organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o472-o473

2-Meth­­oxy­ethanaminium periodate 18-crown-6 clathrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinganghu163@163.com

(Received 28 December 2010; accepted 15 January 2011; online 22 January 2011)

In the crystal structure of the title organic salt, C3H10NO+·IO4·C12H24O6, the protonated 2-meth­oxy­ethanaminium (CH3OC2H4—NH3+) cation forms a 1:1 supra­molecular rotator–stator complex with the 18-crown-6 mol­ecule via N—H⋯O hydrogen bonds. The (CH3OC2H4—NH3+) group is attached from the convex side of the bowl-shaped crown, in contrast to similar ammonium cations that nest in the curvature of the bowl. The cations are associated via N—H⋯O inter­actions, while the cations and anions are linked by weak C—H⋯O hydrogen bonds, forming cation–crown–anion chains parallel to [010].

Related literature

For the use of crown ethers in catalysis, solvent extraction, isotope separation, bionics, materials chemistry, host–guest chemistry and supra­molecular chemistry, see: Clark et al. (1998[Clark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164-169.]); Nakamura et al. (1998[Nakamura, T., Akutagawa, T., Honda, K., Underhill, A. E., Coomber, A. F. & Friend, R. H. (1998). Nature (London), 394, 159-167.]). For their ability to form non-covalent hydrogen-bonded complexes with ammonium cations, both in the solid state and in solution, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]); Kryatova et al. (2004[Kryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579-4588.]). Various types of RNH3+ structures (R = H, CH3, C6H5CH2, NH2, etc.) have been shown to form stable ammonium crown ether complexes in the solid state, see: Akutagawa et al. (2005[Akutagawa, T., Matsuura, K., Nishihara, S., Noro, S. & Nakamura, T. (2005). Eur. J. Inorg. Chem. 16, 3271-3276.], 2009[Akutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S., Takahashi, H., Kumai, R., Tokura, Y. & Nakamura, T. (2009). Nat. Mater. 8, 342-347.]). For a related structure, see: Fu et al. (2010[Fu, X., Yang, Y. & Ye, Q. (2010). Acta Cryst. C66, o433-o435.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10NO+·IO4·C12H24O6

  • Mr = 531.33

  • Monoclinic, P 21 /c

  • a = 13.118 (3) Å

  • b = 8.4229 (17) Å

  • c = 22.176 (7) Å

  • β = 111.81 (3)°

  • V = 2274.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 0.754

  • 22779 measured reflections

  • 5201 independent reflections

  • 4138 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.146

  • S = 1.05

  • 5201 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.74 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.89 2.30 3.000 (4) 135
N1—H1C⋯O2 0.89 2.15 2.912 (4) 144
N1—H1D⋯O3 0.89 2.43 2.980 (5) 121
N1—H1D⋯O4 0.89 2.03 2.886 (4) 161
N1—H1E⋯O5 0.89 2.43 3.010 (5) 123
N1—H1E⋯O6 0.89 2.06 2.870 (4) 151
C1—H1B⋯O11i 0.97 2.54 3.398 (9) 148
C13—H13A⋯O8 0.97 2.52 3.288 (7) 135
C13—H13B⋯O1ii 0.97 2.54 3.504 (6) 171
C15—H15B⋯O10iii 0.96 2.47 3.370 (9) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ability of 18-crown-6 ether (18-C-6) to form complexes with different metal ions and organic proton donors has been widely investigated. Because of their novel coordination modes, crown ethers have been widely used in catalysis, solvent extraction, isotope separation, bionics, materials chemistry, host-guest chemistry and supramolecular chemistry (Clark et al., 1998; Nakamura et al., 1998). Crown ethers recnetly have attracted much attention due to their ability to form non-covalent hydrogen-bonded complexes with ammonium cations, both in the solid state and in solution (Fender et al., 2002; Kryatova et al., 2004). The structures of organic ammonium RNH3+.crown ether assemblies in the solid state depend not only on the structure of the cation and the size of the crown ether ring, but also on the nature of the counter-anion. Various types of RNH3+ structures (R =H, CH3, C6H5CH2, NH2, etc.) have been shown to form stable ammonium.crown ether complexes in the solid state (Akutagawa et al., 2005, 2009).

We report here the crystal structure of 2-methoxy-ethylamine periodate 18-crown-6 clathrate. X-ray crystallographic studies have been carried out for the complex C3H9NO+.IO4-.C12H24O6 at room temperature. An view of the complex is shown in Fig. 1. The ionic radius of NH3+ matches the cavity size of six-O crown ethers, and N—H···O hydrogen bonds (Table 1) help to form stable NH3+.crown ether complexes, displayed in Fig. 2.

Related literature top

For the use of crown ethers in catalysis, solvent extraction, isotope separation, bionics, materials chemistry, host–guest chemistry and supramolecular chemistry, see: Clark et al. (1998); Nakamura et al. (1998). For their ability to form non-covalent hydrogen-bonded complexes with ammonium cations, both in the solid state and in solution, see: Fender et al. (2002); Kryatova et al. (2004). Various types of RNH3+ structures (R = H, CH3, C6H5CH2, NH2, etc.) have been shown to form stable ammonium crown ether complexes in the solid state, see: Akutagawa et al. (2005, 2009). For a related structure, see: Fu et al. (2010). AUTHOR: remember to subdivide this section in future

Experimental top

2-Methoxy-ethylamine (1.50 g, 0.02 mol), 18-crown-6 (5.28 g, 0.02 mol) and HIO4 (4.56 g, 0.02 mol) were dissolved in 30 ml ethanol. Colorless s//ingle crystals of the title compound suitable for X-ray analysis were obtained via slow evaporation of the solvent at room temperature over a period of 3 days.

Refinement top

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme (H atom labels have been omitted for clarity). Displacement ellipsoids are drawn at the 30% probability level, and N—H···O hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the a axis showing the N—H···O and, C—H···O interactions (dotted lines).
2-Methoxyethanaminium periodate–18-crown-6 (1/1) top
Crystal data top
C3H10NO+·IO4·C12H24O6F(000) = 1088
Mr = 531.33Dx = 1.551 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 121476 reflections
a = 13.118 (3) Åθ = 3.0–27.5°
b = 8.4229 (17) ŵ = 1.46 mm1
c = 22.176 (7) ÅT = 293 K
β = 111.81 (3)°Prism, white
V = 2274.9 (10) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
5201 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1010
Tmin = 0.747, Tmax = 0.754l = 2828
22779 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0576P)2 + 3.350P]
where P = (Fo2 + 2Fc2)/3
5201 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
C3H10NO+·IO4·C12H24O6V = 2274.9 (10) Å3
Mr = 531.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.118 (3) ŵ = 1.46 mm1
b = 8.4229 (17) ÅT = 293 K
c = 22.176 (7) Å0.20 × 0.20 × 0.20 mm
β = 111.81 (3)°
Data collection top
Rigaku SCXmini
diffractometer
5201 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
4138 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.754Rint = 0.067
22779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 1.74 e Å3
5201 reflectionsΔρmin = 1.26 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5224 (5)0.6622 (8)0.1488 (3)0.0852 (19)
H1A0.54510.77250.15280.102*
H1B0.54600.61240.11670.102*
C20.5742 (5)0.5819 (7)0.2115 (4)0.088 (2)
H2A0.54800.47330.20810.106*
H2B0.65310.57920.22310.106*
C30.6022 (4)0.5926 (7)0.3233 (3)0.088 (2)
H3A0.68120.59620.33530.106*
H3B0.58050.48220.32220.106*
C40.5719 (5)0.6786 (7)0.3718 (3)0.089 (2)
H4A0.61270.63680.41480.107*
H4B0.58980.79030.37140.107*
C50.4229 (8)0.7282 (8)0.4040 (3)0.101 (3)
H5A0.44490.83880.41050.121*
H5B0.45710.67310.44500.121*
C60.3006 (8)0.7164 (8)0.3824 (3)0.097 (2)
H6A0.27810.60610.37480.117*
H6B0.27700.75780.41590.117*
C70.1360 (6)0.8074 (10)0.3024 (4)0.102 (3)
H7A0.11290.84810.33620.122*
H7B0.10720.70070.29160.122*
C80.0934 (5)0.9077 (9)0.2455 (4)0.100 (2)
H8A0.01470.92010.23300.120*
H8B0.12701.01190.25520.120*
C90.0830 (4)0.9315 (7)0.1374 (3)0.092 (2)
H9A0.12561.02880.14590.110*
H9B0.00630.95960.12520.110*
C100.0982 (5)0.8449 (8)0.0838 (3)0.091 (2)
H10A0.06040.74370.07740.109*
H10B0.06720.90570.04390.109*
C110.2322 (7)0.7290 (8)0.0503 (3)0.096 (2)
H11A0.19530.77690.00790.115*
H11B0.20390.62220.04920.115*
C120.3523 (7)0.7235 (8)0.0657 (3)0.093 (2)
H12A0.36740.66180.03300.111*
H12B0.38010.83020.06560.111*
C130.2704 (4)0.4729 (5)0.2349 (2)0.0524 (10)
H13A0.26420.47200.27720.063*
H13B0.32620.39620.23600.063*
C140.1627 (4)0.4234 (5)0.1843 (2)0.0554 (10)
H14A0.13610.32800.19820.066*
H14B0.10860.50670.17800.066*
C150.0806 (5)0.3509 (7)0.0747 (3)0.0828 (17)
H15A0.09630.33300.03620.124*
H15B0.02740.43440.06670.124*
H15C0.05180.25530.08590.124*
I10.22495 (3)0.22656 (4)0.422019 (14)0.06214 (15)
N10.3057 (2)0.6331 (4)0.22280 (14)0.0400 (7)
H1C0.37010.65650.25370.060*
H1D0.25590.70450.22320.060*
H1E0.31230.63440.18430.060*
O10.5496 (2)0.6619 (4)0.26073 (18)0.0613 (8)
O20.4587 (3)0.6605 (4)0.35678 (15)0.0729 (10)
O30.2523 (3)0.8040 (5)0.32505 (18)0.0730 (10)
O40.1168 (3)0.8372 (4)0.1939 (2)0.0724 (10)
O50.2119 (3)0.8196 (4)0.09849 (15)0.0719 (10)
O60.4055 (3)0.6534 (5)0.12774 (16)0.0705 (9)
O70.1787 (3)0.3952 (5)0.12675 (15)0.0679 (9)
O80.2020 (5)0.2732 (6)0.3416 (2)0.1104 (17)
O90.1995 (5)0.3899 (6)0.4627 (3)0.1233 (18)
O100.1278 (5)0.0779 (7)0.4205 (3)0.132 (2)
O110.3531 (5)0.1407 (11)0.4607 (3)0.161 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.096 (4)0.079 (4)0.117 (5)0.020 (3)0.082 (4)0.032 (4)
C20.061 (3)0.061 (3)0.162 (7)0.000 (3)0.063 (4)0.021 (4)
C30.044 (3)0.065 (3)0.126 (5)0.008 (2)0.003 (3)0.024 (3)
C40.078 (4)0.070 (3)0.072 (3)0.001 (3)0.026 (3)0.012 (3)
C50.165 (8)0.088 (4)0.032 (2)0.017 (4)0.016 (3)0.002 (2)
C60.165 (8)0.096 (4)0.057 (3)0.031 (4)0.072 (4)0.017 (3)
C70.091 (5)0.116 (5)0.136 (7)0.032 (4)0.085 (5)0.058 (5)
C80.060 (3)0.097 (5)0.149 (7)0.001 (3)0.046 (4)0.050 (5)
C90.056 (3)0.056 (3)0.121 (5)0.012 (2)0.016 (3)0.008 (3)
C100.080 (4)0.074 (4)0.070 (3)0.008 (3)0.028 (3)0.016 (3)
C110.145 (7)0.095 (4)0.034 (3)0.042 (4)0.018 (3)0.005 (2)
C120.153 (7)0.093 (4)0.048 (3)0.043 (4)0.055 (4)0.012 (3)
C130.068 (3)0.043 (2)0.042 (2)0.0030 (19)0.0155 (19)0.0039 (17)
C140.063 (3)0.045 (2)0.064 (3)0.0082 (19)0.030 (2)0.0042 (19)
C150.092 (4)0.068 (3)0.063 (3)0.020 (3)0.002 (3)0.002 (3)
I10.0582 (2)0.0813 (3)0.0510 (2)0.00434 (14)0.02498 (15)0.00660 (14)
N10.0372 (15)0.0504 (18)0.0316 (14)0.0007 (13)0.0120 (12)0.0011 (12)
O10.0419 (15)0.0467 (16)0.091 (2)0.0054 (13)0.0197 (15)0.0005 (16)
O20.086 (2)0.073 (2)0.0412 (17)0.016 (2)0.0025 (16)0.0003 (16)
O30.090 (3)0.077 (2)0.069 (2)0.0169 (19)0.050 (2)0.0153 (18)
O40.0525 (18)0.0593 (19)0.098 (3)0.0103 (16)0.0192 (18)0.0143 (19)
O50.083 (2)0.070 (2)0.0427 (17)0.0211 (19)0.0002 (16)0.0024 (15)
O60.089 (2)0.081 (2)0.0587 (19)0.028 (2)0.0482 (18)0.0149 (17)
O70.0594 (19)0.090 (2)0.0497 (17)0.0077 (17)0.0150 (14)0.0147 (16)
O80.148 (5)0.121 (4)0.061 (3)0.016 (3)0.037 (3)0.022 (2)
O90.157 (5)0.095 (3)0.121 (4)0.005 (3)0.056 (4)0.032 (3)
O100.161 (5)0.111 (4)0.159 (5)0.040 (4)0.101 (4)0.006 (4)
O110.096 (4)0.278 (9)0.102 (4)0.072 (5)0.030 (3)0.018 (5)
Geometric parameters (Å, º) top
C1—O61.429 (7)C9—H9A0.9700
C1—C21.468 (9)C9—H9B0.9700
C1—H1A0.9700C10—O51.420 (7)
C1—H1B0.9700C10—H10A0.9700
C2—O11.418 (7)C10—H10B0.9700
C2—H2A0.9700C11—O51.417 (7)
C2—H2B0.9700C11—C121.484 (11)
C3—O11.426 (7)C11—H11A0.9700
C3—C41.468 (9)C11—H11B0.9700
C3—H3A0.9700C12—O61.420 (7)
C3—H3B0.9700C12—H12A0.9700
C4—O21.405 (7)C12—H12B0.9700
C4—H4A0.9700C13—N11.484 (5)
C4—H4B0.9700C13—C141.500 (6)
C5—O21.416 (8)C13—H13A0.9700
C5—C61.497 (11)C13—H13B0.9700
C5—H5A0.9700C14—O71.390 (5)
C5—H5B0.9700C14—H14A0.9700
C6—O31.401 (8)C14—H14B0.9700
C6—H6A0.9700C15—O71.424 (6)
C6—H6B0.9700C15—H15A0.9600
C7—O31.418 (8)C15—H15B0.9600
C7—C81.446 (11)C15—H15C0.9600
C7—H7A0.9700I1—O111.736 (5)
C7—H7B0.9700I1—O81.740 (4)
C8—O41.421 (7)I1—O91.744 (5)
C8—H8A0.9700I1—O101.778 (5)
C8—H8B0.9700N1—H1C0.8900
C9—O41.409 (7)N1—H1D0.8900
C9—C101.470 (9)N1—H1E0.8900
O6—C1—C2110.4 (4)O5—C10—H10A109.8
O6—C1—H1A109.6C9—C10—H10A109.8
C2—C1—H1A109.6O5—C10—H10B109.8
O6—C1—H1B109.6C9—C10—H10B109.8
C2—C1—H1B109.6H10A—C10—H10B108.2
H1A—C1—H1B108.1O5—C11—C12108.9 (5)
O1—C2—C1110.7 (4)O5—C11—H11A109.9
O1—C2—H2A109.5C12—C11—H11A109.9
C1—C2—H2A109.5O5—C11—H11B109.9
O1—C2—H2B109.5C12—C11—H11B109.9
C1—C2—H2B109.5H11A—C11—H11B108.3
H2A—C2—H2B108.1O6—C12—C11109.5 (5)
O1—C3—C4110.2 (4)O6—C12—H12A109.8
O1—C3—H3A109.6C11—C12—H12A109.8
C4—C3—H3A109.6O6—C12—H12B109.8
O1—C3—H3B109.6C11—C12—H12B109.8
C4—C3—H3B109.6H12A—C12—H12B108.2
H3A—C3—H3B108.1N1—C13—C14112.8 (3)
O2—C4—C3108.9 (4)N1—C13—H13A109.0
O2—C4—H4A109.9C14—C13—H13A109.0
C3—C4—H4A109.9N1—C13—H13B109.0
O2—C4—H4B109.9C14—C13—H13B109.0
C3—C4—H4B109.9H13A—C13—H13B107.8
H4A—C4—H4B108.3O7—C14—C13108.2 (4)
O2—C5—C6110.3 (5)O7—C14—H14A110.1
O2—C5—H5A109.6C13—C14—H14A110.1
C6—C5—H5A109.6O7—C14—H14B110.1
O2—C5—H5B109.6C13—C14—H14B110.1
C6—C5—H5B109.6H14A—C14—H14B108.4
H5A—C5—H5B108.1O7—C15—H15A109.5
O3—C6—C5108.9 (5)O7—C15—H15B109.5
O3—C6—H6A109.9H15A—C15—H15B109.5
C5—C6—H6A109.9O7—C15—H15C109.5
O3—C6—H6B109.9H15A—C15—H15C109.5
C5—C6—H6B109.9H15B—C15—H15C109.5
H6A—C6—H6B108.3O11—I1—O8111.6 (3)
O3—C7—C8109.7 (5)O11—I1—O9114.1 (3)
O3—C7—H7A109.7O8—I1—O9111.0 (3)
C8—C7—H7A109.7O11—I1—O10105.8 (4)
O3—C7—H7B109.7O8—I1—O10106.8 (3)
C8—C7—H7B109.7O9—I1—O10107.0 (3)
H7A—C7—H7B108.2C13—N1—H1C109.5
O4—C8—C7109.2 (5)C13—N1—H1D109.5
O4—C8—H8A109.8H1C—N1—H1D109.5
C7—C8—H8A109.8C13—N1—H1E109.5
O4—C8—H8B109.8H1C—N1—H1E109.5
C7—C8—H8B109.8H1D—N1—H1E109.5
H8A—C8—H8B108.3C2—O1—C3112.8 (5)
O4—C9—C10110.3 (4)C4—O2—C5113.1 (5)
O4—C9—H9A109.6C6—O3—C7113.4 (6)
C10—C9—H9A109.6C9—O4—C8113.0 (5)
O4—C9—H9B109.6C10—O5—C11112.5 (5)
C10—C9—H9B109.6C12—O6—C1112.1 (5)
H9A—C9—H9B108.1C14—O7—C15113.0 (4)
O5—C10—C9109.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.303.000 (4)135
N1—H1C···O20.892.152.912 (4)144
N1—H1D···O30.892.432.980 (5)121
N1—H1D···O40.892.032.886 (4)161
N1—H1E···O50.892.433.010 (5)123
N1—H1E···O60.892.062.870 (4)151
C1—H1B···O11i0.972.543.398 (9)148
C13—H13A···O80.972.523.288 (7)135
C13—H13B···O1ii0.972.543.504 (6)171
C15—H15B···O10iii0.962.473.370 (9)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H10NO+·IO4·C12H24O6
Mr531.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.118 (3), 8.4229 (17), 22.176 (7)
β (°) 111.81 (3)
V3)2274.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.747, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
22779, 5201, 4138
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.05
No. of reflections5201
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.74, 1.26

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O10.892.303.000 (4)135
N1—H1C···O20.892.152.912 (4)144
N1—H1D···O30.892.432.980 (5)121
N1—H1D···O40.892.032.886 (4)161
N1—H1E···O50.892.433.010 (5)123
N1—H1E···O60.892.062.870 (4)151
C1—H1B···O11i0.972.543.398 (9)148
C13—H13A···O80.972.523.288 (7)135
C13—H13B···O1ii0.972.543.504 (6)171
C15—H15B···O10iii0.962.473.370 (9)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to purchase the X-ray diffractometer.

References

First citationAkutagawa, T., Koshinaka, H., Sato, D., Takeda, S., Noro, S., Takahashi, H., Kumai, R., Tokura, Y. & Nakamura, T. (2009). Nat. Mater. 8, 342–347.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkutagawa, T., Matsuura, K., Nishihara, S., Noro, S. & Nakamura, T. (2005). Eur. J. Inorg. Chem. 16, 3271–3276.  Web of Science CSD CrossRef Google Scholar
First citationClark, D. L., Keogh, D. W. & Palmer, C. L. (1998). Angew. Chem. Int. Ed. 37, 164–169.  CrossRef CAS Google Scholar
First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, X., Yang, Y. & Ye, Q. (2010). Acta Cryst. C66, o433–o435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKryatova, O. P., Korendovych, I. V. & Rybak-Akimova, E. V. (2004). Tetrahedron, 60, 4579–4588.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakamura, T., Akutagawa, T., Honda, K., Underhill, A. E., Coomber, A. F. & Friend, R. H. (1998). Nature (London), 394, 159–167.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o472-o473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds