metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m173-m174

catena-Poly[[[(3,5-di­methyl-1H-pyrazole)­copper(II)]-μ-{N-[1-(2-oxidophen­yl)ethyl­­idene]-L-valinato}] methanol monosolvate]

aSchool of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: zgq1118@163.com

(Received 17 December 2010; accepted 5 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, {[Cu(C13H15NO3)(C5H8N2)]·CH3OH}n, contains two complex mol­ecules and two solvent mol­ecules. Each CuII ion is in a distorted square-pyramidal coordination with one N and two O atoms from the Schiff base ligand and one N atom from the heterocycle in the basal positions and one carboxyl­ate O atom from a neighbouring ligand in the apical position. The apical Cu—O bonds are much longer than the basal Cu—O and Cu—N bonds. The carboxyl­ate groups of the Schiff base ligands bridge the CuII ions, forming helical chains along [100]. The crystal packing is stabilized by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For background to metal complexes with Schiff bases derived from amino acids, see: Basu Baul et al. (2007[Basu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., Holäpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849-4862.]); Casella & Guillotti (1983[Casella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259-2266.]); Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Parekh et al. (2006[Parekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67-72.]); Vigato & Tamburini (2004[Vigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717-2128.]); Zhao et al. (2008[Zhao, G.-Q., Liu, Q.-R., Yang, W.-C., Li, S.-T. & Wang, X. (2008). Acta Cryst. E64, m1250-m1251.], 2009[Zhao, G.-Q., Tian, D.-M., Han, Y.-J., Xue, L.-W. & Peng, Q.-L. (2009). Acta Cryst. E65, m1505.]). For synthetic details, see: Plesch et al. (1997[Plesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433-440.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C13H15NO3)(C5H8N2)]·CH4O

  • Mr = 424.98

  • Orthorhombic, P 21 21 21

  • a = 14.12 (2) Å

  • b = 15.44 (2) Å

  • c = 21.25 (3) Å

  • V = 4634 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.853

  • 23421 measured reflections

  • 8496 independent reflections

  • 4724 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.130

  • S = 1.01

  • 8496 reflections

  • 496 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4318 Friedel pairs

  • Flack parameter: −0.012 (18)

Table 1
Selected bond lengths (Å)

Cu1—O1 1.899 (5)
Cu1—N1 1.978 (5)
Cu1—O2 1.989 (4)
Cu1—N5 2.027 (6)
Cu1—O6i 2.437 (6)
Cu2—O4 1.917 (5)
Cu2—N2 1.979 (5)
Cu2—O5 1.984 (4)
Cu2—N3 2.014 (5)
Cu2—O3 2.369 (5)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6E⋯O5i 0.86 2.01 2.843 (8) 164
N4—H4E⋯O2 0.86 2.06 2.873 (8) 157
O7—H7⋯O4 0.85 2.22 3.066 (14) 179
O8—H8D⋯O1ii 0.82 2.24 3.009 (12) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly et al., 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Basu Baul et al., 2007; Parekh et al., 2006; Zhao et al., 2008, 2009). We report here the crystal structure of the title CuII complex, [Cu(C13H15NO3)(C5H8N2)].CH3OH.

The asymmetric unit of the polymeric title compound consists of two CuII complex molecules and two solvate methanol molecules (Fig. 1). Each of the two CuII ions has a square-pyramidal coordination where the four basal positions are occupied by an O,N,O, donor set from the tridentate Schiff base ligand and the fourth position occupied by one N atom from the 3,5-dimethylpyrazole ligand. The apical position is occupied by a carboxylate O atom from the adjacent tridentate Schiff base ligand. The apical Cu···O bonds are much longer than the basal Cu···O and Cu···N bonds (Table 1). The closest distance between neighbouring CuII ions are 5.803 (6) Å and 5.890 (6) Å, respectively.

The crystal structure is stabilized by intermolecular N—H···O hydrogen bonds between the pyrazole N—H groups as donors and the carboxylate O atoms as acceptors. Additional O—H···O hydrogen bonding involving the methanol solvent molecules is also observed (Table 2 and Fig. 2).

Related literature top

For background to metal complexes with Schiff bases derived from amino acids, see: Basu Baul et al. (2007); Casella & Guillotti (1983); Ganguly et al. (2008); Parekh et al. (2006); Vigato & Tamburini (2004); Zhao et al. (2008, 2009). For synthetic details, see: Plesch et al. (1997).

Experimental top

The title compound was synthesized as described in the literature (Plesch et al., 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and 3,5-dimethylpyrazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 v/v), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days. Blue crystals had formed that were filtered off, washed with water, and dried under vacuum.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 or 0.98 Å (CH) and Uiso(H) = 1.2Ueq(C), C—H = 0.96 Å (CH3) and Uiso(H) = 1.5Ueq(C), with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and with O—H = 0.82 Å and 0.85 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of the crystal packing viewed along the a axis.
catena-Poly[[[(3,5-dimethyl-1H-pyrazole)copper(II)]-µ- {N-[1-(2-oxidophenyl)ethylidene]-L-valinato}] methanol monosolvate] top
Crystal data top
[Cu(C13H15NO3)(C5H8N2)]·CH4OF(000) = 1784
Mr = 424.98Dx = 1.218 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3320 reflections
a = 14.12 (2) Åθ = 2.3–17.8°
b = 15.44 (2) ŵ = 0.97 mm1
c = 21.25 (3) ÅT = 296 K
V = 4634 (11) Å3Block, blue
Z = 80.25 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
8496 independent reflections
Radiation source: fine-focus sealed tube4724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1717
Tmin = 0.794, Tmax = 0.853k = 1816
23421 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0525P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
8496 reflectionsΔρmax = 0.49 e Å3
496 parametersΔρmin = 0.31 e Å3
2 restraintsAbsolute structure: Flack (1983), 4318 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (18)
Crystal data top
[Cu(C13H15NO3)(C5H8N2)]·CH4OV = 4634 (11) Å3
Mr = 424.98Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 14.12 (2) ŵ = 0.97 mm1
b = 15.44 (2) ÅT = 296 K
c = 21.25 (3) Å0.25 × 0.21 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
8496 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4724 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.853Rint = 0.071
23421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.130Δρmax = 0.49 e Å3
S = 1.01Δρmin = 0.31 e Å3
8496 reflectionsAbsolute structure: Flack (1983), 4318 Friedel pairs
496 parametersAbsolute structure parameter: 0.012 (18)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25158 (5)0.08464 (4)0.09864 (3)0.0529 (2)
Cu20.00319 (5)0.39015 (4)0.11651 (3)0.0523 (2)
O10.3151 (3)0.0237 (3)0.1022 (2)0.0763 (14)
O20.1746 (2)0.1914 (2)0.11032 (19)0.0536 (10)
O30.0238 (3)0.2396 (3)0.1001 (2)0.0641 (12)
O40.0751 (3)0.4047 (3)0.1923 (2)0.0670 (13)
O50.0818 (2)0.3982 (3)0.04239 (17)0.0548 (11)
O60.2349 (3)0.3840 (3)0.01337 (19)0.0655 (12)
O80.4396 (9)0.9321 (8)0.2125 (4)0.249 (5)
H8D0.40580.95810.18740.374*
O70.2448 (12)0.5282 (14)0.1852 (6)0.441 (13)
H70.19760.49420.18730.662*
N10.1280 (3)0.0283 (3)0.0830 (2)0.0484 (13)
N20.1155 (3)0.3732 (3)0.1645 (2)0.0488 (13)
N30.1192 (3)0.4188 (3)0.0654 (2)0.0579 (14)
N40.1979 (3)0.3673 (3)0.0691 (2)0.0573 (15)
H4E0.20010.32000.09040.069*
N50.3720 (3)0.1457 (3)0.1255 (3)0.0578 (14)
N60.4471 (3)0.1506 (3)0.0852 (2)0.0589 (15)
H6E0.44780.12980.04760.071*
C10.2882 (5)0.0935 (5)0.0706 (3)0.0666 (19)
C20.3572 (5)0.1620 (6)0.0619 (4)0.096 (3)
H20.41720.15660.07950.115*
C30.3344 (7)0.2360 (6)0.0273 (6)0.120 (4)
H30.38060.27830.02190.144*
C40.2467 (8)0.2491 (6)0.0009 (5)0.114 (3)
H40.23420.29840.02280.136*
C50.1762 (6)0.1862 (5)0.0105 (4)0.086 (2)
H50.11610.19590.00590.103*
C60.1934 (5)0.1082 (4)0.0445 (3)0.0621 (18)
C70.1147 (4)0.0466 (4)0.0553 (3)0.0505 (16)
C80.0473 (4)0.0867 (4)0.0983 (3)0.0473 (14)
H80.00130.08340.06390.057*
C90.0830 (4)0.1800 (4)0.1027 (3)0.0526 (16)
C100.0032 (5)0.0571 (4)0.1607 (3)0.0592 (16)
H100.01130.00580.15800.071*
C110.0586 (5)0.0748 (5)0.2189 (3)0.084 (2)
H11A0.07050.13580.22230.127*
H11B0.11770.04450.21470.127*
H11C0.02630.05500.25590.127*
C120.1034 (4)0.0967 (5)0.1674 (4)0.091 (2)
H12A0.13010.08000.20720.137*
H12B0.14300.07590.13400.137*
H12C0.09920.15870.16530.137*
C130.0147 (4)0.0743 (4)0.0329 (3)0.077 (2)
H13A0.03190.03670.05110.115*
H13B0.00270.13290.04580.115*
H13C0.01140.07060.01220.115*
C140.0568 (5)0.3587 (5)0.2436 (3)0.065 (2)
C150.1329 (5)0.3434 (5)0.2870 (4)0.077 (2)
H150.19140.36900.27920.092*
C160.1225 (7)0.2919 (6)0.3399 (4)0.093 (3)
H160.17470.28120.36540.111*
C170.0353 (7)0.2557 (6)0.3556 (4)0.092 (3)
H170.02800.22140.39120.111*
C180.0402 (5)0.2732 (5)0.3158 (4)0.080 (2)
H180.09860.24920.32610.096*
C190.0355 (5)0.3254 (4)0.2598 (3)0.0561 (18)
C200.1224 (5)0.3417 (4)0.2217 (3)0.0562 (17)
C210.2190 (4)0.3199 (5)0.2517 (3)0.084 (2)
H21A0.26870.34620.22750.126*
H21B0.22080.34170.29400.126*
H21C0.22760.25820.25220.126*
C220.2019 (4)0.3908 (4)0.1250 (3)0.0514 (16)
H220.24820.34460.13220.062*
C230.1728 (4)0.3904 (4)0.0544 (3)0.0483 (16)
C240.2478 (5)0.4798 (4)0.1436 (3)0.0593 (17)
H240.24980.48180.18960.071*
C250.1882 (5)0.5574 (5)0.1217 (4)0.085 (2)
H25A0.12440.55080.13640.127*
H25B0.21460.60980.13850.127*
H25C0.18850.56000.07660.127*
C260.3513 (5)0.4860 (5)0.1202 (4)0.098 (3)
H26A0.37610.54230.12980.147*
H26B0.38890.44250.14070.147*
H26C0.35300.47690.07550.147*
C270.3314 (5)0.1887 (6)0.2353 (3)0.105 (3)
H27A0.27880.22610.22630.157*
H27B0.36550.21070.27100.157*
H27C0.30850.13160.24450.157*
C280.3973 (5)0.1852 (5)0.1781 (3)0.070 (2)
C290.4918 (5)0.2168 (5)0.1726 (3)0.083 (2)
H290.52640.24700.20270.100*
C300.5211 (4)0.1931 (4)0.1128 (4)0.0708 (19)
C310.6134 (5)0.2107 (6)0.0764 (4)0.116 (3)
H31A0.62360.27200.07350.174*
H31B0.60870.18660.03490.174*
H31C0.66560.18440.09820.174*
C320.0749 (6)0.5596 (5)0.0159 (5)0.119 (3)
H32A0.01220.53560.01360.178*
H32B0.09050.58620.02360.178*
H32C0.07730.60230.04870.178*
C330.1462 (5)0.4871 (5)0.0302 (4)0.077 (2)
C340.2404 (5)0.4760 (5)0.0111 (4)0.094 (3)
H340.27560.51380.01370.113*
C350.2713 (5)0.3982 (5)0.0360 (4)0.078 (2)
C360.3655 (5)0.3518 (5)0.0341 (5)0.116 (3)
H36A0.37690.32440.07400.174*
H36B0.41500.39270.02560.174*
H36C0.36440.30860.00160.174*
C370.3268 (13)0.5866 (11)0.1693 (9)0.362 (15)
H37A0.34510.57760.12630.544*
H37B0.37930.57350.19640.544*
H37C0.30830.64590.17510.544*
C380.5428 (9)0.9492 (12)0.1950 (9)0.341 (15)
H38A0.57670.96840.23160.512*
H38B0.54550.99320.16310.512*
H38C0.57090.89690.17940.512*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0443 (4)0.0502 (4)0.0643 (5)0.0002 (4)0.0002 (4)0.0025 (4)
Cu20.0433 (4)0.0560 (4)0.0576 (4)0.0004 (4)0.0002 (4)0.0002 (4)
O10.065 (3)0.055 (3)0.109 (4)0.011 (2)0.011 (3)0.009 (3)
O20.046 (2)0.046 (2)0.068 (3)0.0055 (18)0.004 (2)0.002 (2)
O30.059 (3)0.043 (2)0.090 (3)0.010 (2)0.000 (2)0.006 (2)
O40.051 (2)0.092 (4)0.058 (3)0.007 (3)0.006 (2)0.001 (3)
O50.044 (2)0.068 (3)0.052 (2)0.006 (2)0.0053 (18)0.004 (2)
O60.050 (2)0.087 (3)0.059 (3)0.006 (3)0.009 (2)0.003 (2)
O80.336 (14)0.283 (13)0.128 (7)0.032 (13)0.011 (8)0.050 (8)
O70.420 (19)0.72 (3)0.182 (11)0.36 (2)0.066 (11)0.203 (16)
N10.053 (3)0.039 (3)0.053 (3)0.001 (2)0.007 (3)0.001 (3)
N20.047 (3)0.046 (3)0.053 (3)0.002 (2)0.004 (2)0.002 (3)
N30.052 (3)0.046 (3)0.076 (4)0.003 (3)0.006 (3)0.009 (3)
N40.051 (3)0.055 (4)0.066 (4)0.002 (3)0.005 (3)0.020 (3)
N50.050 (3)0.067 (4)0.057 (4)0.004 (3)0.002 (3)0.007 (3)
N60.046 (3)0.074 (4)0.057 (4)0.009 (3)0.006 (3)0.001 (3)
C10.068 (4)0.047 (5)0.084 (5)0.009 (4)0.021 (4)0.014 (4)
C20.069 (5)0.081 (6)0.138 (8)0.014 (5)0.033 (5)0.024 (6)
C30.112 (8)0.052 (6)0.195 (12)0.018 (6)0.058 (8)0.017 (7)
C40.123 (7)0.072 (5)0.146 (8)0.005 (6)0.062 (8)0.027 (5)
C50.098 (6)0.061 (5)0.099 (6)0.025 (5)0.036 (5)0.032 (5)
C60.073 (4)0.046 (4)0.068 (4)0.006 (4)0.029 (4)0.004 (4)
C70.053 (4)0.043 (4)0.055 (4)0.004 (3)0.009 (3)0.008 (3)
C80.045 (3)0.044 (4)0.053 (4)0.002 (3)0.002 (3)0.002 (4)
C90.063 (4)0.047 (4)0.048 (4)0.004 (3)0.004 (3)0.006 (4)
C100.059 (4)0.054 (4)0.065 (4)0.013 (4)0.006 (4)0.000 (3)
C110.099 (6)0.094 (6)0.061 (5)0.005 (5)0.010 (4)0.005 (5)
C120.067 (5)0.096 (6)0.110 (6)0.010 (5)0.037 (4)0.002 (6)
C130.072 (5)0.069 (4)0.089 (5)0.021 (4)0.006 (4)0.010 (4)
C140.072 (5)0.071 (5)0.051 (5)0.021 (4)0.012 (4)0.007 (4)
C150.053 (4)0.092 (6)0.085 (6)0.015 (4)0.017 (4)0.017 (5)
C160.106 (7)0.092 (7)0.080 (6)0.046 (6)0.028 (6)0.006 (6)
C170.113 (7)0.085 (7)0.079 (6)0.037 (6)0.021 (6)0.003 (5)
C180.078 (5)0.077 (6)0.085 (6)0.009 (4)0.007 (5)0.008 (5)
C190.062 (4)0.058 (5)0.048 (4)0.011 (3)0.004 (3)0.000 (4)
C200.070 (5)0.054 (4)0.044 (4)0.005 (4)0.000 (3)0.004 (3)
C210.061 (5)0.113 (6)0.077 (5)0.003 (4)0.011 (4)0.026 (5)
C220.041 (3)0.060 (4)0.053 (4)0.004 (3)0.002 (3)0.006 (4)
C230.050 (4)0.041 (4)0.054 (4)0.001 (3)0.007 (3)0.001 (4)
C240.060 (4)0.056 (4)0.062 (4)0.014 (4)0.011 (4)0.009 (3)
C250.091 (5)0.072 (5)0.091 (6)0.011 (4)0.006 (5)0.006 (5)
C260.057 (4)0.123 (7)0.113 (7)0.038 (4)0.011 (5)0.010 (6)
C270.096 (6)0.147 (8)0.071 (5)0.009 (6)0.014 (5)0.035 (6)
C280.060 (4)0.097 (6)0.052 (5)0.011 (4)0.001 (4)0.013 (4)
C290.075 (5)0.102 (6)0.071 (5)0.013 (5)0.016 (5)0.031 (4)
C300.053 (4)0.079 (5)0.081 (5)0.012 (3)0.005 (4)0.014 (5)
C310.067 (5)0.151 (9)0.130 (8)0.042 (5)0.015 (5)0.062 (7)
C320.087 (6)0.092 (7)0.177 (9)0.024 (5)0.025 (6)0.060 (7)
C330.058 (4)0.057 (5)0.115 (7)0.005 (4)0.006 (4)0.017 (5)
C340.063 (5)0.073 (5)0.147 (7)0.006 (5)0.029 (6)0.039 (5)
C350.065 (5)0.061 (5)0.109 (6)0.009 (4)0.019 (4)0.034 (5)
C360.066 (5)0.113 (7)0.170 (9)0.016 (5)0.037 (5)0.059 (7)
C370.61 (5)0.23 (2)0.25 (2)0.16 (3)0.13 (3)0.019 (18)
C380.29 (2)0.246 (19)0.49 (3)0.122 (17)0.29 (2)0.06 (2)
Geometric parameters (Å, º) top
Cu1—O11.899 (5)C13—H13B0.9600
Cu1—N11.978 (5)C13—H13C0.9600
Cu1—O21.989 (4)C14—C151.435 (9)
Cu1—N52.027 (6)C14—C191.443 (9)
Cu1—O6i2.437 (6)C15—C161.386 (10)
Cu2—O41.917 (5)C15—H150.9300
Cu2—N21.979 (5)C16—C171.392 (11)
Cu2—O51.984 (4)C16—H160.9300
Cu2—N32.014 (5)C17—C181.388 (9)
Cu2—O32.369 (5)C17—H170.9300
O1—C11.327 (8)C18—C191.438 (10)
O2—C91.316 (7)C18—H180.9300
O3—C91.244 (7)C19—C201.492 (9)
O4—C141.328 (8)C20—C211.543 (9)
O5—C231.316 (6)C21—H21A0.9600
O6—C231.241 (7)C21—H21B0.9600
O6—Cu1ii2.437 (6)C21—H21C0.9600
O8—C381.526 (9)C22—C231.555 (8)
O8—H8D0.8200C22—C241.568 (8)
O7—C371.506 (10)C22—H220.9800
O7—H70.8495C24—C251.536 (9)
N1—C71.311 (7)C24—C261.546 (9)
N1—C81.488 (7)C24—H240.9800
N2—C201.314 (7)C25—H25A0.9600
N2—C221.506 (7)C25—H25B0.9600
N3—C331.349 (8)C25—H25C0.9600
N3—N41.369 (7)C26—H26A0.9600
N4—C351.341 (7)C26—H26B0.9600
N4—H4E0.8600C26—H26C0.9600
N5—C281.324 (8)C27—C281.533 (9)
N5—N61.365 (7)C27—H27A0.9600
N6—C301.366 (7)C27—H27B0.9600
N6—H6E0.8600C27—H27C0.9600
C1—C21.451 (10)C28—C291.426 (9)
C1—C61.467 (9)C29—C301.384 (9)
C2—C31.396 (12)C29—H290.9300
C2—H20.9300C30—C311.541 (9)
C3—C41.376 (13)C31—H31A0.9600
C3—H30.9300C31—H31B0.9600
C4—C51.405 (11)C31—H31C0.9600
C4—H40.9300C32—C331.535 (10)
C5—C61.425 (9)C32—H32A0.9600
C5—H50.9300C32—H32B0.9600
C6—C71.480 (9)C32—H32C0.9600
C7—C131.551 (8)C33—C341.402 (10)
C8—C91.529 (8)C34—C351.382 (9)
C8—C101.574 (8)C34—H340.9300
C8—H80.9800C35—C361.512 (9)
C10—C111.537 (9)C36—H36A0.9600
C10—C121.548 (9)C36—H36B0.9600
C10—H100.9800C36—H36C0.9600
C11—H11A0.9600C37—H37A0.9600
C11—H11B0.9600C37—H37B0.9600
C11—H11C0.9600C37—H37C0.9600
C12—H12A0.9600C38—H38A0.9600
C12—H12B0.9600C38—H38B0.9600
C12—H12C0.9600C38—H38C0.9600
C13—H13A0.9600
O1—Cu1—N192.1 (2)C16—C15—H15118.8
O1—Cu1—O2169.2 (2)C14—C15—H15118.8
N1—Cu1—O284.4 (2)C15—C16—C17121.2 (8)
O1—Cu1—N590.1 (2)C15—C16—H16119.4
N1—Cu1—N5172.9 (2)C17—C16—H16119.4
O2—Cu1—N592.2 (2)C18—C17—C16117.1 (8)
O1—Cu1—O6i100.21 (19)C18—C17—H17121.4
N1—Cu1—O6i89.58 (17)C16—C17—H17121.4
O2—Cu1—O6i90.00 (16)C17—C18—C19125.3 (7)
N5—Cu1—O6i96.69 (19)C17—C18—H18117.4
O4—Cu2—N291.8 (2)C19—C18—H18117.4
O4—Cu2—O5168.51 (19)C18—C19—C14116.0 (6)
N2—Cu2—O584.5 (2)C18—C19—C20120.4 (6)
O4—Cu2—N389.8 (2)C14—C19—C20123.6 (6)
N2—Cu2—N3174.5 (2)N2—C20—C19120.3 (6)
O5—Cu2—N392.9 (2)N2—C20—C21121.9 (6)
O4—Cu2—O3100.00 (19)C19—C20—C21117.8 (6)
N2—Cu2—O392.86 (17)C20—C21—H21A109.5
O5—Cu2—O391.09 (17)C20—C21—H21B109.5
N3—Cu2—O392.08 (19)H21A—C21—H21B109.5
C1—O1—Cu1124.0 (4)C20—C21—H21C109.5
C9—O2—Cu1114.3 (4)H21A—C21—H21C109.5
C9—O3—Cu2143.2 (4)H21B—C21—H21C109.5
C14—O4—Cu2121.6 (4)N2—C22—C23108.8 (4)
C23—O5—Cu2115.5 (4)N2—C22—C24110.7 (5)
C23—O6—Cu1ii136.6 (4)C23—C22—C24110.9 (5)
C38—O8—H8D108.2N2—C22—H22108.8
C37—O7—H7170.2C23—C22—H22108.8
C7—N1—C8121.5 (5)C24—C22—H22108.8
C7—N1—Cu1126.1 (4)O6—C23—O5124.1 (5)
C8—N1—Cu1111.9 (4)O6—C23—C22119.5 (5)
C20—N2—C22121.5 (5)O5—C23—C22116.5 (5)
C20—N2—Cu2126.1 (4)C25—C24—C26111.8 (5)
C22—N2—Cu2112.1 (4)C25—C24—C22112.4 (5)
C33—N3—N4104.8 (5)C26—C24—C22111.3 (5)
C33—N3—Cu2134.5 (4)C25—C24—H24107.0
N4—N3—Cu2120.2 (4)C26—C24—H24107.0
C35—N4—N3113.0 (5)C22—C24—H24107.0
C35—N4—H4E123.5C24—C25—H25A109.5
N3—N4—H4E123.5C24—C25—H25B109.5
C28—N5—N6107.2 (5)H25A—C25—H25B109.5
C28—N5—Cu1132.7 (4)C24—C25—H25C109.5
N6—N5—Cu1120.1 (4)H25A—C25—H25C109.5
N5—N6—C30110.5 (5)H25B—C25—H25C109.5
N5—N6—H6E124.7C24—C26—H26A109.5
C30—N6—H6E124.7C24—C26—H26B109.5
O1—C1—C2117.7 (7)H26A—C26—H26B109.5
O1—C1—C6125.4 (6)C24—C26—H26C109.5
C2—C1—C6116.9 (8)H26A—C26—H26C109.5
C3—C2—C1120.6 (8)H26B—C26—H26C109.5
C3—C2—H2119.7C28—C27—H27A109.5
C1—C2—H2119.7C28—C27—H27B109.5
C4—C3—C2122.8 (9)H27A—C27—H27B109.5
C4—C3—H3118.6C28—C27—H27C109.5
C2—C3—H3118.6H27A—C27—H27C109.5
C3—C4—C5118.5 (9)H27B—C27—H27C109.5
C3—C4—H4120.8N5—C28—C29109.9 (6)
C5—C4—H4120.8N5—C28—C27121.5 (6)
C4—C5—C6122.5 (8)C29—C28—C27128.5 (6)
C4—C5—H5118.7C30—C29—C28105.4 (6)
C6—C5—H5118.7C30—C29—H29127.3
C5—C6—C1118.5 (7)C28—C29—H29127.3
C5—C6—C7119.6 (7)N6—C30—C29107.1 (6)
C1—C6—C7121.8 (6)N6—C30—C31121.1 (7)
N1—C7—C6121.9 (6)C29—C30—C31131.8 (7)
N1—C7—C13120.8 (5)C30—C31—H31A109.5
C6—C7—C13117.3 (6)C30—C31—H31B109.5
N1—C8—C9109.4 (4)H31A—C31—H31B109.5
N1—C8—C10110.8 (5)C30—C31—H31C109.5
C9—C8—C10111.8 (5)H31A—C31—H31C109.5
N1—C8—H8108.2H31B—C31—H31C109.5
C9—C8—H8108.2C33—C32—H32A109.5
C10—C8—H8108.2C33—C32—H32B109.5
O3—C9—O2124.6 (6)H32A—C32—H32B109.5
O3—C9—C8118.2 (5)C33—C32—H32C109.5
O2—C9—C8117.2 (5)H32A—C32—H32C109.5
C11—C10—C12112.0 (6)H32B—C32—H32C109.5
C11—C10—C8111.6 (5)N3—C33—C34109.5 (6)
C12—C10—C8112.2 (5)N3—C33—C32119.6 (6)
C11—C10—H10106.9C34—C33—C32130.9 (7)
C12—C10—H10106.9C35—C34—C33107.2 (6)
C8—C10—H10106.9C35—C34—H34126.4
C10—C11—H11A109.5C33—C34—H34126.4
C10—C11—H11B109.5N4—C35—C34105.5 (6)
H11A—C11—H11B109.5N4—C35—C36121.6 (6)
C10—C11—H11C109.5C34—C35—C36132.8 (6)
H11A—C11—H11C109.5C35—C36—H36A109.5
H11B—C11—H11C109.5C35—C36—H36B109.5
C10—C12—H12A109.5H36A—C36—H36B109.5
C10—C12—H12B109.5C35—C36—H36C109.5
H12A—C12—H12B109.5H36A—C36—H36C109.5
C10—C12—H12C109.5H36B—C36—H36C109.5
H12A—C12—H12C109.5O7—C37—H37A109.5
H12B—C12—H12C109.5O7—C37—H37B109.5
C7—C13—H13A109.5H37A—C37—H37B109.5
C7—C13—H13B109.5O7—C37—H37C109.5
H13A—C13—H13B109.5H37A—C37—H37C109.5
C7—C13—H13C109.5H37B—C37—H37C109.5
H13A—C13—H13C109.5O8—C38—H38A109.5
H13B—C13—H13C109.5O8—C38—H38B109.5
O4—C14—C15118.0 (7)H38A—C38—H38B109.5
O4—C14—C19124.3 (6)O8—C38—H38C109.5
C15—C14—C19117.7 (7)H38A—C38—H38C109.5
C16—C15—C14122.4 (8)H38B—C38—H38C109.5
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6E···O5i0.862.012.843 (8)164
N4—H4E···O20.862.062.873 (8)157
O7—H7···O40.852.223.066 (14)179
O8—H8D···O1iii0.822.243.009 (12)157
Symmetry codes: (i) x+1/2, y+1/2, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C13H15NO3)(C5H8N2)]·CH4O
Mr424.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)14.12 (2), 15.44 (2), 21.25 (3)
V3)4634 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.794, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
23421, 8496, 4724
Rint0.071
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.130, 1.01
No. of reflections8496
No. of parameters496
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.31
Absolute structureFlack (1983), 4318 Friedel pairs
Absolute structure parameter0.012 (18)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O11.899 (5)Cu2—O41.917 (5)
Cu1—N11.978 (5)Cu2—N21.979 (5)
Cu1—O21.989 (4)Cu2—O51.984 (4)
Cu1—N52.027 (6)Cu2—N32.014 (5)
Cu1—O6i2.437 (6)Cu2—O32.369 (5)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6E···O5i0.862.012.843 (8)164
N4—H4E···O20.862.062.873 (8)157
O7—H7···O40.852.223.066 (14)179
O8—H8D···O1ii0.822.243.009 (12)157
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z.
 

Acknowledgements

This research was supported by the National Sciences Foundation of China (Nos. 20676057 and 20877036) and the Top-class Foundation of Pingdingshan University (No. 2008010).

References

First citationBasu Baul, T. S., Masharing C., Ruisi, G., Jirásko, R., Holäpek, M., de Vos, D., Wolstenholme, D. & Linden, A. (2007). J. Organomet. Chem. 692, 4849–4862.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasella, L. & Guillotti, M. (1983). Inorg. Chem. 22, 2259–2266.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationParekh, H. M., Mehta, S. R. & Patel, M. N. (2006). Russ. J. Inorg. Chem. 35, 67–72.  Web of Science CrossRef Google Scholar
First citationPlesch, G., Friebel, C., Warda, S. A., Sivý, J. & Švajlenová, O. (1997). Transition Met. Chem. 22, 433–440.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2004). Coord. Chem. Rev. 248, 1717–2128.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G.-Q., Liu, Q.-R., Yang, W.-C., Li, S.-T. & Wang, X. (2008). Acta Cryst. E64, m1250–m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-Q., Tian, D.-M., Han, Y.-J., Xue, L.-W. & Peng, Q.-L. (2009). Acta Cryst. E65, m1505.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m173-m174
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds