inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs2UPd3Se6

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 8 December 2010; accepted 22 December 2010; online 12 January 2011)

Dicaesium uranium(IV) tripalladium(II) hexa­selenide, Cs2UPd3Se6, crystallizes in the space group Fmmm in the Ba2NaCu3O6 structure type. The asymmetric unit comprises the following atoms with site symmetries as shown: U1 (mm2), Cs1 (222), Cs2 (m2m), Pd1 (.m.), Pd2 (2mm), Se1 (m..), and Se2 (1). This layered structure contains six edge-sharing square-planar [PdSe4] units that form a hexa­gon. These, in turn, edge-share with [USe6] trigonal–prismatic units, forming an extended layer parallel to (010). The layers are stacked along [010]. They are staggered, and are separated by the Cs atoms. The Cs atoms are either coordinated in a square anti­prism of Se atoms or are ten-coordinate, with one square face and the opposite face hexa­gonal.

Related literature

Ba2NaCu3O6 was reported by Tams & Müller-Buschbaum (1992[Tams, G. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 617, 19-22.]). For related structures, see: Daoudi & Noël (1989[Daoudi, A. & Noël, H. (1989). J. Less-Common Met. 153, 293-298.]); Bronger et al. (1991[Bronger, W., Rennau, R. & Schmitz, D. (1991). Z. Anorg. Allg. Chem. 597, 27-32.]); Yao & Ibers (2008[Yao, J. & Ibers, J. A. (2008). Z. Anorg. Allg. Chem. 634, 1645-1647.]); Huang et al. (2001[Huang, F. Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123-5126.]); Klepp et al. (1996[Klepp, K. O., Sparlinek, W. & Boller, H. (1996). J. Alloys Compd, 238, 1-5.]). For synthetic details, see: Bugaris & Ibers (2008[Bugaris, D. E. & Ibers, J. A. (2008). Acta Cryst. E64, i55-i56.]); Haneveld & Jellinek (1969[Haneveld, A. J. K. & Jellinek, F. (1969). J. Less-Common Met. 18, 123-129.]). For computational details, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]); Le Page (1988[Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.]).

Experimental

Crystal data
  • Cs2UPd3Se6

  • Mr = 1296.81

  • Orthorhombic, F m m m

  • a = 10.1034 (5) Å

  • b = 15.5046 (8) Å

  • c = 17.5503 (8) Å

  • V = 2749.2 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 36.67 mm−1

  • T = 100 K

  • 0.21 × 0.17 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (face indexed using SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.049, Tmax = 0.689

  • 8099 measured reflections

  • 963 independent reflections

  • 921 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.055

  • S = 1.46

  • 963 reflections

  • 38 parameters

  • Δρmax = 1.34 e Å−3

  • Δρmin = −2.21 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of continuing efforts to synthesize new uranium chalcogenide compounds, Cs2UPd3Se6 was synthesized. It crystallizes in the orthorhombic space group Fmmm in the Ba2NaCu3O6 structure type (Tams & Müller-Buschbaum, 1992). The asymmetric unit comprises the following atoms with site symmetries as shown: U1 (mm2); Cs1 (222); Cs2 (m2m); Pd1 (.m.); Pd2 (2mm); Se1 (m..); and Se2 (1) (Fig. 1). This layered structure (Fig. 2) contains six edge-sharing square-planar [PdSe4] units that form a hexagon. These, in turn, edge-share with [USe6] trigonal-prism units to form an extended layer parallel to (010). The layers are stacked along [010] and are separated by Cs atoms. The Cs atoms are either coordinated in a square antiprism of Se atoms or are ten-coordinate, with one square face and the opposite face hexagonal (Fig. 3).

The shortest Se–Se distance is 3.3344 (9) Å, far longer than a single bond. Thus, formal oxidation states may be assigned as follows: Cs: +1; U: +4; Pd: +2; Se: -2. Pd2+ typically has a square-planar coordination. In contrast, trigonal-prismatic coordination is unusual for U4+, though it is known, for example in Ba4Cr2US9 (Yao & Ibers, 2008).

U–Se distances are 2.8353 (5) Å and 2.8704 (7) Å, similar to those in other compounds containing six-coordinate U4+ atoms, such as in CsUCuSe3 (Huang et al., 2001), where the U–Se distances range from 2.8265 (6) Å to 2.8611 (8) Å. Pd–Se distances are typical for square-planar Pd2+ atoms, ranging from 2.4516 (5) Å to 2.4736 (6) Å, similar to those of 2.453 (6) Å to 2.456 (7) Å in Cs2Pd3Se4 (Bronger et al., 1991) and those of 2.476 (1) Å and 2.479 (1) Å found in UPdSe3 (Daoudi & Noël, 1989). The Cs1–Se distances, which are 3.4653 (5) Å and 3.4682 (5) Å, are shorter than are typical for eight-coordinate Cs. Typical are those in CsUCuSe3 which range from 3.5825 (16) Å to 3.8246 (11) Å. On the other hand, the ten-coordinate Cs2—Se distances are typical. They range from 3.7847 (7) Å to 3.9511 (7) Å, to be compared to 3.660 (3) Å to 3.961 (7) Å in CsFe2Se3 (Klepp et al., 1996).

Related literature top

Ba2NaCu3O6 was reported by Tams & Müller-Buschbaum (1992). For related structures, see: Daoudi & Noël (1989); Bronger et al. (1991); Yao & Ibers (2008); Huang et al. (2001); Klepp et al. (1996). For synthetic details, see: Bugaris & Ibers (2008); Haneveld & Jellinek (1969). For computational details, see: Gelato & Parthé (1987); Le Page (1988).

Experimental top

Black hexagonal plates of Cs2UPd3Se6 were synthesized by the combination of U (0.063 mmol), Pd (Johnson Matthey 99.94%, 0.063 mmol), Se (Cerac 99.999%, 0.253 mmol), and 125 mg CsCl (Aldrich 99.9%, 0.743 mmol) as a flux. U filings (Oak Ridge National Laboratory) were powdered by hydridization and subsequent decomposition under heat and vacuum (Bugaris & Ibers, 2008), in a modification of a previous literature method (Haneveld & Jellinek, 1969). The mixture was loaded into a carbon-coated fused-silica tube in an Ar filled glove box and then sealed under 10 -4 Torr vacuum. The reaction was heated to 1273 K in 48 h, held there for 6 h, cooled to 1223 K in 12 h, held there for 24 h, then cooled to 298 K at 3.2 K/h.

Refinement top

The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak in the difference Fourier map of 1.3 (3) e/Å3 is 1.24 Å from atom U1 and the deepest hole of -2.2 (3) e/Å3 is 0.84Å from atom U1. The program ADDSYM (Le Page, 1988) was used to confirm that no symmetry was missed.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. : Asymmetric unit of Cs2UPd3Se6 (95% probability ellipsoids).
[Figure 2] Fig. 2. : Structure of Cs2UPd3Se6viewed down the b-axis (left) and the c-axis (right).
[Figure 3] Fig. 3. : Coordination environment of atom Cs2.
Dicaesium uranium(IV) tripalladium(II) hexaselenide top
Crystal data top
Cs2UPd3Se6F(000) = 4352
Mr = 1296.81Dx = 6.266 Mg m3
Orthorhombic, FmmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -F 2 2Cell parameters from 5598 reflections
a = 10.1034 (5) Åθ = 2.3–28.2°
b = 15.5046 (8) ŵ = 36.67 mm1
c = 17.5503 (8) ÅT = 100 K
V = 2749.2 (2) Å3Hexagonal plate, black
Z = 80.21 × 0.17 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
963 independent reflections
Radiation source: fine-focus sealed tube921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.6°, θmin = 2.3°
Absorption correction: numerical
(face indexed using SADABS; Sheldrick, 2008b)
h = 1313
Tmin = 0.049, Tmax = 0.689k = 2020
8099 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0241P)2 + 0.0000sinθ/λ]
where P = 1.00000Fo2 + 0.00000Fc2
wR(F2) = 0.055(Δ/σ)max < 0.001
S = 1.46Δρmax = 1.34 e Å3
963 reflectionsΔρmin = 2.21 e Å3
38 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000083 (9)
Crystal data top
Cs2UPd3Se6V = 2749.2 (2) Å3
Mr = 1296.81Z = 8
Orthorhombic, FmmmMo Kα radiation
a = 10.1034 (5) ŵ = 36.67 mm1
b = 15.5046 (8) ÅT = 100 K
c = 17.5503 (8) Å0.21 × 0.17 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
963 independent reflections
Absorption correction: numerical
(face indexed using SADABS; Sheldrick, 2008b)
921 reflections with I > 2σ(I)
Tmin = 0.049, Tmax = 0.689Rint = 0.035
8099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01938 parameters
wR(F2) = 0.0550 restraints
S = 1.46Δρmax = 1.34 e Å3
963 reflectionsΔρmin = 2.21 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.00000.00000.166826 (18)0.00859 (12)
Cs10.25000.25000.25000.00986 (14)
Cs20.00000.30128 (4)0.00000.01609 (16)
Pd10.33694 (4)0.00000.15828 (3)0.00866 (14)
Pd20.17351 (6)0.00000.00000.00843 (16)
Se10.00000.10753 (4)0.29996 (3)0.00912 (15)
Se20.19159 (4)0.11000 (3)0.09981 (2)0.00908 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.00523 (18)0.0108 (2)0.00978 (19)0.0000.0000.000
Cs10.0078 (2)0.0105 (3)0.0113 (3)0.0000.0000.000
Cs20.0104 (3)0.0233 (4)0.0146 (3)0.0000.0000.000
Pd10.0049 (2)0.0109 (3)0.0102 (3)0.0000.00063 (15)0.000
Pd20.0067 (3)0.0106 (4)0.0080 (3)0.0000.0000.000
Se10.0058 (3)0.0107 (3)0.0109 (3)0.0000.0000.0004 (2)
Se20.0065 (2)0.0105 (3)0.0103 (2)0.00038 (17)0.00027 (15)0.00014 (16)
Geometric parameters (Å, º) top
U1—Se22.8353 (5)Cs2—Se2xvi3.8301 (5)
U1—Se2i2.8353 (5)Cs2—Se23.9511 (7)
U1—Se2ii2.8353 (5)Cs2—Se2xvii3.9511 (7)
U1—Se2iii2.8353 (5)Cs2—Se2ii3.9511 (7)
U1—Se1i2.8704 (7)Cs2—Se2xviii3.9511 (7)
U1—Se12.8704 (7)Cs2—Pd1ix4.4635 (6)
U1—Pd1i3.4076 (4)Cs2—Pd1xix4.4635 (6)
U1—Pd13.4076 (4)Pd1—Se1xi2.4557 (6)
U1—Pd2iv3.4125 (4)Pd1—Se1v2.4557 (6)
U1—Pd23.4125 (4)Pd1—Se2iii2.4736 (6)
U1—Pd1v3.4836 (6)Pd1—Se22.4736 (6)
U1—Pd1vi3.4836 (6)Pd1—Pd23.2316 (6)
Cs1—Se2vii3.4653 (5)Pd1—U1v3.4836 (6)
Cs1—Se2viii3.4653 (5)Pd1—Cs1v4.2880 (3)
Cs1—Se2ix3.4653 (5)Pd1—Cs2xx4.4636 (6)
Cs1—Se23.4653 (5)Pd1—Cs2xv4.4636 (6)
Cs1—Se13.4682 (5)Pd2—Se22.4516 (5)
Cs1—Se1ix3.4682 (5)Pd2—Se2xxi2.4516 (5)
Cs1—Se1x3.4682 (5)Pd2—Se2iii2.4516 (5)
Cs1—Se1xi3.4682 (5)Pd2—Se2xviii2.4516 (5)
Cs1—Pd14.2880 (3)Pd2—Pd1xviii3.2316 (6)
Cs1—Pd1xii4.2881 (3)Pd2—U1iv3.4125 (4)
Cs1—Pd1v4.2881 (3)Pd2—Cs2xv4.5137 (6)
Cs1—Pd1ix4.2881 (3)Pd2—Cs2xx4.5137 (6)
Cs2—Se1x3.7847 (7)Se1—Pd1vi2.4557 (6)
Cs2—Se1xiii3.7847 (7)Se1—Pd1v2.4557 (6)
Cs2—Se2ix3.8301 (5)Se1—Cs1x3.4682 (5)
Cs2—Se2xiv3.8301 (5)Se1—Cs2x3.7847 (7)
Cs2—Se2xv3.8301 (5)Se2—Cs2xv3.8301 (5)
Se2—U1—Se2i130.98 (2)Se2xv—Cs2—Se2ii150.563 (16)
Se2—U1—Se2ii86.111 (19)Se2xvi—Cs2—Se2ii70.624 (13)
Se2i—U1—Se2ii73.96 (2)Se2—Cs2—Se2ii58.670 (15)
Se2—U1—Se2iii73.96 (2)Se2xvii—Cs2—Se2ii52.634 (14)
Se2i—U1—Se2iii86.111 (19)Se1x—Cs2—Se2xviii133.761 (13)
Se2ii—U1—Se2iii130.98 (2)Se1xiii—Cs2—Se2xviii82.482 (12)
Se2—U1—Se1i133.399 (11)Se2ix—Cs2—Se2xviii94.230 (11)
Se2i—U1—Se1i89.330 (14)Se2xiv—Cs2—Se2xviii117.735 (13)
Se2ii—U1—Se1i133.398 (11)Se2xv—Cs2—Se2xviii70.624 (13)
Se2iii—U1—Se1i89.330 (14)Se2xvi—Cs2—Se2xviii150.563 (16)
Se2—U1—Se189.331 (14)Se2—Cs2—Se2xviii52.633 (14)
Se2i—U1—Se1133.398 (11)Se2xvii—Cs2—Se2xviii58.670 (15)
Se2ii—U1—Se189.330 (14)Se2ii—Cs2—Se2xviii82.711 (18)
Se2iii—U1—Se1133.398 (11)Se1x—Cs2—Pd1ix33.369 (10)
Se1i—U1—Se171.02 (3)Se1xiii—Cs2—Pd1ix108.628 (18)
Se2—U1—Pd1i131.589 (12)Se2ix—Cs2—Pd1ix33.614 (9)
Se2i—U1—Pd1i45.548 (10)Se2xiv—Cs2—Pd1ix109.694 (16)
Se2ii—U1—Pd1i45.548 (10)Se2xv—Cs2—Pd1ix74.720 (12)
Se2iii—U1—Pd1i131.589 (12)Se2xvi—Cs2—Pd1ix76.571 (12)
Se1i—U1—Pd1i92.053 (8)Se2—Cs2—Pd1ix93.521 (9)
Se1—U1—Pd1i92.053 (8)Se2xvii—Cs2—Pd1ix167.125 (9)
Se2—U1—Pd145.549 (10)Se2ii—Cs2—Pd1ix115.027 (9)
Se2i—U1—Pd1131.590 (12)Se2xviii—Cs2—Pd1ix127.822 (8)
Se2ii—U1—Pd1131.590 (12)Se1x—Cs2—Pd1xix33.369 (10)
Se2iii—U1—Pd145.549 (10)Se1xiii—Cs2—Pd1xix108.628 (18)
Se1i—U1—Pd192.053 (8)Se2ix—Cs2—Pd1xix76.571 (12)
Se1—U1—Pd192.052 (8)Se2xiv—Cs2—Pd1xix74.720 (12)
Pd1i—U1—Pd1174.96 (2)Se2xv—Cs2—Pd1xix109.694 (16)
Se2—U1—Pd2iv89.701 (13)Se2xvi—Cs2—Pd1xix33.614 (9)
Se2i—U1—Pd2iv45.040 (11)Se2—Cs2—Pd1xix115.028 (9)
Se2ii—U1—Pd2iv45.040 (11)Se2xvii—Cs2—Pd1xix127.822 (8)
Se2iii—U1—Pd2iv89.702 (13)Se2ii—Cs2—Pd1xix93.520 (9)
Se1i—U1—Pd2iv134.300 (11)Se2xviii—Cs2—Pd1xix167.125 (9)
Se1—U1—Pd2iv134.300 (11)Pd1ix—Cs2—Pd1xix43.318 (11)
Pd1i—U1—Pd2iv56.567 (13)Se1xi—Pd1—Se1v85.52 (3)
Pd1—U1—Pd2iv118.389 (14)Se1xi—Pd1—Se2iii171.97 (3)
Se2—U1—Pd245.038 (11)Se1v—Pd1—Se2iii93.095 (17)
Se2i—U1—Pd289.702 (13)Se1xi—Pd1—Se293.096 (18)
Se2ii—U1—Pd289.702 (13)Se1v—Pd1—Se2171.96 (3)
Se2iii—U1—Pd245.040 (11)Se2iii—Pd1—Se287.18 (3)
Se1i—U1—Pd2134.300 (11)Se1xi—Pd1—Pd2126.819 (19)
Se1—U1—Pd2134.300 (11)Se1v—Pd1—Pd2126.82 (2)
Pd1i—U1—Pd2118.388 (14)Se2iii—Pd1—Pd248.701 (14)
Pd1—U1—Pd256.568 (13)Se2—Pd1—Pd248.699 (14)
Pd2iv—U1—Pd261.821 (18)Se1xi—Pd1—U1131.077 (15)
Se2—U1—Pd1v92.446 (11)Se1v—Pd1—U1131.077 (15)
Se2i—U1—Pd1v133.501 (12)Se2iii—Pd1—U154.909 (13)
Se2ii—U1—Pd1v133.501 (12)Se2—Pd1—U154.909 (13)
Se2iii—U1—Pd1v92.445 (11)Pd2—Pd1—U161.793 (13)
Se1i—U1—Pd1v44.171 (11)Se1xi—Pd1—U1v54.538 (17)
Se1—U1—Pd1v44.172 (11)Se1v—Pd1—U1v54.538 (17)
Pd1i—U1—Pd1v120.746 (11)Se2iii—Pd1—U1v130.265 (15)
Pd1—U1—Pd1v64.299 (14)Se2—Pd1—U1v130.266 (15)
Pd2iv—U1—Pd1v177.312 (13)Pd2—Pd1—U1v177.495 (17)
Pd2—U1—Pd1v120.866 (11)U1—Pd1—U1v115.701 (14)
Se2—U1—Pd1vi133.502 (12)Se1xi—Pd1—Cs153.965 (11)
Se2i—U1—Pd1vi92.445 (11)Se1v—Pd1—Cs1129.73 (2)
Se2ii—U1—Pd1vi92.445 (11)Se2iii—Pd1—Cs1131.100 (17)
Se2iii—U1—Pd1vi133.501 (12)Se2—Pd1—Cs153.905 (11)
Se1i—U1—Pd1vi44.171 (11)Pd2—Pd1—Cs1102.592 (7)
Se1—U1—Pd1vi44.172 (11)U1—Pd1—Cs177.222 (7)
Pd1i—U1—Pd1vi64.300 (14)U1v—Pd1—Cs176.474 (7)
Pd1—U1—Pd1vi120.745 (11)Se1xi—Pd1—Cs1v129.73 (2)
Pd2iv—U1—Pd1vi120.866 (11)Se1v—Pd1—Cs1v53.965 (11)
Pd2—U1—Pd1vi177.312 (13)Se2iii—Pd1—Cs1v53.904 (11)
Pd1v—U1—Pd1vi56.446 (15)Se2—Pd1—Cs1v131.099 (17)
Se2vii—Cs1—Se2viii80.953 (16)Pd2—Pd1—Cs1v102.592 (7)
Se2vii—Cs1—Se2ix102.430 (16)U1—Pd1—Cs1v77.222 (7)
Se2viii—Cs1—Se2ix160.389 (13)U1v—Pd1—Cs1v76.475 (7)
Se2vii—Cs1—Se2160.389 (13)Cs1—Pd1—Cs1v129.363 (12)
Se2viii—Cs1—Se2102.430 (16)Se1xi—Pd1—Cs2xx114.000 (17)
Se2ix—Cs1—Se280.953 (16)Se1v—Pd1—Cs2xx57.960 (16)
Se2vii—Cs1—Se194.738 (13)Se2iii—Pd1—Cs2xx59.002 (13)
Se2viii—Cs1—Se162.144 (11)Se2—Pd1—Cs2xx115.901 (19)
Se2ix—Cs1—Se1135.669 (11)Pd2—Pd1—Cs2xx69.734 (10)
Se2—Cs1—Se170.690 (13)U1—Pd1—Cs2xx113.335 (9)
Se2vii—Cs1—Se1ix62.143 (11)U1v—Pd1—Cs2xx111.952 (8)
Se2viii—Cs1—Se1ix94.738 (13)Cs1—Pd1—Cs2xx158.937 (12)
Se2ix—Cs1—Se1ix70.691 (13)Cs1v—Pd1—Cs2xx71.656 (7)
Se2—Cs1—Se1ix135.670 (11)Se1xi—Pd1—Cs2xv57.960 (16)
Se1—Cs1—Se1ix150.71 (2)Se1v—Pd1—Cs2xv114.000 (17)
Se2vii—Cs1—Se1x70.691 (13)Se2iii—Pd1—Cs2xv115.903 (19)
Se2viii—Cs1—Se1x135.670 (11)Se2—Pd1—Cs2xv59.003 (13)
Se2ix—Cs1—Se1x62.143 (11)Pd2—Pd1—Cs2xv69.734 (10)
Se2—Cs1—Se1x94.738 (13)U1—Pd1—Cs2xv113.335 (9)
Se1—Cs1—Se1x86.513 (16)U1v—Pd1—Cs2xv111.952 (8)
Se1ix—Cs1—Se1x100.875 (18)Cs1—Pd1—Cs2xv71.656 (7)
Se2vii—Cs1—Se1xi135.670 (11)Cs1v—Pd1—Cs2xv158.937 (12)
Se2viii—Cs1—Se1xi70.691 (13)Cs2xx—Pd1—Cs2xv87.301 (15)
Se2ix—Cs1—Se1xi94.738 (13)Se2—Pd2—Se2xxi171.45 (3)
Se2—Cs1—Se1xi62.144 (11)Se2—Pd2—Se2iii88.16 (2)
Se1—Cs1—Se1xi100.876 (18)Se2xxi—Pd2—Se2iii91.20 (2)
Se1ix—Cs1—Se1xi86.514 (16)Se2—Pd2—Se2xviii91.20 (2)
Se1x—Cs1—Se1xi150.71 (2)Se2xxi—Pd2—Se2xviii88.16 (2)
Se2vii—Cs1—Pd1152.457 (10)Se2iii—Pd2—Se2xviii171.45 (3)
Se2viii—Cs1—Pd171.604 (10)Se2—Pd2—Pd1xviii125.177 (18)
Se2ix—Cs1—Pd1104.229 (10)Se2xxi—Pd2—Pd1xviii49.289 (12)
Se2—Cs1—Pd135.226 (10)Se2iii—Pd2—Pd1xviii125.176 (18)
Se1—Cs1—Pd170.632 (11)Se2xviii—Pd2—Pd1xviii49.289 (12)
Se1ix—Cs1—Pd1121.430 (10)Se2—Pd2—Pd149.289 (12)
Se1x—Cs1—Pd1129.052 (12)Se2xxi—Pd2—Pd1125.177 (18)
Se1xi—Cs1—Pd134.930 (10)Se2iii—Pd2—Pd149.289 (12)
Se2vii—Cs1—Pd1xii35.225 (10)Se2xviii—Pd2—Pd1125.177 (18)
Se2viii—Cs1—Pd1xii104.228 (10)Pd1xviii—Pd2—Pd1118.54 (2)
Se2ix—Cs1—Pd1xii71.605 (10)Se2—Pd2—U1iv130.638 (16)
Se2—Cs1—Pd1xii152.458 (10)Se2xxi—Pd2—U1iv54.919 (11)
Se1—Cs1—Pd1xii129.051 (12)Se2iii—Pd2—U1iv130.639 (16)
Se1ix—Cs1—Pd1xii34.930 (10)Se2xviii—Pd2—U1iv54.919 (11)
Se1x—Cs1—Pd1xii70.633 (11)Pd1xviii—Pd2—U1iv61.640 (9)
Se1xi—Cs1—Pd1xii121.430 (10)Pd1—Pd2—U1iv179.818 (19)
Pd1—Cs1—Pd1xii156.358 (11)Se2—Pd2—U154.919 (11)
Se2vii—Cs1—Pd1v104.228 (10)Se2xxi—Pd2—U1130.639 (16)
Se2viii—Cs1—Pd1v35.225 (10)Se2iii—Pd2—U154.919 (11)
Se2ix—Cs1—Pd1v152.458 (10)Se2xviii—Pd2—U1130.639 (16)
Se2—Cs1—Pd1v71.605 (10)Pd1xviii—Pd2—U1179.818 (19)
Se1—Cs1—Pd1v34.931 (10)Pd1—Pd2—U161.639 (9)
Se1ix—Cs1—Pd1v129.051 (12)U1iv—Pd2—U1118.178 (18)
Se1x—Cs1—Pd1v121.430 (10)Se2—Pd2—Cs2xv58.042 (13)
Se1xi—Cs1—Pd1v70.632 (11)Se2xxi—Pd2—Cs2xv114.859 (18)
Pd1—Cs1—Pd1v50.637 (12)Se2iii—Pd2—Cs2xv114.859 (18)
Pd1xii—Cs1—Pd1v135.902 (12)Se2xviii—Pd2—Cs2xv58.041 (13)
Se2vii—Cs1—Pd1ix71.605 (10)Pd1xviii—Pd2—Cs2xv68.073 (10)
Se2viii—Cs1—Pd1ix152.458 (10)Pd1—Pd2—Cs2xv68.073 (10)
Se2ix—Cs1—Pd1ix35.225 (10)U1iv—Pd2—Cs2xv112.050 (5)
Se2—Cs1—Pd1ix104.228 (10)U1—Pd2—Cs2xv112.050 (5)
Se1—Cs1—Pd1ix121.430 (10)Se2—Pd2—Cs2xx114.860 (18)
Se1ix—Cs1—Pd1ix70.632 (11)Se2xxi—Pd2—Cs2xx58.041 (13)
Se1x—Cs1—Pd1ix34.930 (10)Se2iii—Pd2—Cs2xx58.041 (13)
Se1xi—Cs1—Pd1ix129.051 (12)Se2xviii—Pd2—Cs2xx114.859 (18)
Pd1—Cs1—Pd1ix135.903 (12)Pd1xviii—Pd2—Cs2xx68.073 (10)
Pd1xii—Cs1—Pd1ix50.638 (12)Pd1—Pd2—Cs2xx68.073 (10)
Pd1v—Cs1—Pd1ix156.358 (11)U1iv—Pd2—Cs2xx112.050 (5)
Se1x—Cs2—Se1xiii136.13 (3)U1—Pd2—Cs2xx112.050 (5)
Se1x—Cs2—Se2ix56.056 (8)Cs2xv—Pd2—Cs2xx86.091 (16)
Se1xiii—Cs2—Se2ix106.862 (13)Pd1vi—Se1—Pd1v84.26 (3)
Se1x—Cs2—Se2xiv106.862 (13)Pd1vi—Se1—U181.29 (2)
Se1xiii—Cs2—Se2xiv56.056 (8)Pd1v—Se1—U181.29 (2)
Se2ix—Cs2—Se2xiv137.91 (2)Pd1vi—Se1—Cs1175.16 (2)
Se1x—Cs2—Se2xv106.862 (13)Pd1v—Se1—Cs191.105 (9)
Se1xiii—Cs2—Se2xv56.056 (8)U1—Se1—Cs199.446 (14)
Se2ix—Cs2—Se2xv54.431 (13)Pd1vi—Se1—Cs1x91.105 (9)
Se2xiv—Cs2—Se2xv108.889 (16)Pd1v—Se1—Cs1x175.16 (2)
Se1x—Cs2—Se2xvi56.056 (8)U1—Se1—Cs1x99.446 (14)
Se1xiii—Cs2—Se2xvi106.862 (13)Cs1—Se1—Cs1x93.487 (16)
Se2ix—Cs2—Se2xvi108.889 (16)Pd1vi—Se1—Cs2x88.67 (2)
Se2xiv—Cs2—Se2xvi54.431 (13)Pd1v—Se1—Cs2x88.67 (2)
Se2xv—Cs2—Se2xvi137.91 (2)U1—Se1—Cs2x166.43 (3)
Se1x—Cs2—Se282.483 (12)Cs1—Se1—Cs2x89.806 (14)
Se1xiii—Cs2—Se2133.760 (13)Cs1x—Se1—Cs2x89.806 (14)
Se2ix—Cs2—Se270.625 (13)Pd2—Se2—Pd182.01 (2)
Se2xiv—Cs2—Se2150.562 (16)Pd2—Se2—U180.043 (17)
Se2xv—Cs2—Se294.230 (11)Pd1—Se2—U179.542 (17)
Se2xvi—Cs2—Se2117.736 (13)Pd2—Se2—Cs1172.72 (2)
Se1x—Cs2—Se2xvii133.761 (13)Pd1—Se2—Cs190.869 (15)
Se1xiii—Cs2—Se2xvii82.482 (12)U1—Se2—Cs1100.224 (13)
Se2ix—Cs2—Se2xvii150.563 (16)Pd2—Se2—Cs2xv89.066 (18)
Se2xiv—Cs2—Se2xvii70.624 (13)Pd1—Se2—Cs2xv87.383 (16)
Se2xv—Cs2—Se2xvii117.735 (13)U1—Se2—Cs2xv163.979 (19)
Se2xvi—Cs2—Se2xvii94.230 (11)Cs1—Se2—Cs2xv89.104 (12)
Se2—Cs2—Se2xvii82.710 (18)Pd2—Se2—Cs299.726 (15)
Se1x—Cs2—Se2ii82.482 (12)Pd1—Se2—Cs2172.903 (19)
Se1xiii—Cs2—Se2ii133.761 (13)U1—Se2—Cs2107.516 (12)
Se2ix—Cs2—Se2ii117.735 (13)Cs1—Se2—Cs287.161 (12)
Se2xiv—Cs2—Se2ii94.229 (11)Cs2xv—Se2—Cs285.771 (11)
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x, y, z; (iv) x, y, z; (v) x+1/2, y, z+1/2; (vi) x1/2, y, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+1/2, y, z+1/2; (ix) x+1/2, y+1/2, z; (x) x, y+1/2, z+1/2; (xi) x+1/2, y, z+1/2; (xii) x, y+1/2, z+1/2; (xiii) x, y+1/2, z1/2; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+1/2, z; (xvi) x1/2, y+1/2, z; (xvii) x, y, z; (xviii) x, y, z; (xix) x1/2, y+1/2, z; (xx) x+1/2, y1/2, z; (xxi) x, y, z.

Experimental details

Crystal data
Chemical formulaCs2UPd3Se6
Mr1296.81
Crystal system, space groupOrthorhombic, Fmmm
Temperature (K)100
a, b, c (Å)10.1034 (5), 15.5046 (8), 17.5503 (8)
V3)2749.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)36.67
Crystal size (mm)0.21 × 0.17 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(face indexed using SADABS; Sheldrick, 2008b)
Tmin, Tmax0.049, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
8099, 963, 921
Rint0.035
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 1.46
No. of reflections963
No. of parameters38
Δρmax, Δρmin (e Å3)1.34, 2.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), CrystalMaker (Palmer, 2009).

 

Acknowledgements

The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Divison of Materials Science and Engineering grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology (IIN).

References

First citationBronger, W., Rennau, R. & Schmitz, D. (1991). Z. Anorg. Allg. Chem. 597, 27–32.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E. & Ibers, J. A. (2008). Acta Cryst. E64, i55–i56.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDaoudi, A. & Noël, H. (1989). J. Less-Common Met. 153, 293–298.  CrossRef CAS Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHaneveld, A. J. K. & Jellinek, F. (1969). J. Less-Common Met. 18, 123–129.  CrossRef CAS Google Scholar
First citationHuang, F. Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123–5126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlepp, K. O., Sparlinek, W. & Boller, H. (1996). J. Alloys Compd, 238, 1–5.  CrossRef CAS Web of Science Google Scholar
First citationLe Page, Y. (1988). J. Appl. Cryst. 21, 983–984.  CrossRef Web of Science IUCr Journals Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTams, G. & Müller-Buschbaum, H. (1992). Z. Anorg. Allg. Chem. 617, 19–22.  CrossRef CAS Web of Science Google Scholar
First citationYao, J. & Ibers, J. A. (2008). Z. Anorg. Allg. Chem. 634, 1645–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds