2—C10—C11—C123.6 (2)C11—C10—N2—C93.0 (2)
O2—C10—C11—C134.0 (2)N2—C9—N1—C122.1 (2)
N2—C10—C11—C13176.04 (13)S1—C9—N1—C12175.98 (10)
C10—C11—C12—N11.7 (2)C11—C12—N1—C91.3 (2)
C13—C11—C12—N1177.99 (14)C15—C12—N1—C9177.25 (13)
C10—C11—C12—C15179.99 (14)N1—C9—S1—C82.47 (15)
C13—C11—C12—C150.3 (2)N2—C9—S1—C8179.29 (11)
C12—C11—C13—C14107.9 (2)C7—C8—S1—C967.38 (14)
C10—C11—C13—C1471.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.861.902.743 (2)168
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H26N2O2S
Mr370.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.516 (5), 10.960 (5), 12.490 (5)
α, β, γ (°)84.082 (5), 78.925 (5), 80.267 (5)
V3)992.5 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.46 × 0.23 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.944, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7097, 4158, 3203
Rint0.019
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.129, 1.03
No. of reflections4158
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.861.902.743 (2)168
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 30960459).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEttorre, A., Mai, A., Artico, M., Massa, S., De Montis, A. & La Colla, P. (1996). Acta Cryst. C52, 2115–2117.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEttorre, A., Mai, A., Sbardella, G., Artico, M., La Colla, P. & Massa, S. (1998). Z. Kristallogr. New Cryst. Struct. 213, 593–595.  CAS Google Scholar
First citationHe, Y. P., Long, J., Zhang, S. S., Li, C., Lai, C., Zhang, C. S., Li, D. X., Zhang, D. H., Wang, H., Cai, Q. Q. & Zheng, Y. T. (2011). Bioorg. Med. Chem. Lett. 21, 694–697.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRao, Z.-K., Zhang, S.-S., He, Y.-P., Zheng, Y.-T. & Li, C. (2007). Acta Cryst. E63, o3942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-S., Li, D.-X., Zhang, D.-H., He, Y.-P. & Li, C. (2008). Acta Cryst. E64, o1768.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds