organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Methyl­phen­yl)sulfan­yl]aniline

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 19 January 2011; accepted 20 January 2011; online 26 January 2011)

The least-squares planes defined by the aromatic moieties in the title aniline derivative, C13H13NS, are nearly perpendicular to each other, forming a dihedral angle of 87.80 (7)°. Apart from a weak intramolecular N—H⋯S hydrogen bond, a co-operative set of N—H⋯N hydrogen bonds present in the crystal structure leads to the formation of tetra­meric units.

Related literature

For structures of aniline derivatives bearing an S atom in the ortho position to their respective amino group(s), see: Yuan et al. (2008[Yuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Z. Kristallogr. New Cryst. Struct. 223, 507-508.]); Sellmann et al. (1999[Sellmann, D., Engl, K., Gottschalk-Gaudig, T. & Heinemann, F. W. (1999). Eur. J. Inorg. Chem. pp. 333-339.]); Heinisch et al. (1999[Heinisch, G., Matuszczak, B., Mereiter, K. & Wilke, J. C. (1999). Heterocycles, 51, 617-625.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NS

  • Mr = 215.30

  • Tetragonal, P 42 /n

  • a = 17.8881 (7) Å

  • c = 7.2129 (3) Å

  • V = 2308.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 200 K

  • 0.55 × 0.39 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 10035 measured reflections

  • 2748 independent reflections

  • 2216 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.147

  • S = 1.20

  • 2748 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯N1i 0.90 (3) 2.19 (4) 3.083 (3) 170 (3)
N1—H72⋯S1 0.81 (3) 2.60 (3) 3.032 (3) 115 (3)
Symmetry code: (i) [-y+{\script{1\over 2}}, x, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-(p-Tolylthio)benzenamine is a derivative of aniline bearing a para-methylbenzene sulfide moiety in a position ortho to its amino group. Given its N,S set of donor atoms, it can act as a monodentate via either donor or as a bidentate ligand forming a five-membered chelate ring. The possibility to coordinate it as a purely neutral or, upon deprotonation, as an anionic ligand adds to its versatility. In our continued efforts to elucidate the coordination behaviour of nitrogen- and sulfur-containing ligands, it seemed of interest to determine the structure of the free ligand to enable comparative studies with related structures (Yuan et al., 2008; Sellmann et al., 1999; Heinisch et al., 1999).

The least-squares planes defined by the two aromatic moieties in the molecule are orientated nearly perpendicular to each other; they enclose an angle of 87.80 (7)°. The C2–S1–C7 angle is 103.21 (12) ° (Fig. 1).

In the crystal structure, two different sets of hydrogen bonds can be observed, Table 1. While one of the hydrogen atoms of the amino group forms an intramolecular hydrogen bond to the sulfur atom, the remaining hydrogen atom of the NH2 group participates in a cooperative system of hydrogen bonds. The latter give rise to the formation of tetrameric units. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the intramolecular interaction is S(5) while the cooperative system of hydrogen bonds necessitates a C11(2) descriptor. The tetramer has a hydrophilic core which is shielded by the lipophilic parts of the molecules (Fig. 2). The closest distance between two aromatic systems is 4.0711 (16) Å. The molecular packing of the compound is shown in Fig. 3.

Related literature top

For structures of aniline derivatives bearing an S atom in the ortho position to their respective amino group(s), see: Yuan et al. (2008); Sellmann et al. (1999); Heinisch et al. (1999). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The structural analysis was performed on a sample taken from a commercially obtained (Sigma Aldrich) batch of the title compound.

Refinement top

H-atoms were placed in calculated positions (C—H 0.95 Å for aromatic C-atoms, C—H 0.98 Å for the methyl group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C) for aromatic carbon atoms and 1.5Ueq(C) for the methyl group. The H-atoms of the amino group were located from a difference Fourier map and refined with U(H) set to 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonds in the title compound, viewed along [0 0 1]. The N–H···N contacts are illustrated in green, N–H···S contacts are illustrated in red. Symmetry operators: i y, -x + 1/2, -z + 1/2; ii -y + 1/2, x, -z + 1/2.
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).
2-[(4-Methylphenyl)sulfanyl]aniline top
Crystal data top
C13H13NSDx = 1.239 Mg m3
Mr = 215.30Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 5143 reflections
Hall symbol: -P 4bcθ = 3.1–28.2°
a = 17.8881 (7) ŵ = 0.25 mm1
c = 7.2129 (3) ÅT = 200 K
V = 2308.0 (2) Å3Block, colourless
Z = 80.55 × 0.39 × 0.26 mm
F(000) = 912
Data collection top
Bruker APEXII CCD
diffractometer
2216 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 28.0°, θmin = 3.1°
ϕ and ω scansh = 2023
10035 measured reflectionsk = 1823
2748 independent reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.031P)2 + 3.0953P]
where P = (Fo2 + 2Fc2)/3
2748 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H13NSZ = 8
Mr = 215.30Mo Kα radiation
Tetragonal, P42/nµ = 0.25 mm1
a = 17.8881 (7) ÅT = 200 K
c = 7.2129 (3) Å0.55 × 0.39 × 0.26 mm
V = 2308.0 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2216 reflections with I > 2σ(I)
10035 measured reflectionsRint = 0.055
2748 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.32 e Å3
2748 reflectionsΔρmin = 0.35 e Å3
142 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01389 (4)0.40662 (4)0.20839 (10)0.0345 (2)
N10.13486 (13)0.28819 (14)0.2293 (3)0.0299 (5)
H710.1533 (19)0.2420 (19)0.252 (4)0.045*
H720.1093 (19)0.3055 (19)0.312 (5)0.045*
C10.10172 (14)0.29629 (14)0.0560 (3)0.0227 (5)
C20.04739 (14)0.35093 (14)0.0231 (3)0.0258 (5)
C30.01567 (16)0.35781 (16)0.1524 (4)0.0342 (6)
H30.02160.39470.17370.041*
C40.03771 (17)0.31167 (17)0.2956 (4)0.0379 (7)
H40.01540.31630.41460.045*
C50.09245 (17)0.25864 (16)0.2644 (4)0.0338 (6)
H50.10790.22680.36270.041*
C60.12488 (15)0.25144 (14)0.0917 (4)0.0282 (6)
H60.16340.21560.07310.034*
C70.08960 (15)0.46865 (15)0.2526 (4)0.0301 (6)
C80.10088 (18)0.49272 (16)0.4335 (4)0.0373 (7)
H80.07180.47230.53150.045*
C90.15445 (19)0.54640 (18)0.4708 (5)0.0461 (8)
H90.16130.56280.59490.055*
C100.19821 (19)0.57669 (17)0.3324 (5)0.0485 (9)
C110.18758 (19)0.55109 (18)0.1530 (5)0.0489 (8)
H110.21790.57030.05600.059*
C120.13358 (17)0.49803 (17)0.1122 (4)0.0395 (7)
H120.12670.48180.01200.047*
C130.2567 (2)0.6356 (2)0.3744 (7)0.0757 (13)
H13A0.28110.65100.25900.114*
H13B0.29410.61490.45930.114*
H13C0.23270.67900.43220.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0299 (4)0.0405 (4)0.0331 (3)0.0092 (3)0.0032 (3)0.0088 (3)
N10.0299 (12)0.0312 (13)0.0286 (11)0.0066 (10)0.0038 (10)0.0012 (10)
C10.0211 (12)0.0207 (12)0.0263 (11)0.0032 (10)0.0006 (10)0.0011 (10)
C20.0253 (13)0.0272 (13)0.0250 (11)0.0017 (11)0.0019 (10)0.0025 (10)
C30.0386 (16)0.0352 (16)0.0287 (12)0.0081 (13)0.0034 (12)0.0034 (12)
C40.0466 (18)0.0436 (17)0.0234 (12)0.0021 (14)0.0029 (13)0.0006 (12)
C50.0409 (16)0.0325 (15)0.0281 (12)0.0056 (13)0.0065 (12)0.0050 (11)
C60.0270 (14)0.0227 (13)0.0349 (13)0.0008 (11)0.0062 (11)0.0016 (11)
C70.0281 (14)0.0263 (13)0.0361 (14)0.0114 (11)0.0007 (11)0.0040 (11)
C80.0436 (18)0.0323 (16)0.0360 (14)0.0102 (13)0.0030 (13)0.0023 (12)
C90.054 (2)0.0353 (17)0.0494 (18)0.0076 (16)0.0109 (16)0.0085 (15)
C100.0423 (18)0.0264 (16)0.077 (2)0.0051 (14)0.0024 (18)0.0061 (16)
C110.047 (2)0.0338 (17)0.066 (2)0.0060 (15)0.0165 (17)0.0000 (16)
C120.0415 (17)0.0362 (16)0.0408 (15)0.0134 (14)0.0094 (13)0.0021 (13)
C130.068 (3)0.042 (2)0.117 (4)0.0092 (19)0.005 (3)0.008 (2)
Geometric parameters (Å, º) top
S1—C21.771 (3)C7—C121.386 (4)
S1—C71.780 (3)C7—C81.389 (4)
N1—C11.391 (3)C8—C91.383 (4)
N1—H710.90 (3)C8—H80.9500
N1—H720.81 (3)C9—C101.379 (5)
C1—C61.396 (3)C9—H90.9500
C1—C21.399 (4)C10—C111.386 (5)
C2—C31.392 (3)C10—C131.516 (5)
C3—C41.380 (4)C11—C121.386 (5)
C3—H30.9500C11—H110.9500
C4—C51.382 (4)C12—H120.9500
C4—H40.9500C13—H13A0.9800
C5—C61.380 (4)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—H60.9500
C2—S1—C7103.21 (12)C12—C7—S1122.5 (2)
C1—N1—H71114 (2)C8—C7—S1118.2 (2)
C1—N1—H72112 (2)C9—C8—C7119.9 (3)
H71—N1—H72115 (3)C9—C8—H8120.1
N1—C1—C6120.0 (2)C7—C8—H8120.1
N1—C1—C2121.4 (2)C10—C9—C8121.7 (3)
C6—C1—C2118.6 (2)C10—C9—H9119.2
C3—C2—C1119.9 (2)C8—C9—H9119.2
C3—C2—S1119.9 (2)C9—C10—C11117.9 (3)
C1—C2—S1120.00 (19)C9—C10—C13121.3 (4)
C4—C3—C2120.7 (3)C11—C10—C13120.8 (4)
C4—C3—H3119.6C10—C11—C12121.3 (3)
C2—C3—H3119.6C10—C11—H11119.3
C3—C4—C5119.4 (3)C12—C11—H11119.3
C3—C4—H4120.3C7—C12—C11120.0 (3)
C5—C4—H4120.3C7—C12—H12120.0
C6—C5—C4120.6 (2)C11—C12—H12120.0
C6—C5—H5119.7C10—C13—H13A109.5
C4—C5—H5119.7C10—C13—H13B109.5
C5—C6—C1120.7 (2)H13A—C13—H13B109.5
C5—C6—H6119.7C10—C13—H13C109.5
C1—C6—H6119.7H13A—C13—H13C109.5
C12—C7—C8119.1 (3)H13B—C13—H13C109.5
N1—C1—C2—C3179.6 (2)C2—S1—C7—C1237.3 (3)
C6—C1—C2—C32.3 (4)C2—S1—C7—C8147.8 (2)
N1—C1—C2—S15.1 (3)C12—C7—C8—C91.3 (4)
C6—C1—C2—S1177.62 (19)S1—C7—C8—C9173.8 (2)
C7—S1—C2—C3111.1 (2)C7—C8—C9—C100.7 (5)
C7—S1—C2—C173.6 (2)C8—C9—C10—C110.7 (5)
C1—C2—C3—C40.6 (4)C8—C9—C10—C13179.9 (3)
S1—C2—C3—C4175.9 (2)C9—C10—C11—C121.5 (5)
C2—C3—C4—C50.7 (4)C13—C10—C11—C12179.1 (3)
C3—C4—C5—C60.2 (4)C8—C7—C12—C110.5 (4)
C4—C5—C6—C11.6 (4)S1—C7—C12—C11174.4 (2)
N1—C1—C6—C5179.8 (2)C10—C11—C12—C70.9 (5)
C2—C1—C6—C52.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N1i0.90 (3)2.19 (4)3.083 (3)170 (3)
N1—H72···S10.81 (3)2.60 (3)3.032 (3)115 (3)
Symmetry code: (i) y+1/2, x, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H13NS
Mr215.30
Crystal system, space groupTetragonal, P42/n
Temperature (K)200
a, c (Å)17.8881 (7), 7.2129 (3)
V3)2308.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.55 × 0.39 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10035, 2748, 2216
Rint0.055
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.147, 1.20
No. of reflections2748
No. of parameters142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.35

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···N1i0.90 (3)2.19 (4)3.083 (3)170 (3)
N1—H72···S10.81 (3)2.60 (3)3.032 (3)115 (3)
Symmetry code: (i) y+1/2, x, z+1/2.
 

Acknowledgements

The authors thank Mrs Rose van der Vywer for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHeinisch, G., Matuszczak, B., Mereiter, K. & Wilke, J. C. (1999). Heterocycles, 51, 617–625.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSellmann, D., Engl, K., Gottschalk-Gaudig, T. & Heinemann, F. W. (1999). Eur. J. Inorg. Chem. pp. 333–339.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Z. Kristallogr. New Cryst. Struct. 223, 507–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds