inorganic compounds
[Al(H2O)6][Cr(OH)6Mo6O18]·10H2O
aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wulx@jlu.edu.cn
The title compound, [Al(H2O)6][Cr(OH)6Mo6O18]·10H2O, hexaaquaaluminium hexahydroxidooctadecaoxidomolybdochromate(III) decahydrate, crystallizes isotypically with its gallium analogue [Ga(H2O)6][Cr(OH)6Mo6O18].10H2O. In the structure of the title compound, both the [Al(H2O)6]3+ cation and the Anderson-type [Cr(OH)6Mo6O18]3− anion lie on centres of inversion. The anion is composed of seven edge-sharing octahedra, six of which are MoO6 octahedra that are arranged hexagonally around the central Cr(OH)6 octahedron. The anions are linked to each other by O—H⋯O hydrogen bonds into infinite chains along [100]. These chains are further connected with the [Al(H2O)6]3+ cations through O—H⋯O hydrogen bonds into sheets parallel to (01). O—H⋯O hydrogen bonds involving all the lattice water molecules finally link the sheets into a three-dimensional network.
Related literature
For background literature on polyoxometalates, see: An et al. (2005); Shivaiah et al. (2003). The isotypic gallium analogue was reported by Kaziev et al. (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810053936/wm2434sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053936/wm2434Isup2.hkl
CrCl3.6H2O (0.532 g, 2 mmol) and Na2MoO4.2H2O (3.629 g, 15 mmol) were dissolved in water (30 ml); ice acetic acid was dropped into the solution until it became clear. The resultant solution was heated for 1 h under stirring and AlCl3 (0.267 g, 2 mmol) was added subsequently. The mixture was heated for half an hour and cooled to room temperature. Colorless single crystals were obtained three weeks later after partial evaporation of water.
All H atoms were located from difference Fourier map and treated in the riding mode approximation on their parent atoms, with O—H = 0.85 Å and Uiso(H) = 1.5Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The [Al(H2O)6]3+ cation and the Anderson-type anion as well as the five independent lattice water molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) -x, 1 - y, 1 - z; (B)-x, -y, -z.] | |
Fig. 2. Crystal packing diagram of the title compound, showing the three-dimensional network between the molecular entities through hydrogen bonding (dashed lines). |
[Al(H2O)6][Cr(OH)6Mo6O18]·10H2O | Z = 1 |
Mr = 1332.92 | F(000) = 647 |
Triclinic, P1 | Dx = 2.630 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.809 (5) Å | Cell parameters from 7543 reflections |
b = 11.267 (7) Å | θ = 3.2–27.1° |
c = 11.596 (9) Å | µ = 2.63 mm−1 |
α = 101.26 (3)° | T = 290 K |
β = 97.02 (3)° | Block, colorless |
γ = 101.81 (3)° | 0.12 × 0.12 × 0.11 mm |
V = 841.7 (10) Å3 |
Rigaku R-AXIS RAPID diffractometer | 3801 independent reflections |
Radiation source: fine-focus sealed tube | 3346 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −7→8 |
Tmin = 0.745, Tmax = 0.770 | k = −14→14 |
8257 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0331P)2 + 2.719P] where P = (Fo2 + 2Fc2)/3 |
3801 reflections | (Δ/σ)max = 0.009 |
217 parameters | Δρmax = 0.89 e Å−3 |
24 restraints | Δρmin = −0.86 e Å−3 |
[Al(H2O)6][Cr(OH)6Mo6O18]·10H2O | γ = 101.81 (3)° |
Mr = 1332.92 | V = 841.7 (10) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.809 (5) Å | Mo Kα radiation |
b = 11.267 (7) Å | µ = 2.63 mm−1 |
c = 11.596 (9) Å | T = 290 K |
α = 101.26 (3)° | 0.12 × 0.12 × 0.11 mm |
β = 97.02 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3801 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3346 reflections with I > 2σ(I) |
Tmin = 0.745, Tmax = 0.770 | Rint = 0.037 |
8257 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 24 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.89 e Å−3 |
3801 reflections | Δρmin = −0.86 e Å−3 |
217 parameters |
Experimental. (See detailed section in the paper) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Al1 | 0.0000 | 0.5000 | 0.5000 | 0.0162 (4) | |
Cr1 | 0.0000 | 0.0000 | 0.0000 | 0.01424 (19) | |
Mo1 | 0.37029 (5) | 0.16663 (3) | −0.10502 (3) | 0.01629 (11) | |
Mo2 | 0.33617 (6) | 0.24360 (3) | 0.17992 (3) | 0.01870 (11) | |
Mo3 | −0.02648 (6) | 0.07285 (3) | 0.29050 (3) | 0.01802 (11) | |
OH1 | 0.2099 (4) | −0.0332 (3) | −0.0983 (3) | 0.0156 (6) | |
H1 | 0.2955 | −0.0782 | −0.0941 | 0.023* | |
OB1 | 0.1450 (5) | 0.1055 (3) | −0.2357 (3) | 0.0203 (6) | |
OT1 | 0.5602 (5) | 0.1125 (3) | −0.1683 (3) | 0.0251 (7) | |
OT2 | 0.4158 (5) | 0.3199 (3) | −0.1095 (3) | 0.0287 (8) | |
OH2 | 0.1174 (4) | 0.1756 (3) | 0.0024 (3) | 0.0159 (6) | |
H2 | 0.0530 | 0.2258 | −0.0217 | 0.024* | |
OB2 | 0.4843 (5) | 0.1784 (3) | 0.0594 (3) | 0.0209 (6) | |
OT3 | 0.3656 (6) | 0.3945 (3) | 0.1671 (3) | 0.0321 (8) | |
OT4 | 0.5053 (6) | 0.2483 (4) | 0.3027 (3) | 0.0365 (9) | |
OB3 | 0.0878 (5) | 0.2295 (3) | 0.2494 (3) | 0.0202 (6) | |
OH3 | 0.1830 (5) | 0.0372 (3) | 0.1527 (3) | 0.0166 (6) | |
H3 | 0.2705 | −0.0068 | 0.1480 | 0.025* | |
OT5 | 0.1586 (6) | 0.0662 (3) | 0.3999 (3) | 0.0315 (8) | |
OT6 | −0.2117 (6) | 0.1163 (4) | 0.3617 (3) | 0.0334 (8) | |
OW1 | 0.1050 (5) | 0.3690 (3) | 0.5388 (3) | 0.0242 (7) | |
H4 | 0.2073 | 0.3992 | 0.5942 | 0.036* | |
H5 | 0.0411 | 0.3152 | 0.5715 | 0.036* | |
OW2 | 0.0105 (5) | 0.5686 (3) | 0.6627 (3) | 0.0234 (7) | |
H6 | −0.0143 | 0.6394 | 0.6869 | 0.035* | |
H7 | 0.0689 | 0.5534 | 0.7255 | 0.035* | |
OW3 | 0.2655 (5) | 0.5935 (3) | 0.5085 (3) | 0.0254 (7) | |
H8 | 0.3070 | 0.6445 | 0.5758 | 0.038* | |
H9 | 0.3240 | 0.6029 | 0.4491 | 0.038* | |
OW4 | 0.9017 (6) | 0.2342 (3) | 0.6599 (4) | 0.0379 (9) | |
H10 | 0.9862 | 0.2141 | 0.7084 | 0.057* | |
H11 | 0.8043 | 0.2487 | 0.6955 | 0.057* | |
OW5 | 0.0885 (6) | 0.6667 (3) | 0.0685 (4) | 0.0361 (9) | |
H12 | 0.1879 | 0.7302 | 0.0967 | 0.054* | |
H13 | 0.1180 | 0.6225 | 0.0079 | 0.054* | |
OW6 | 0.1882 (6) | 0.5186 (4) | 0.8662 (4) | 0.0378 (9) | |
H14 | 0.1337 | 0.4753 | 0.9112 | 0.057* | |
H15 | 0.3078 | 0.5567 | 0.9018 | 0.057* | |
OW7 | 0.4894 (4) | 0.3814 (3) | 0.6484 (3) | 0.0359 (9) | |
H16 | 0.5251 | 0.4239 | 0.7199 | 0.054* | |
H17 | 0.4701 | 0.3052 | 0.6506 | 0.054* | |
OW8 | 0.4860 (4) | 0.1318 (3) | 0.5850 (3) | 0.0407 (9) | |
H18 | 0.4573 | 0.0970 | 0.6416 | 0.061* | |
H19 | 0.5475 | 0.0869 | 0.5416 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al1 | 0.0168 (9) | 0.0139 (8) | 0.0166 (9) | 0.0037 (6) | 0.0007 (7) | 0.0011 (7) |
Cr1 | 0.0137 (5) | 0.0128 (4) | 0.0148 (4) | 0.0034 (3) | 0.0000 (4) | 0.0008 (3) |
Mo1 | 0.01433 (19) | 0.01556 (18) | 0.0194 (2) | 0.00386 (13) | 0.00296 (14) | 0.00448 (14) |
Mo2 | 0.0168 (2) | 0.01554 (18) | 0.0188 (2) | 0.00120 (13) | −0.00073 (14) | −0.00287 (14) |
Mo3 | 0.0201 (2) | 0.01879 (19) | 0.01451 (19) | 0.00612 (14) | 0.00132 (14) | 0.00159 (14) |
OH1 | 0.0144 (14) | 0.0151 (13) | 0.0187 (15) | 0.0084 (11) | 0.0020 (12) | 0.0026 (11) |
OB1 | 0.0223 (16) | 0.0205 (14) | 0.0188 (16) | 0.0051 (12) | 0.0015 (13) | 0.0073 (12) |
OT1 | 0.0228 (17) | 0.0310 (17) | 0.0256 (18) | 0.0124 (13) | 0.0065 (14) | 0.0086 (14) |
OT2 | 0.0266 (19) | 0.0228 (16) | 0.037 (2) | 0.0030 (13) | 0.0062 (15) | 0.0107 (15) |
OH2 | 0.0146 (14) | 0.0126 (13) | 0.0205 (15) | 0.0038 (11) | 0.0020 (12) | 0.0040 (11) |
OB2 | 0.0183 (16) | 0.0221 (15) | 0.0199 (16) | 0.0041 (12) | 0.0001 (13) | 0.0017 (12) |
OT3 | 0.036 (2) | 0.0178 (15) | 0.038 (2) | 0.0020 (14) | 0.0096 (17) | −0.0011 (14) |
OT4 | 0.030 (2) | 0.043 (2) | 0.0262 (19) | 0.0073 (16) | −0.0073 (16) | −0.0069 (16) |
OB3 | 0.0233 (17) | 0.0163 (14) | 0.0188 (15) | 0.0053 (12) | 0.0018 (13) | −0.0007 (12) |
OH3 | 0.0175 (15) | 0.0166 (13) | 0.0149 (14) | 0.0069 (11) | −0.0005 (12) | 0.0005 (11) |
OT5 | 0.030 (2) | 0.0379 (19) | 0.0242 (18) | 0.0091 (15) | −0.0051 (15) | 0.0070 (15) |
OT6 | 0.036 (2) | 0.038 (2) | 0.032 (2) | 0.0184 (16) | 0.0136 (17) | 0.0051 (16) |
OW1 | 0.0248 (18) | 0.0189 (14) | 0.0286 (18) | 0.0078 (13) | −0.0001 (14) | 0.0047 (13) |
OW2 | 0.0310 (19) | 0.0222 (15) | 0.0169 (15) | 0.0106 (13) | 0.0017 (13) | 0.0008 (12) |
OW3 | 0.0215 (17) | 0.0267 (16) | 0.0216 (16) | −0.0024 (13) | 0.0032 (13) | −0.0013 (13) |
OW4 | 0.034 (2) | 0.0346 (19) | 0.050 (2) | 0.0118 (16) | −0.0007 (18) | 0.0218 (18) |
OW5 | 0.035 (2) | 0.0285 (18) | 0.044 (2) | 0.0106 (15) | 0.0019 (18) | 0.0068 (16) |
OW6 | 0.036 (2) | 0.044 (2) | 0.039 (2) | 0.0160 (17) | 0.0056 (18) | 0.0174 (18) |
OW7 | 0.030 (2) | 0.048 (2) | 0.030 (2) | 0.0101 (17) | 0.0063 (16) | 0.0080 (17) |
OW8 | 0.036 (2) | 0.048 (2) | 0.035 (2) | 0.0049 (18) | −0.0012 (18) | 0.0113 (18) |
Al1—OW1i | 1.872 (3) | Mo3—OB1ii | 1.951 (3) |
Al1—OW1 | 1.872 (3) | Mo3—OB3 | 1.951 (3) |
Al1—OW3i | 1.877 (3) | Mo3—OH3 | 2.300 (3) |
Al1—OW3 | 1.877 (3) | Mo3—OH1ii | 2.330 (3) |
Al1—OW2 | 1.881 (3) | OH1—Mo3ii | 2.330 (3) |
Al1—OW2i | 1.881 (3) | OH1—H1 | 0.8500 |
Cr1—OH3ii | 1.954 (3) | OB1—Mo3ii | 1.951 (3) |
Cr1—OH3 | 1.954 (3) | OH2—H2 | 0.8499 |
Cr1—OH2 | 1.970 (3) | OH3—H3 | 0.8501 |
Cr1—OH2ii | 1.970 (3) | OW1—H4 | 0.8500 |
Cr1—OH1ii | 1.983 (3) | OW1—H5 | 0.8500 |
Cr1—OH1 | 1.983 (3) | OW2—H6 | 0.8501 |
Mo1—OT2 | 1.703 (3) | OW2—H7 | 0.8499 |
Mo1—OT1 | 1.721 (3) | OW3—H8 | 0.8500 |
Mo1—OB1 | 1.927 (3) | OW3—H9 | 0.8500 |
Mo1—OB2 | 1.937 (4) | OW4—H10 | 0.8500 |
Mo1—OH2 | 2.252 (3) | OW4—H11 | 0.8500 |
Mo1—OH1 | 2.314 (3) | OW5—H12 | 0.8559 |
Mo2—OT4 | 1.703 (4) | OW5—H13 | 0.8496 |
Mo2—OT3 | 1.709 (4) | OW6—H14 | 0.8500 |
Mo2—OB2 | 1.939 (3) | OW6—H15 | 0.8500 |
Mo2—OB3 | 1.951 (3) | OW7—H16 | 0.8509 |
Mo2—OH2 | 2.283 (3) | OW7—H17 | 0.8480 |
Mo2—OH3 | 2.288 (3) | OW8—H18 | 0.8499 |
Mo3—OT6 | 1.691 (4) | OW8—H19 | 0.8500 |
Mo3—OT5 | 1.699 (4) | ||
OW1i—Al1—OW1 | 180.000 (1) | OT4—Mo2—OH3 | 94.98 (16) |
OW1i—Al1—OW3i | 89.98 (16) | OT3—Mo2—OH3 | 158.26 (16) |
OW1—Al1—OW3i | 90.02 (16) | OB2—Mo2—OH3 | 82.20 (13) |
OW1i—Al1—OW3 | 90.02 (16) | OB3—Mo2—OH3 | 71.27 (12) |
OW1—Al1—OW3 | 89.98 (16) | OH2—Mo2—OH3 | 69.73 (11) |
OW3i—Al1—OW3 | 180.0 (2) | OT6—Mo3—OT5 | 105.4 (2) |
OW1i—Al1—OW2 | 89.59 (15) | OT6—Mo3—OB1ii | 99.75 (17) |
OW1—Al1—OW2 | 90.41 (15) | OT5—Mo3—OB1ii | 97.91 (16) |
OW3i—Al1—OW2 | 90.13 (15) | OT6—Mo3—OB3 | 99.14 (17) |
OW3—Al1—OW2 | 89.87 (15) | OT5—Mo3—OB3 | 102.04 (17) |
OW1i—Al1—OW2i | 90.41 (15) | OB1ii—Mo3—OB3 | 147.66 (13) |
OW1—Al1—OW2i | 89.59 (15) | OT6—Mo3—OH3 | 163.68 (15) |
OW3i—Al1—OW2i | 89.87 (15) | OT5—Mo3—OH3 | 89.62 (16) |
OW3—Al1—OW2i | 90.13 (15) | OB1ii—Mo3—OH3 | 84.03 (12) |
OW2—Al1—OW2i | 180.000 (1) | OB3—Mo3—OH3 | 71.00 (12) |
OH3ii—Cr1—OH3 | 180.00 (18) | OT6—Mo3—OH1ii | 95.90 (16) |
OH3ii—Cr1—OH2 | 96.53 (13) | OT5—Mo3—OH1ii | 157.46 (14) |
OH3—Cr1—OH2 | 83.47 (13) | OB1ii—Mo3—OH1ii | 70.90 (12) |
OH3ii—Cr1—OH2ii | 83.47 (13) | OB3—Mo3—OH1ii | 81.26 (13) |
OH3—Cr1—OH2ii | 96.53 (13) | OH3—Mo3—OH1ii | 70.18 (12) |
OH2—Cr1—OH2ii | 180.00 (18) | Cr1—OH1—Mo1 | 101.22 (12) |
OH3ii—Cr1—OH1ii | 94.97 (14) | Cr1—OH1—Mo3ii | 101.37 (13) |
OH3—Cr1—OH1ii | 85.03 (14) | Mo1—OH1—Mo3ii | 92.79 (11) |
OH2—Cr1—OH1ii | 95.90 (12) | Cr1—OH1—H1 | 131.8 |
OH2ii—Cr1—OH1ii | 84.10 (12) | Mo1—OH1—H1 | 110.7 |
OH3ii—Cr1—OH1 | 85.03 (14) | Mo3ii—OH1—H1 | 111.9 |
OH3—Cr1—OH1 | 94.97 (14) | Mo1—OB1—Mo3ii | 120.22 (16) |
OH2—Cr1—OH1 | 84.10 (12) | Cr1—OH2—Mo1 | 103.79 (12) |
OH2ii—Cr1—OH1 | 95.90 (12) | Cr1—OH2—Mo2 | 103.22 (13) |
OH1ii—Cr1—OH1 | 180.00 (15) | Mo1—OH2—Mo2 | 93.30 (12) |
OT2—Mo1—OT1 | 104.94 (17) | Cr1—OH2—H2 | 125.8 |
OT2—Mo1—OB1 | 97.87 (16) | Mo1—OH2—H2 | 106.7 |
OT1—Mo1—OB1 | 101.08 (16) | Mo2—OH2—H2 | 118.4 |
OT2—Mo1—OB2 | 100.85 (16) | Mo1—OB2—Mo2 | 116.61 (16) |
OT1—Mo1—OB2 | 96.87 (16) | Mo2—OB3—Mo3 | 118.42 (15) |
OB1—Mo1—OB2 | 149.69 (14) | Cr1—OH3—Mo2 | 103.55 (13) |
OT2—Mo1—OH2 | 94.45 (14) | Cr1—OH3—Mo3 | 103.34 (14) |
OT1—Mo1—OH2 | 159.55 (14) | Mo2—OH3—Mo3 | 93.88 (11) |
OB1—Mo1—OH2 | 82.26 (14) | Cr1—OH3—H3 | 110.0 |
OB2—Mo1—OH2 | 72.74 (13) | Mo2—OH3—H3 | 110.7 |
OT2—Mo1—OH1 | 162.67 (14) | Mo3—OH3—H3 | 131.6 |
OT1—Mo1—OH1 | 90.85 (14) | Al1—OW1—H4 | 108.5 |
OB1—Mo1—OH1 | 71.64 (12) | Al1—OW1—H5 | 122.9 |
OB2—Mo1—OH1 | 83.95 (13) | H4—OW1—H5 | 97.7 |
OH2—Mo1—OH1 | 70.89 (11) | Al1—OW2—H6 | 122.0 |
OT4—Mo2—OT3 | 105.5 (2) | Al1—OW2—H7 | 131.7 |
OT4—Mo2—OB2 | 98.10 (17) | H6—OW2—H7 | 103.9 |
OT3—Mo2—OB2 | 101.59 (16) | Al1—OW3—H8 | 111.0 |
OT4—Mo2—OB3 | 99.29 (18) | Al1—OW3—H9 | 125.4 |
OT3—Mo2—OB3 | 97.85 (16) | H8—OW3—H9 | 120.8 |
OB2—Mo2—OB3 | 149.30 (13) | H10—OW4—H11 | 107.7 |
OT4—Mo2—OH2 | 162.45 (15) | H12—OW5—H13 | 108.5 |
OT3—Mo2—OH2 | 90.88 (16) | H14—OW6—H15 | 107.7 |
OB2—Mo2—OH2 | 72.01 (13) | H16—OW7—H17 | 107.5 |
OB3—Mo2—OH2 | 84.24 (13) | H18—OW8—H19 | 107.7 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
OH3—H3···OT1iii | 0.85 | 1.85 | 2.681 (4) | 167 |
OH1—H1···OB2iii | 0.85 | 2.10 | 2.944 (4) | 172 |
OH2—H2···OW5iv | 0.85 | 1.82 | 2.665 (5) | 178 |
OW3—H8···OT4v | 0.85 | 1.83 | 2.628 (5) | 156 |
OW3—H9···OW7v | 0.85 | 1.81 | 2.632 (5) | 163 |
OW1—H4···OW7 | 0.85 | 2.01 | 2.730 (5) | 142 |
OW1—H5···OW4vi | 0.85 | 1.74 | 2.577 (5) | 167 |
OW2—H6···OB3i | 0.85 | 1.72 | 2.559 (4) | 171 |
OW2—H7···OW6 | 0.85 | 1.88 | 2.728 (5) | 178 |
OW4—H10···OB1vii | 0.85 | 1.94 | 2.737 (5) | 156 |
OW5—H12···OT1viii | 0.86 | 2.15 | 3.002 (6) | 179 |
OW5—H13···OW6ix | 0.85 | 1.99 | 2.842 (6) | 180 |
OW6—H14···OW5i | 0.85 | 2.04 | 2.800 (6) | 149 |
OW6—H15···OT3v | 0.85 | 2.45 | 3.091 (6) | 133 |
OW7—H16···OT3v | 0.85 | 2.13 | 2.878 (5) | 146 |
OW7—H17···OW8 | 0.85 | 1.98 | 2.759 (5) | 152 |
OW8—H18···OT1x | 0.85 | 2.19 | 2.902 (5) | 141 |
OW8—H18···OT6xi | 0.85 | 2.62 | 3.241 (5) | 131 |
OW8—H19···OW8xii | 0.85 | 2.56 | 3.283 (6) | 144 |
Symmetry codes: (i) −x, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) x−1, y, z; (vii) x+1, y, z+1; (viii) −x+1, −y+1, −z; (ix) x, y, z−1; (x) x, y, z+1; (xi) −x, −y, −z+1; (xii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Al(H2O)6][Cr(OH)6Mo6O18]·10H2O |
Mr | 1332.92 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 290 |
a, b, c (Å) | 6.809 (5), 11.267 (7), 11.596 (9) |
α, β, γ (°) | 101.26 (3), 97.02 (3), 101.81 (3) |
V (Å3) | 841.7 (10) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.63 |
Crystal size (mm) | 0.12 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.745, 0.770 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8257, 3801, 3346 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.093, 1.10 |
No. of reflections | 3801 |
No. of parameters | 217 |
No. of restraints | 24 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.89, −0.86 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
OH3—H3···OT1i | 0.85 | 1.85 | 2.681 (4) | 166.8 |
OH1—H1···OB2i | 0.85 | 2.10 | 2.944 (4) | 172.4 |
OH2—H2···OW5ii | 0.85 | 1.82 | 2.665 (5) | 178.1 |
OW3—H8···OT4iii | 0.85 | 1.83 | 2.628 (5) | 156.2 |
OW3—H9···OW7iii | 0.85 | 1.81 | 2.632 (5) | 163.4 |
OW1—H4···OW7 | 0.85 | 2.01 | 2.730 (5) | 142.1 |
OW1—H5···OW4iv | 0.85 | 1.74 | 2.577 (5) | 167.2 |
OW2—H6···OB3v | 0.85 | 1.72 | 2.559 (4) | 170.5 |
OW2—H7···OW6 | 0.85 | 1.88 | 2.728 (5) | 177.8 |
OW4—H10···OB1vi | 0.85 | 1.94 | 2.737 (5) | 155.5 |
OW5—H12···OT1vii | 0.86 | 2.15 | 3.002 (6) | 179.1 |
OW5—H13···OW6viii | 0.85 | 1.99 | 2.842 (6) | 179.8 |
OW6—H14···OW5v | 0.85 | 2.04 | 2.800 (6) | 149.2 |
OW6—H15···OT3iii | 0.85 | 2.45 | 3.091 (6) | 133.0 |
OW7—H16···OT3iii | 0.85 | 2.13 | 2.878 (5) | 146.0 |
OW7—H17···OW8 | 0.85 | 1.98 | 2.759 (5) | 151.6 |
OW8—H18···OT1ix | 0.85 | 2.19 | 2.902 (5) | 140.9 |
OW8—H18···OT6x | 0.85 | 2.62 | 3.241 (5) | 130.7 |
OW8—H19···OW8xi | 0.85 | 2.56 | 3.283 (6) | 143.5 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) x+1, y, z+1; (vii) −x+1, −y+1, −z; (viii) x, y, z−1; (ix) x, y, z+1; (x) −x, −y, −z+1; (xi) −x+1, −y, −z+1. |
Acknowledgements
This work was supported financially by the National Basic Research Program of China (2007CB808003) and the National Natural Science Foundation of China (20973082, 20921003, 20703019).
References
An, H. Y., Li, Y. G., Wang, E. B., Xiao, D. R., Sun, C. Y. & Xu, L. (2005). Inorg. Chem. 44, 6062–6070. Web of Science CSD CrossRef PubMed CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kaziev, G. Z., Qiguones, S. O., Bel'skii, V. K., Zavodnik, V. E., Osminkina, I. V. & de Ita, A. (2002). Russ. J. Inorg. Chem. 47, 335–340. Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shivaiah, V., Nagaraju, M. & Das, S. K. (2003). Inorg. Chem. 42, 6604–6606. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Anderson-type polyoxometalate (POM) anions are frequently used as building blocks to construct extended solid frameworks (An et al., 2005; Shivaiah et al., 2003). As a part of our ongoing study on POMs, we report here the crystal structure of the title compound, [Al(H2O)6][Cr(OH)6Mo6O18].10H2O.
The crystal structure of the title compound (Fig. 1) consists of [Al(H2O)6]3+ cations and Anderson-type [Cr(OH)6Mo6O18]3- anions, both with 1 symmetry. The [Cr(OH)6] octahedron lies on the center of six surrounding [MoO6] octahedra, all linked through common edges. According to different coordination environments, there are three kinds of O atoms in the anion. The first involves twelve terminal O atoms (labelled OTx) that only bind to one Mo atom with distances ranging from 1.691 (4) Å to 1.721 (3) Å. The second type involves six bridging O atoms (OBx) shared by two Mo atoms with distances ranging from 1.927 (3) Å to 1.951 (3) Å. The third type involves six O atoms (OHx) located between the Mo and Cr atoms with Mo—OH bond lengths ranging from 2.252 (3) Å to 2.314 (3) Å. All these bond lenghths and corresponding angles are in the normal ranges (An et al., 2005).
Abundant hydrogen bonding exist in the title structure (Table 1). The OH groups of the POM anion are involved in forming O—H···O hydrogen bonds to adjacent anions and link the [Cr(OH)6Mo6O18]3- anions into infinite chains along [100]. The chains are further connected with [Al(H2O)6]3+ octahedra through O—H···O hydrogen bonds into sheets lying parallel to (011). The O—H···O hydrogen bonds involving all the lattice water molecules finally link the sheets into a three-dimensional network (Fig. 2).
It should be noted that the title compound is isotypic with its gallium analogue [Ga(H2O)6][Cr(OH)6Mo6O18].10H2O described several years ago (Kaziev, et al. 2002). In the latter structure, the Cr3+ and Ga3+ sites show occupational disorder due to their very similar ionic radius, while such a disorder is not observed in the title compound.