organic compounds
2,2-Dimethyl-N-(2-methylphenylsulfonyl)propanamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C12H17NO3S, the amide H atom is syn to the ortho-methyl group of the benzene ring and the C—S—N—C torsion angle is −65.39 (17)°. The features inversion-related dimers linked by pairs of N—H⋯O hydrogen bonds in which the acceptor O atom is bound to the S atom.
Related literature
Sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976). Their tendency and preferences for hydrogen bonding in the solid state can give rise to see: Yang & Guillory (1972); Adsmond & Grant (2001). For our studies on the effect of substituents on the crystal structures of this class of compounds, see: Gowda et al. (2008a,b, 2010).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811003400/tk2712sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811003400/tk2712Isup2.hkl
Compound (I) was prepared by refluxing 2-methylbenzenesulfonamide (0.10 mole) with an excess of pivalyl chloride (0.20 mole) for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm dilute sodium hydrogen carbonate solution.Compound (I) was reprecipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. Prism like red crystals were obtained from a slow evaporation of an ethanolic solution of (I).
The amide-H atom was located in a difference map and refined with the distance restraint N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H17NO3S | F(000) = 544 |
Mr = 255.33 | Dx = 1.224 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 7.3827 (6) Å | θ = 6.0–21.6° |
b = 21.986 (2) Å | µ = 2.06 mm−1 |
c = 8.6060 (8) Å | T = 299 K |
β = 97.158 (9)° | Prism, red |
V = 1386.0 (2) Å3 | 0.30 × 0.25 × 0.25 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.050 |
Radiation source: fine-focus sealed tube | θmax = 67.0°, θmin = 4.0° |
Graphite monochromator | h = −8→4 |
ω/2θ scans | k = −26→0 |
3884 measured reflections | l = −10→10 |
2472 independent reflections | 3 standard reflections every 120 min |
2202 reflections with I > 2σ(I) | intensity decay: 0.5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0444P)2 + 0.5143P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2472 reflections | Δρmax = 0.38 e Å−3 |
162 parameters | Δρmin = −0.35 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0174 (8) |
C12H17NO3S | V = 1386.0 (2) Å3 |
Mr = 255.33 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 7.3827 (6) Å | µ = 2.06 mm−1 |
b = 21.986 (2) Å | T = 299 K |
c = 8.6060 (8) Å | 0.30 × 0.25 × 0.25 mm |
β = 97.158 (9)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.050 |
3884 measured reflections | 3 standard reflections every 120 min |
2472 independent reflections | intensity decay: 0.5% |
2202 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.38 e Å−3 |
2472 reflections | Δρmin = −0.35 e Å−3 |
162 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5655 (2) | 0.64776 (8) | 0.66047 (17) | 0.0386 (4) | |
C2 | 0.7426 (2) | 0.64421 (9) | 0.6175 (2) | 0.0460 (4) | |
C3 | 0.8623 (3) | 0.69061 (10) | 0.6714 (2) | 0.0574 (5) | |
H3 | 0.9803 | 0.6902 | 0.6443 | 0.069* | |
C4 | 0.8114 (3) | 0.73713 (10) | 0.7636 (3) | 0.0643 (6) | |
H4 | 0.8957 | 0.7669 | 0.7998 | 0.077* | |
C5 | 0.6366 (3) | 0.73991 (10) | 0.8024 (3) | 0.0637 (6) | |
H5 | 0.6026 | 0.7715 | 0.8644 | 0.076* | |
C6 | 0.5122 (3) | 0.69569 (9) | 0.7493 (2) | 0.0495 (4) | |
H6 | 0.3928 | 0.6979 | 0.7728 | 0.059* | |
C7 | 0.2796 (2) | 0.62930 (9) | 0.32969 (19) | 0.0452 (4) | |
C8 | 0.2533 (3) | 0.61352 (10) | 0.1557 (2) | 0.0574 (5) | |
C9 | 0.4402 (4) | 0.60025 (15) | 0.1019 (3) | 0.0859 (9) | |
H9A | 0.4938 | 0.5654 | 0.1569 | 0.103* | |
H9B | 0.5187 | 0.6348 | 0.1237 | 0.103* | |
H9C | 0.4248 | 0.5922 | −0.0087 | 0.103* | |
C10 | 0.1352 (5) | 0.55743 (18) | 0.1291 (3) | 0.1121 (12) | |
H10A | 0.0191 | 0.5649 | 0.1648 | 0.135* | |
H10B | 0.1942 | 0.5239 | 0.1861 | 0.135* | |
H10C | 0.1173 | 0.5479 | 0.0193 | 0.135* | |
C11 | 0.1705 (5) | 0.66816 (14) | 0.0647 (3) | 0.0888 (9) | |
H11A | 0.2493 | 0.7027 | 0.0855 | 0.107* | |
H11B | 0.0532 | 0.6770 | 0.0965 | 0.107* | |
H11C | 0.1566 | 0.6592 | −0.0453 | 0.107* | |
C12 | 0.8070 (3) | 0.59462 (12) | 0.5168 (3) | 0.0670 (6) | |
H12A | 0.7316 | 0.5940 | 0.4175 | 0.080* | |
H12B | 0.7990 | 0.5561 | 0.5679 | 0.080* | |
H12C | 0.9314 | 0.6022 | 0.5008 | 0.080* | |
N1 | 0.3642 (2) | 0.58401 (7) | 0.42600 (16) | 0.0439 (4) | |
H1N | 0.403 (3) | 0.5529 (8) | 0.390 (2) | 0.053* | |
O1 | 0.49106 (18) | 0.53203 (6) | 0.66336 (13) | 0.0508 (3) | |
O2 | 0.24290 (17) | 0.60428 (7) | 0.68099 (15) | 0.0536 (4) | |
O3 | 0.2347 (2) | 0.67637 (7) | 0.38512 (15) | 0.0604 (4) | |
S1 | 0.40583 (5) | 0.588952 (19) | 0.61796 (4) | 0.03927 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0424 (9) | 0.0401 (9) | 0.0319 (7) | 0.0023 (7) | −0.0013 (6) | 0.0018 (6) |
C2 | 0.0418 (9) | 0.0505 (10) | 0.0441 (9) | 0.0040 (8) | −0.0020 (7) | 0.0020 (8) |
C3 | 0.0455 (10) | 0.0631 (13) | 0.0613 (12) | −0.0043 (9) | −0.0029 (9) | 0.0057 (9) |
C4 | 0.0690 (14) | 0.0542 (12) | 0.0650 (13) | −0.0143 (10) | −0.0107 (10) | −0.0032 (10) |
C5 | 0.0817 (15) | 0.0485 (12) | 0.0588 (12) | −0.0006 (10) | 0.0006 (11) | −0.0143 (9) |
C6 | 0.0556 (10) | 0.0488 (10) | 0.0438 (9) | 0.0043 (8) | 0.0049 (8) | −0.0049 (8) |
C7 | 0.0458 (9) | 0.0525 (11) | 0.0360 (8) | 0.0026 (8) | −0.0005 (7) | 0.0001 (7) |
C8 | 0.0759 (13) | 0.0610 (13) | 0.0325 (9) | 0.0066 (11) | −0.0040 (8) | −0.0011 (8) |
C9 | 0.113 (2) | 0.102 (2) | 0.0456 (12) | 0.0371 (17) | 0.0222 (13) | 0.0108 (12) |
C10 | 0.145 (3) | 0.113 (3) | 0.0665 (16) | −0.038 (2) | −0.0314 (17) | −0.0137 (16) |
C11 | 0.122 (2) | 0.098 (2) | 0.0431 (11) | 0.0481 (18) | −0.0054 (12) | 0.0072 (11) |
C12 | 0.0462 (11) | 0.0754 (16) | 0.0807 (15) | 0.0058 (10) | 0.0127 (10) | −0.0192 (12) |
N1 | 0.0523 (9) | 0.0455 (9) | 0.0321 (7) | 0.0068 (7) | −0.0017 (6) | −0.0044 (6) |
O1 | 0.0696 (8) | 0.0416 (7) | 0.0393 (6) | 0.0031 (6) | −0.0009 (6) | 0.0037 (5) |
O2 | 0.0457 (7) | 0.0712 (9) | 0.0455 (7) | −0.0024 (6) | 0.0112 (5) | −0.0053 (6) |
O3 | 0.0777 (10) | 0.0550 (8) | 0.0466 (7) | 0.0184 (7) | 0.0007 (6) | −0.0044 (6) |
S1 | 0.0434 (3) | 0.0433 (3) | 0.0304 (2) | 0.00067 (17) | 0.00183 (16) | −0.00052 (15) |
C1—C6 | 1.387 (3) | C8—C9 | 1.537 (3) |
C1—C2 | 1.405 (2) | C9—H9A | 0.9600 |
C1—S1 | 1.7570 (17) | C9—H9B | 0.9600 |
C2—C3 | 1.391 (3) | C9—H9C | 0.9600 |
C2—C12 | 1.506 (3) | C10—H10A | 0.9600 |
C3—C4 | 1.375 (3) | C10—H10B | 0.9600 |
C3—H3 | 0.9300 | C10—H10C | 0.9600 |
C4—C5 | 1.374 (3) | C11—H11A | 0.9600 |
C4—H4 | 0.9300 | C11—H11B | 0.9600 |
C5—C6 | 1.376 (3) | C11—H11C | 0.9600 |
C5—H5 | 0.9300 | C12—H12A | 0.9600 |
C6—H6 | 0.9300 | C12—H12B | 0.9600 |
C7—O3 | 1.203 (2) | C12—H12C | 0.9600 |
C7—N1 | 1.393 (2) | N1—S1 | 1.6459 (14) |
C7—C8 | 1.526 (2) | N1—H1N | 0.817 (16) |
C8—C10 | 1.511 (4) | O1—S1 | 1.4330 (13) |
C8—C11 | 1.520 (3) | O2—S1 | 1.4204 (13) |
C6—C1—C2 | 121.63 (17) | C8—C9—H9C | 109.5 |
C6—C1—S1 | 116.41 (14) | H9A—C9—H9C | 109.5 |
C2—C1—S1 | 121.78 (14) | H9B—C9—H9C | 109.5 |
C3—C2—C1 | 116.41 (18) | C8—C10—H10A | 109.5 |
C3—C2—C12 | 119.35 (18) | C8—C10—H10B | 109.5 |
C1—C2—C12 | 124.24 (18) | H10A—C10—H10B | 109.5 |
C4—C3—C2 | 122.0 (2) | C8—C10—H10C | 109.5 |
C4—C3—H3 | 119.0 | H10A—C10—H10C | 109.5 |
C2—C3—H3 | 119.0 | H10B—C10—H10C | 109.5 |
C5—C4—C3 | 120.4 (2) | C8—C11—H11A | 109.5 |
C5—C4—H4 | 119.8 | C8—C11—H11B | 109.5 |
C3—C4—H4 | 119.8 | H11A—C11—H11B | 109.5 |
C4—C5—C6 | 119.7 (2) | C8—C11—H11C | 109.5 |
C4—C5—H5 | 120.1 | H11A—C11—H11C | 109.5 |
C6—C5—H5 | 120.1 | H11B—C11—H11C | 109.5 |
C5—C6—C1 | 119.75 (19) | C2—C12—H12A | 109.5 |
C5—C6—H6 | 120.1 | C2—C12—H12B | 109.5 |
C1—C6—H6 | 120.1 | H12A—C12—H12B | 109.5 |
O3—C7—N1 | 120.29 (16) | C2—C12—H12C | 109.5 |
O3—C7—C8 | 125.23 (17) | H12A—C12—H12C | 109.5 |
N1—C7—C8 | 114.48 (16) | H12B—C12—H12C | 109.5 |
C10—C8—C11 | 112.3 (2) | C7—N1—S1 | 124.33 (13) |
C10—C8—C7 | 109.58 (19) | C7—N1—H1N | 121.7 (15) |
C11—C8—C7 | 108.65 (18) | S1—N1—H1N | 113.9 (15) |
C10—C8—C9 | 108.8 (3) | O2—S1—O1 | 117.84 (8) |
C11—C8—C9 | 108.3 (2) | O2—S1—N1 | 109.75 (8) |
C7—C8—C9 | 109.25 (17) | O1—S1—N1 | 103.69 (7) |
C8—C9—H9A | 109.5 | O2—S1—C1 | 108.90 (8) |
C8—C9—H9B | 109.5 | O1—S1—C1 | 108.99 (8) |
H9A—C9—H9B | 109.5 | N1—S1—C1 | 107.11 (8) |
C6—C1—C2—C3 | 1.3 (3) | N1—C7—C8—C11 | −176.7 (2) |
S1—C1—C2—C3 | −173.65 (13) | O3—C7—C8—C9 | 120.8 (2) |
C6—C1—C2—C12 | −177.79 (19) | N1—C7—C8—C9 | −58.8 (2) |
S1—C1—C2—C12 | 7.3 (3) | O3—C7—N1—S1 | 1.5 (3) |
C1—C2—C3—C4 | 0.8 (3) | C8—C7—N1—S1 | −178.99 (14) |
C12—C2—C3—C4 | 179.9 (2) | C7—N1—S1—O2 | 52.69 (18) |
C2—C3—C4—C5 | −1.6 (3) | C7—N1—S1—O1 | 179.43 (15) |
C3—C4—C5—C6 | 0.3 (3) | C7—N1—S1—C1 | −65.39 (17) |
C4—C5—C6—C1 | 1.8 (3) | C6—C1—S1—O2 | 2.45 (16) |
C2—C1—C6—C5 | −2.6 (3) | C2—C1—S1—O2 | 177.61 (13) |
S1—C1—C6—C5 | 172.59 (15) | C6—C1—S1—O1 | −127.33 (13) |
O3—C7—C8—C10 | −120.1 (3) | C2—C1—S1—O1 | 47.82 (15) |
N1—C7—C8—C10 | 60.3 (3) | C6—C1—S1—N1 | 121.08 (14) |
O3—C7—C8—C11 | 2.9 (3) | C2—C1—S1—N1 | −63.76 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.82 (2) | 2.10 (2) | 2.906 (2) | 170 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C12H17NO3S |
Mr | 255.33 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 7.3827 (6), 21.986 (2), 8.6060 (8) |
β (°) | 97.158 (9) |
V (Å3) | 1386.0 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 2.06 |
Crystal size (mm) | 0.30 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3884, 2472, 2202 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.05 |
No. of reflections | 2472 |
No. of parameters | 162 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.35 |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.817 (16) | 2.097 (16) | 2.906 (2) | 170 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.
References
Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077. Web of Science CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o1284. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64, o1274. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64, o1410. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maren, T. H. (1976). Annu. Rev. Pharmacol Toxicol. 16, 309–327. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Yang, S. S. & Guillory, J. K. (1972). J. Pharm. Sci. 61, 26–40. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The molecular structures of sulfonamide drugs contain the sulfanilamide moiety (Maren, 1976), and their propensity for hydrogen bonding in the solid state, due to the presence of various hydrogen bond donors and acceptors, can give rise to polymorphism (Yang & Guillory, 1972; Adsmond & Grant, 2001). Hence, the nature and position of substituents play a significant role on the crystal structures of N-(aryl)sulfonoamides. As a part of a study of the substituent effects on the crystal structures of this class of compounds (Gowda et al., 2008a,b, 2010), the structure of N-(2-methylphenylsulfonyl)-2,2,2- trimethylacetamide (I) has been determined.
The N—H and C=O bonds are anti to each other (Fig. 1), as observed in each of N-(phenylsulfonyl)acetamide (II) (Gowda et al., 2010), N-(phenylsulfonyl)-2,2,2-trimethylacetamide (III) (Gowda et al., 2008b) and N-(4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (IV) (Gowda et al., 2008a). Further, the amide hydrogen is syn to the ortho-methyl group in the benzene ring. The molecule in (I) is bent at the S-atom with the C1—S1—N1—C7 torsion angle being -65.39 (17)°, compared to the values of -58.8 (4)° in (II), -64.5 (3)° in (III) and -68.2 (2)° in (IV).
In the crystal structure, the pairs of intermolecular N–H···O hydrogen bonds (Table 1) link inversion-related molecules into dimeric aggregates where the acceptor O atom is bound to the S atom; Fig. 2.