organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Di­methyl-N-(2-methyl­phenyl­sulfon­yl)propanamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 24 January 2011; accepted 26 January 2011; online 29 January 2011)

In the title compound, C12H17NO3S, the amide H atom is syn to the ortho-methyl group of the benzene ring and the C—S—N—C torsion angle is −65.39 (17)°. The crystal structure features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds in which the acceptor O atom is bound to the S atom.

Related literature

Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976[Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309-327.]). Their tendency and preferences for hydrogen bonding in the solid state can give rise to polymorphism, see: Yang & Guillory (1972[Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26-40.]); Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies on the effect of substituents on the crystal structures of this class of compounds, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.],b[Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO3S

  • Mr = 255.33

  • Monoclinic, P 21 /c

  • a = 7.3827 (6) Å

  • b = 21.986 (2) Å

  • c = 8.6060 (8) Å

  • β = 97.158 (9)°

  • V = 1386.0 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.06 mm−1

  • T = 299 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3884 measured reflections

  • 2472 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.050

  • 3 standard reflections every 120 min intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 2472 reflections

  • 162 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.82 (2) 2.10 (2) 2.906 (2) 170 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976), and their propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism (Yang & Guillory, 1972; Adsmond & Grant, 2001). Hence, the nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides. As a part of a study of the substituent effects on the crystal structures of this class of compounds (Gowda et al., 2008a,b, 2010), the structure of N-(2-methylphenylsulfonyl)-2,2,2- trimethylacetamide (I) has been determined.

The N—H and C=O bonds are anti to each other (Fig. 1), as observed in each of N-(phenylsulfonyl)acetamide (II) (Gowda et al., 2010), N-(phenylsulfonyl)-2,2,2-trimethylacetamide (III) (Gowda et al., 2008b) and N-(4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (IV) (Gowda et al., 2008a). Further, the amide hydrogen is syn to the ortho-methyl group in the benzene ring. The molecule in (I) is bent at the S-atom with the C1—S1—N1—C7 torsion angle being -65.39 (17)°, compared to the values of -58.8 (4)° in (II), -64.5 (3)° in (III) and -68.2 (2)° in (IV).

In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link inversion-related molecules into dimeric aggregates where the acceptor O atom is bound to the S atom; Fig. 2.

Related literature top

Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). Their propensity for hydrogen bonding in the solid state can give rise to polymorphism, see: Yang & Guillory (1972); Adsmond & Grant (2001). For our studies on the effect of substituents on the crystal structures of this class of compounds, see: Gowda et al. (2008a,b, 2010).

Experimental top

Compound (I) was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of pivalyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution.Compound (I) was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Prism like red crystals were obtained from a slow evaporation of an ethanolic solution of (I).

Refinement top

The amide-H atom was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing for (I) viewed in projection down the a axis. Hydrogen bonds are shown as dashed lines.
2,2-Dimethyl-N-(2-methylphenylsulfonyl)propanamide top
Crystal data top
C12H17NO3SF(000) = 544
Mr = 255.33Dx = 1.224 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.3827 (6) Åθ = 6.0–21.6°
b = 21.986 (2) ŵ = 2.06 mm1
c = 8.6060 (8) ÅT = 299 K
β = 97.158 (9)°Prism, red
V = 1386.0 (2) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 4.0°
Graphite monochromatorh = 84
ω/2θ scansk = 260
3884 measured reflectionsl = 1010
2472 independent reflections3 standard reflections every 120 min
2202 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5143P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2472 reflectionsΔρmax = 0.38 e Å3
162 parametersΔρmin = 0.35 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0174 (8)
Crystal data top
C12H17NO3SV = 1386.0 (2) Å3
Mr = 255.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.3827 (6) ŵ = 2.06 mm1
b = 21.986 (2) ÅT = 299 K
c = 8.6060 (8) Å0.30 × 0.25 × 0.25 mm
β = 97.158 (9)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.050
3884 measured reflections3 standard reflections every 120 min
2472 independent reflections intensity decay: 0.5%
2202 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
2472 reflectionsΔρmin = 0.35 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5655 (2)0.64776 (8)0.66047 (17)0.0386 (4)
C20.7426 (2)0.64421 (9)0.6175 (2)0.0460 (4)
C30.8623 (3)0.69061 (10)0.6714 (2)0.0574 (5)
H30.98030.69020.64430.069*
C40.8114 (3)0.73713 (10)0.7636 (3)0.0643 (6)
H40.89570.76690.79980.077*
C50.6366 (3)0.73991 (10)0.8024 (3)0.0637 (6)
H50.60260.77150.86440.076*
C60.5122 (3)0.69569 (9)0.7493 (2)0.0495 (4)
H60.39280.69790.77280.059*
C70.2796 (2)0.62930 (9)0.32969 (19)0.0452 (4)
C80.2533 (3)0.61352 (10)0.1557 (2)0.0574 (5)
C90.4402 (4)0.60025 (15)0.1019 (3)0.0859 (9)
H9A0.49380.56540.15690.103*
H9B0.51870.63480.12370.103*
H9C0.42480.59220.00870.103*
C100.1352 (5)0.55743 (18)0.1291 (3)0.1121 (12)
H10A0.01910.56490.16480.135*
H10B0.19420.52390.18610.135*
H10C0.11730.54790.01930.135*
C110.1705 (5)0.66816 (14)0.0647 (3)0.0888 (9)
H11A0.24930.70270.08550.107*
H11B0.05320.67700.09650.107*
H11C0.15660.65920.04530.107*
C120.8070 (3)0.59462 (12)0.5168 (3)0.0670 (6)
H12A0.73160.59400.41750.080*
H12B0.79900.55610.56790.080*
H12C0.93140.60220.50080.080*
N10.3642 (2)0.58401 (7)0.42600 (16)0.0439 (4)
H1N0.403 (3)0.5529 (8)0.390 (2)0.053*
O10.49106 (18)0.53203 (6)0.66336 (13)0.0508 (3)
O20.24290 (17)0.60428 (7)0.68099 (15)0.0536 (4)
O30.2347 (2)0.67637 (7)0.38512 (15)0.0604 (4)
S10.40583 (5)0.588952 (19)0.61796 (4)0.03927 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0424 (9)0.0401 (9)0.0319 (7)0.0023 (7)0.0013 (6)0.0018 (6)
C20.0418 (9)0.0505 (10)0.0441 (9)0.0040 (8)0.0020 (7)0.0020 (8)
C30.0455 (10)0.0631 (13)0.0613 (12)0.0043 (9)0.0029 (9)0.0057 (9)
C40.0690 (14)0.0542 (12)0.0650 (13)0.0143 (10)0.0107 (10)0.0032 (10)
C50.0817 (15)0.0485 (12)0.0588 (12)0.0006 (10)0.0006 (11)0.0143 (9)
C60.0556 (10)0.0488 (10)0.0438 (9)0.0043 (8)0.0049 (8)0.0049 (8)
C70.0458 (9)0.0525 (11)0.0360 (8)0.0026 (8)0.0005 (7)0.0001 (7)
C80.0759 (13)0.0610 (13)0.0325 (9)0.0066 (11)0.0040 (8)0.0011 (8)
C90.113 (2)0.102 (2)0.0456 (12)0.0371 (17)0.0222 (13)0.0108 (12)
C100.145 (3)0.113 (3)0.0665 (16)0.038 (2)0.0314 (17)0.0137 (16)
C110.122 (2)0.098 (2)0.0431 (11)0.0481 (18)0.0054 (12)0.0072 (11)
C120.0462 (11)0.0754 (16)0.0807 (15)0.0058 (10)0.0127 (10)0.0192 (12)
N10.0523 (9)0.0455 (9)0.0321 (7)0.0068 (7)0.0017 (6)0.0044 (6)
O10.0696 (8)0.0416 (7)0.0393 (6)0.0031 (6)0.0009 (6)0.0037 (5)
O20.0457 (7)0.0712 (9)0.0455 (7)0.0024 (6)0.0112 (5)0.0053 (6)
O30.0777 (10)0.0550 (8)0.0466 (7)0.0184 (7)0.0007 (6)0.0044 (6)
S10.0434 (3)0.0433 (3)0.0304 (2)0.00067 (17)0.00183 (16)0.00052 (15)
Geometric parameters (Å, º) top
C1—C61.387 (3)C8—C91.537 (3)
C1—C21.405 (2)C9—H9A0.9600
C1—S11.7570 (17)C9—H9B0.9600
C2—C31.391 (3)C9—H9C0.9600
C2—C121.506 (3)C10—H10A0.9600
C3—C41.375 (3)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.374 (3)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—C61.376 (3)C11—H11C0.9600
C5—H50.9300C12—H12A0.9600
C6—H60.9300C12—H12B0.9600
C7—O31.203 (2)C12—H12C0.9600
C7—N11.393 (2)N1—S11.6459 (14)
C7—C81.526 (2)N1—H1N0.817 (16)
C8—C101.511 (4)O1—S11.4330 (13)
C8—C111.520 (3)O2—S11.4204 (13)
C6—C1—C2121.63 (17)C8—C9—H9C109.5
C6—C1—S1116.41 (14)H9A—C9—H9C109.5
C2—C1—S1121.78 (14)H9B—C9—H9C109.5
C3—C2—C1116.41 (18)C8—C10—H10A109.5
C3—C2—C12119.35 (18)C8—C10—H10B109.5
C1—C2—C12124.24 (18)H10A—C10—H10B109.5
C4—C3—C2122.0 (2)C8—C10—H10C109.5
C4—C3—H3119.0H10A—C10—H10C109.5
C2—C3—H3119.0H10B—C10—H10C109.5
C5—C4—C3120.4 (2)C8—C11—H11A109.5
C5—C4—H4119.8C8—C11—H11B109.5
C3—C4—H4119.8H11A—C11—H11B109.5
C4—C5—C6119.7 (2)C8—C11—H11C109.5
C4—C5—H5120.1H11A—C11—H11C109.5
C6—C5—H5120.1H11B—C11—H11C109.5
C5—C6—C1119.75 (19)C2—C12—H12A109.5
C5—C6—H6120.1C2—C12—H12B109.5
C1—C6—H6120.1H12A—C12—H12B109.5
O3—C7—N1120.29 (16)C2—C12—H12C109.5
O3—C7—C8125.23 (17)H12A—C12—H12C109.5
N1—C7—C8114.48 (16)H12B—C12—H12C109.5
C10—C8—C11112.3 (2)C7—N1—S1124.33 (13)
C10—C8—C7109.58 (19)C7—N1—H1N121.7 (15)
C11—C8—C7108.65 (18)S1—N1—H1N113.9 (15)
C10—C8—C9108.8 (3)O2—S1—O1117.84 (8)
C11—C8—C9108.3 (2)O2—S1—N1109.75 (8)
C7—C8—C9109.25 (17)O1—S1—N1103.69 (7)
C8—C9—H9A109.5O2—S1—C1108.90 (8)
C8—C9—H9B109.5O1—S1—C1108.99 (8)
H9A—C9—H9B109.5N1—S1—C1107.11 (8)
C6—C1—C2—C31.3 (3)N1—C7—C8—C11176.7 (2)
S1—C1—C2—C3173.65 (13)O3—C7—C8—C9120.8 (2)
C6—C1—C2—C12177.79 (19)N1—C7—C8—C958.8 (2)
S1—C1—C2—C127.3 (3)O3—C7—N1—S11.5 (3)
C1—C2—C3—C40.8 (3)C8—C7—N1—S1178.99 (14)
C12—C2—C3—C4179.9 (2)C7—N1—S1—O252.69 (18)
C2—C3—C4—C51.6 (3)C7—N1—S1—O1179.43 (15)
C3—C4—C5—C60.3 (3)C7—N1—S1—C165.39 (17)
C4—C5—C6—C11.8 (3)C6—C1—S1—O22.45 (16)
C2—C1—C6—C52.6 (3)C2—C1—S1—O2177.61 (13)
S1—C1—C6—C5172.59 (15)C6—C1—S1—O1127.33 (13)
O3—C7—C8—C10120.1 (3)C2—C1—S1—O147.82 (15)
N1—C7—C8—C1060.3 (3)C6—C1—S1—N1121.08 (14)
O3—C7—C8—C112.9 (3)C2—C1—S1—N163.76 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.82 (2)2.10 (2)2.906 (2)170 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H17NO3S
Mr255.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)7.3827 (6), 21.986 (2), 8.6060 (8)
β (°) 97.158 (9)
V3)1386.0 (2)
Z4
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3884, 2472, 2202
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections2472
No. of parameters162
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.817 (16)2.097 (16)2.906 (2)170 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds