metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m259-m260

Poly[[bis­­(2,2-bi­pyridine)­bis­­[μ6-5-(carboxyl­atometh­­oxy)benzene-1,3-di­carboxyl­ato]trimanganese(II)] monohydrate]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.cn

(Received 6 January 2011; accepted 20 January 2011; online 26 January 2011)

The title compound, {[Mn3(C10H5O7)2(C10H8N2)2]·H2O}n, was synthesized under hydro­thermal conditions. Six carboxyl­ate groups of six 5-(carboxyl­atometh­oxy)benzene-1,3-dicarboxyl­ate anions (OABDC3−) join three MnII ions into a trinuclear centrosymmetric [Mn3(μ2-COO)6] unit with one Mn site situated on a centre of inversion. The latter MnII ion exhibits a distorted MnO6 coordination, whereas the other MnII ion has a trigonal–bipyramidal MnN2O3 coordination environment resulting from three carboxylate O atoms and the two N atoms of the bipyridine ligand. Adjacent units are linked to each other by OABDC3− ligands into a layer parallel to (010). Within the layer, O—H⋯O hydrogen-bonding inter­actions involving the uncoordinated and half-occupied water mol­ecule and the free carboxyl­ate O atoms are observed. The layers stack along [010], constructing a three-dimensional structure through ππ inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.473 (5) Å.

Related literature

For the construction of metal-organic frameworks with polycarboxyl­ate ligands, see: Xing et al. (2010[Xing, X.-Y., Song, X.-Y., Yang, P.-P., Liu, R.-N., Li, L.-C. & Liao, D.-Z. (2010). J. Mol. Struct. 967, 196-200.]); Cao et al. (2004[Cao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). CrystEngComm. 6, 315-317.], 2007[Cao, X.-Y., Zhang, J., Li, Z.-J., Cheng, J.-K. & Yao, Y.-G. (2007). CrystEngComm. 9, 806-814.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn3(C10H5O7)2(C10H8N2)2]·H2O

  • Mr = 969.48

  • Monoclinic, P 21 /n

  • a = 8.5683 (1) Å

  • b = 25.2280 (4) Å

  • c = 9.7685 (1) Å

  • β = 114.633 (1)°

  • V = 1919.41 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 296 K

  • 0.37 × 0.19 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.907

  • 16528 measured reflections

  • 3350 independent reflections

  • 3012 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.123

  • S = 1.10

  • 3350 reflections

  • 292 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O7i 2.100 (2)
Mn1—O3ii 2.148 (2)
Mn1—O1 2.175 (2)
Mn1—N2 2.228 (3)
Mn1—N1 2.251 (3)
Mn2—O4iii 2.108 (2)
Mn2—O6iv 2.159 (2)
Mn2—O1 2.322 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) -x, -y, -z-1; (iv) -x-1, -y, -z-1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2iii 0.85 (1) 2.19 (2) 3.015 (5) 164 (6)
Symmetry code: (iii) -x, -y, -z-1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Aromatic polycarboxylic acids like 1,3,5-benzenetricarboxylate (H3btc) and 1,2,4,5-benzenetetracarboxylate (H4btec) are widely used to construct metal-organic frameworks (Xing et al., 2010). Aromatic polycarboxylate ligands with rigid and flexible carboxyl group are less reported. 5-oxyacetato-1,3-benzenebiscarboxylic acid (H3OABDC) is a ligand with two rigid carboxyl groups and one flexible oxyacetato group. Previous structural studies including this ligand have also been reported (Cao et al., 2004, 2007).

The title compound, [Mn3(C10H5O7)2(C10H8N2)2].H2O, crystallizes with two MnII ions (Mn1 on a general position, Mn2 on a centre of inversion), one OABDC3- trianion, one chelating 2,2-bipyridine (bipy) ligand and one water molecule (half-occupied) in the asymmetric unit. Mn1 is five-coordinated by two N atoms from the bipy ligand, one O atom from one flexible carboxyl group of the OABDC3- anion and two O atoms from two rigid carboxyl groups of the OABDC3- anion to form a distorted trigonal-bipyramidal environment. Mn2 is six-coordinated by two O atoms from two flexible carboxyl groups of the OABDC3- anion and four oxygen atoms from four rigid carboxyl groups of adjacent OABDC3- anions to form a distorted octahedral environment (Table 1, Fig. 1).

Six OABDC3- anions join three MnII ions through their carboxyl groups. As a result, trinuclear [Mn32-COO)6]n layers are formed in which Mn2 sits on a centre of inversion of each trinuclear unit. These layers are oriented parallel to (010). Uncoordinated water molecules interact with non-bonded O atoms of the carboxylate groups within the layers through relatively weak O—H···O hydrogen-bonding interactions (Table 2, Fig. 2).

The bipy ligands decorate the top and bottom of each layer. Between parallel pyridine rings of adjacent layers exist ππ interactions with a centroid- centroid distance of 3.473 (5) Å that consolidate the packing of the structure along [010] into a three-dimensional framework (Fig. 3).

Related literature top

For the construction of metal-organic frameworks with polycarboxylate ligands, see: Xing et al. (2010); Cao et al. (2004, 2007).

Experimental top

All reagents were purchased commercially and used without further purification. A mixture of 5-oxyacetato-1,3-benzenebiscarboxylic acid (H3OABDC; 0.1205 g, 0.5 mmol), MnCl2.4H2O (0.0976 g, 0.5 mmol), bipyridine (0.0786 g, 0.5 mmol), was dissolved with NaOH (0.0101 g, 0.25 mmol) in water (15 ml) and loaded in a 25 ml stainless steel reactor with a telflon liner. The autoclave was heated at 433 K for 72 h, and then cooled to room temperature over 3 days with a cooling rate of 5 K per hour. Yellow single crystals of the title compound were obtained by slow evaporation of the filtrate over a few days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 for aromatic C atoms and 0.97Å for methylen C atoms with Uiso(H) = 1.2Ueq(C)]. The water H-atoms were located in a difference Fourier map and refined with an O—H distance restrained to 0.85 (2)Å [Uiso(H) = 1.2Ueq(O)]. The lattice water (O1W) molecule shows half-occupation.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Brandenburg, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title the compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (1) x + 1,y,z + 1; (2) x,y,z + 1; (3) -x,-y,-z - 1; (4) -x - 1,-y,-z - 1; (5) -x,-y,-z.]
[Figure 2] Fig. 2. two-dimensional layered structure (bipys are omitted for clarity).
[Figure 3] Fig. 3. View of ππ interactions between layers.
Poly[[bis(2,2-bipyridine)bis[µ6-5-(carboxylatomethoxy)benzene-1,3- dicarboxylato]trimanganese(II)] monohydrate] top
Crystal data top
[Mn3(C10H5O7)2(C10H8N2)2]·H2OF(000) = 982
Mr = 969.48Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8045 reflections
a = 8.5683 (1) Åθ = 2.4–27.7°
b = 25.2280 (4) ŵ = 1.05 mm1
c = 9.7685 (1) ÅT = 296 K
β = 114.633 (1)°Block, yellow
V = 1919.41 (4) Å30.37 × 0.19 × 0.09 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
3350 independent reflections
Radiation source: fine-focus sealed tube3012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.786, Tmax = 0.907k = 2430
16528 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0743P)2 + 1.9128P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 1.11 e Å3
6 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Mn3(C10H5O7)2(C10H8N2)2]·H2OV = 1919.41 (4) Å3
Mr = 969.48Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.5683 (1) ŵ = 1.05 mm1
b = 25.2280 (4) ÅT = 296 K
c = 9.7685 (1) Å0.37 × 0.19 × 0.09 mm
β = 114.633 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3012 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.907Rint = 0.023
16528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.11 e Å3
3350 reflectionsΔρmin = 0.47 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.23443 (6)0.121021 (17)0.11506 (5)0.02566 (17)
Mn20.00000.00000.00000.02189 (18)
O1W0.6212 (6)0.12729 (17)0.9008 (6)0.0426 (12)0.50
H1WB0.5137 (17)0.130 (3)0.874 (7)0.051*0.50
H1WA0.659 (7)0.111 (3)0.984 (5)0.051*0.50
O10.0588 (3)0.08005 (8)0.0861 (2)0.0297 (5)
O20.2531 (3)0.12144 (9)0.1396 (2)0.0353 (5)
O30.1568 (3)0.11891 (9)0.7023 (3)0.0416 (6)
O40.0038 (3)0.04991 (9)0.8255 (2)0.0387 (6)
O50.3626 (3)0.00513 (9)0.5459 (2)0.0337 (5)
O60.7274 (3)0.01469 (9)0.8866 (2)0.0337 (5)
O70.5860 (3)0.06004 (9)0.7894 (3)0.0408 (6)
N10.1153 (4)0.20221 (11)0.0619 (3)0.0344 (6)
N20.4486 (3)0.17919 (10)0.1761 (3)0.0308 (6)
C10.0167 (3)0.08164 (10)0.3438 (3)0.0207 (6)
C20.0778 (4)0.09280 (10)0.4528 (3)0.0213 (6)
H20.17690.11280.42850.026*
C30.0115 (4)0.07361 (10)0.5978 (3)0.0217 (6)
C40.1610 (4)0.04408 (11)0.6359 (3)0.0227 (6)
H40.21870.03080.73300.027*
C50.2231 (3)0.03463 (11)0.5281 (3)0.0228 (6)
C60.1349 (4)0.05419 (11)0.3831 (3)0.0232 (6)
H60.17860.04870.31160.028*
C70.1182 (4)0.09562 (10)0.1816 (3)0.0237 (6)
C80.0547 (4)0.08148 (12)0.7170 (3)0.0269 (6)
C90.4589 (4)0.02186 (12)0.6826 (3)0.0306 (7)
H9A0.50730.05370.66050.037*
H9B0.38210.03260.72770.037*
C100.6025 (4)0.01101 (12)0.7951 (3)0.0264 (6)
C110.0531 (5)0.21147 (17)0.0082 (4)0.0468 (9)
H110.12780.18270.01740.056*
C120.1217 (6)0.2624 (2)0.0112 (4)0.0587 (12)
H120.23970.26780.05140.070*
C130.0103 (6)0.30430 (18)0.0307 (5)0.0613 (12)
H130.05210.33880.02100.074*
C140.1621 (6)0.29541 (15)0.0868 (4)0.0514 (10)
H140.23820.32380.11550.062*
C150.2239 (4)0.24397 (13)0.1008 (3)0.0342 (7)
C160.4077 (4)0.23094 (12)0.1557 (3)0.0318 (7)
C170.5338 (5)0.26898 (13)0.1875 (4)0.0440 (9)
H170.50400.30460.17240.053*
C180.7043 (5)0.25413 (15)0.2416 (4)0.0479 (9)
H180.78990.27960.26440.057*
C190.7455 (5)0.20131 (15)0.2613 (4)0.0456 (9)
H190.85890.19000.29680.055*
C200.6131 (4)0.16548 (13)0.2268 (4)0.0381 (8)
H200.64030.12960.23970.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0318 (3)0.0250 (3)0.0198 (3)0.00594 (17)0.0103 (2)0.00228 (16)
Mn20.0203 (3)0.0264 (3)0.0174 (3)0.0036 (2)0.0062 (2)0.0038 (2)
O1W0.031 (2)0.022 (2)0.081 (4)0.0176 (19)0.030 (3)0.026 (2)
O10.0381 (12)0.0346 (11)0.0175 (9)0.0066 (9)0.0128 (9)0.0019 (8)
O20.0355 (13)0.0405 (13)0.0266 (11)0.0142 (10)0.0096 (10)0.0066 (9)
O30.0529 (15)0.0437 (14)0.0397 (13)0.0147 (11)0.0308 (12)0.0004 (10)
O40.0457 (14)0.0523 (14)0.0230 (11)0.0026 (11)0.0191 (10)0.0108 (10)
O50.0225 (11)0.0500 (13)0.0265 (11)0.0143 (9)0.0081 (9)0.0015 (9)
O60.0240 (11)0.0355 (12)0.0331 (11)0.0025 (9)0.0036 (9)0.0045 (9)
O70.0329 (12)0.0268 (12)0.0507 (14)0.0042 (9)0.0056 (11)0.0036 (10)
N10.0399 (16)0.0386 (15)0.0291 (13)0.0006 (12)0.0188 (12)0.0027 (11)
N20.0389 (15)0.0249 (13)0.0306 (13)0.0035 (11)0.0164 (12)0.0029 (10)
C10.0251 (14)0.0191 (13)0.0180 (13)0.0014 (11)0.0091 (11)0.0008 (10)
C20.0230 (14)0.0194 (13)0.0215 (13)0.0018 (11)0.0093 (11)0.0003 (10)
C30.0256 (14)0.0219 (14)0.0192 (13)0.0039 (11)0.0110 (11)0.0018 (10)
C40.0222 (14)0.0259 (14)0.0168 (12)0.0006 (11)0.0050 (11)0.0017 (10)
C50.0181 (13)0.0262 (14)0.0225 (13)0.0007 (11)0.0069 (11)0.0039 (11)
C60.0233 (14)0.0288 (14)0.0181 (13)0.0016 (11)0.0091 (11)0.0034 (11)
C70.0302 (15)0.0199 (13)0.0200 (13)0.0019 (12)0.0096 (12)0.0011 (11)
C80.0298 (16)0.0321 (16)0.0214 (14)0.0043 (13)0.0132 (12)0.0056 (12)
C90.0236 (15)0.0301 (16)0.0330 (16)0.0061 (12)0.0067 (13)0.0023 (13)
C100.0220 (15)0.0307 (16)0.0273 (15)0.0029 (12)0.0111 (12)0.0002 (12)
C110.044 (2)0.062 (2)0.0393 (19)0.0037 (18)0.0220 (16)0.0068 (17)
C120.057 (2)0.085 (3)0.042 (2)0.029 (2)0.0267 (19)0.013 (2)
C130.081 (3)0.052 (3)0.053 (2)0.029 (2)0.030 (2)0.008 (2)
C140.068 (3)0.0360 (19)0.051 (2)0.0100 (19)0.025 (2)0.0001 (16)
C150.050 (2)0.0301 (16)0.0258 (15)0.0028 (14)0.0192 (14)0.0017 (12)
C160.0471 (19)0.0265 (15)0.0246 (15)0.0049 (14)0.0177 (14)0.0018 (12)
C170.063 (3)0.0251 (16)0.048 (2)0.0093 (16)0.0268 (18)0.0055 (14)
C180.053 (2)0.046 (2)0.052 (2)0.0217 (18)0.0289 (18)0.0113 (17)
C190.041 (2)0.048 (2)0.051 (2)0.0097 (17)0.0229 (17)0.0070 (17)
C200.0378 (19)0.0321 (17)0.0450 (19)0.0029 (14)0.0179 (15)0.0035 (14)
Geometric parameters (Å, º) top
Mn1—O7i2.100 (2)C1—C21.396 (4)
Mn1—O3ii2.148 (2)C1—C71.498 (4)
Mn1—O12.175 (2)C2—C31.386 (4)
Mn1—N22.228 (3)C2—H20.9300
Mn1—N12.251 (3)C3—C41.392 (4)
Mn2—O4ii2.108 (2)C3—C81.506 (4)
Mn2—O4iii2.108 (2)C4—C51.384 (4)
Mn2—O6iv2.159 (2)C4—H40.9300
Mn2—O6i2.159 (2)C5—C61.389 (4)
Mn2—O1v2.322 (2)C6—H60.9300
Mn2—O12.322 (2)C9—C101.511 (4)
O1W—H1WB0.849 (2)C9—H9A0.9700
O1W—H1WA0.849 (2)C9—H9B0.9700
O1—C71.296 (3)C11—C121.394 (6)
O2—C71.238 (4)C11—H110.9300
O3—C81.254 (4)C12—C131.366 (7)
O3—Mn1vi2.148 (2)C12—H120.9300
O4—C81.250 (4)C13—C141.363 (6)
O4—Mn2vi2.108 (2)C13—H130.9300
O5—C51.356 (3)C14—C151.387 (5)
O5—C91.417 (4)C14—H140.9300
O6—C101.252 (4)C15—C161.474 (5)
O6—Mn2vii2.159 (2)C16—C171.380 (5)
O7—C101.244 (4)C17—C181.382 (6)
O7—Mn1vii2.100 (2)C17—H170.9300
N1—C111.334 (5)C18—C191.371 (5)
N1—C151.351 (4)C18—H180.9300
N2—C201.330 (4)C19—C201.378 (5)
N2—C161.345 (4)C19—H190.9300
C1—C61.378 (4)C20—H200.9300
O7i—Mn1—O3ii92.04 (10)O5—C5—C4126.5 (2)
O7i—Mn1—O199.00 (9)O5—C5—C6113.7 (2)
O3ii—Mn1—O1113.65 (9)C4—C5—C6119.7 (3)
O7i—Mn1—N289.68 (9)C1—C6—C5120.8 (3)
O3ii—Mn1—N2107.44 (9)C1—C6—H6119.6
O1—Mn1—N2137.52 (8)C5—C6—H6119.6
O7i—Mn1—N1161.31 (10)O2—C7—O1120.9 (2)
O3ii—Mn1—N186.93 (9)O2—C7—C1121.6 (2)
O1—Mn1—N198.49 (9)O1—C7—C1117.5 (2)
N2—Mn1—N172.92 (10)O4—C8—O3123.8 (3)
O4ii—Mn2—O4iii180.00 (12)O4—C8—C3117.5 (3)
O4ii—Mn2—O6iv87.76 (9)O3—C8—C3118.7 (3)
O4iii—Mn2—O6iv92.24 (9)O5—C9—C10113.6 (2)
O4ii—Mn2—O6i92.24 (9)O5—C9—H9A108.9
O4iii—Mn2—O6i87.76 (9)C10—C9—H9A108.9
O6iv—Mn2—O6i180.00 (11)O5—C9—H9B108.9
O4ii—Mn2—O1v99.16 (8)C10—C9—H9B108.9
O4iii—Mn2—O1v80.84 (8)H9A—C9—H9B107.7
O6iv—Mn2—O1v89.06 (8)O7—C10—O6126.5 (3)
O6i—Mn2—O1v90.94 (8)O7—C10—C9118.0 (3)
O4ii—Mn2—O180.84 (8)O6—C10—C9115.5 (3)
O4iii—Mn2—O199.16 (8)N1—C11—C12122.7 (4)
O6iv—Mn2—O190.94 (8)N1—C11—H11118.6
O6i—Mn2—O189.06 (8)C12—C11—H11118.6
O1v—Mn2—O1180.00 (5)C13—C12—C11118.1 (4)
H1WB—O1W—H1WA105.3 (4)C13—C12—H12121.0
C7—O1—Mn1100.06 (17)C11—C12—H12121.0
C7—O1—Mn2137.20 (18)C14—C13—C12119.8 (4)
Mn1—O1—Mn2105.02 (8)C14—C13—H13120.1
C8—O3—Mn1vi111.51 (19)C12—C13—H13120.1
C8—O4—Mn2vi161.5 (2)C13—C14—C15119.9 (4)
C5—O5—C9121.3 (2)C13—C14—H14120.0
C10—O6—Mn2vii134.2 (2)C15—C14—H14120.0
C10—O7—Mn1vii131.3 (2)N1—C15—C14120.8 (3)
C11—N1—C15118.6 (3)N1—C15—C16115.8 (3)
C11—N1—Mn1124.2 (3)C14—C15—C16123.4 (3)
C15—N1—Mn1116.8 (2)N2—C16—C17120.7 (3)
C20—N2—C16118.6 (3)N2—C16—C15116.3 (3)
C20—N2—Mn1123.7 (2)C17—C16—C15123.0 (3)
C16—N2—Mn1117.7 (2)C16—C17—C18120.1 (3)
C6—C1—C2119.9 (2)C16—C17—H17120.0
C6—C1—C7118.5 (2)C18—C17—H17120.0
C2—C1—C7121.5 (2)C19—C18—C17119.1 (3)
C3—C2—C1119.1 (2)C19—C18—H18120.5
C3—C2—H2120.5C17—C18—H18120.5
C1—C2—H2120.5C18—C19—C20117.8 (4)
C2—C3—C4121.0 (2)C18—C19—H19121.1
C2—C3—C8121.3 (2)C20—C19—H19121.1
C4—C3—C8117.7 (2)N2—C20—C19123.8 (3)
C5—C4—C3119.4 (2)N2—C20—H20118.1
C5—C4—H4120.3C19—C20—H20118.1
C3—C4—H4120.3
O7i—Mn1—O1—C794.71 (18)Mn1—O1—C7—C1172.1 (2)
O3ii—Mn1—O1—C7169.05 (17)Mn2—O1—C7—C162.5 (4)
N2—Mn1—O1—C74.8 (2)C6—C1—C7—O2178.1 (3)
N1—Mn1—O1—C778.69 (18)C2—C1—C7—O26.0 (4)
O7i—Mn1—O1—Mn250.28 (10)C6—C1—C7—O11.3 (4)
O3ii—Mn1—O1—Mn245.96 (12)C2—C1—C7—O1174.6 (2)
N2—Mn1—O1—Mn2149.75 (11)Mn2vi—O4—C8—O336.8 (8)
N1—Mn1—O1—Mn2136.32 (9)Mn2vi—O4—C8—C3143.2 (6)
O4ii—Mn2—O1—C7162.4 (3)Mn1vi—O3—C8—O40.7 (4)
O4iii—Mn2—O1—C717.6 (3)Mn1vi—O3—C8—C3179.27 (19)
O6iv—Mn2—O1—C7110.0 (3)C2—C3—C8—O4157.0 (3)
O6i—Mn2—O1—C770.0 (3)C4—C3—C8—O419.8 (4)
O4ii—Mn2—O1—Mn138.66 (9)C2—C3—C8—O323.0 (4)
O4iii—Mn2—O1—Mn1141.34 (9)C4—C3—C8—O3160.2 (3)
O6iv—Mn2—O1—Mn1126.24 (9)C5—O5—C9—C1089.4 (3)
O6i—Mn2—O1—Mn153.76 (9)Mn1vii—O7—C10—O615.9 (5)
O7i—Mn1—N1—C11156.2 (3)Mn1vii—O7—C10—C9164.6 (2)
O3ii—Mn1—N1—C1168.9 (3)Mn2vii—O6—C10—O732.8 (5)
O1—Mn1—N1—C1144.5 (3)Mn2vii—O6—C10—C9147.6 (2)
N2—Mn1—N1—C11178.2 (3)O5—C9—C10—O727.3 (4)
O7i—Mn1—N1—C1517.3 (4)O5—C9—C10—O6153.1 (3)
O3ii—Mn1—N1—C15104.6 (2)C15—N1—C11—C120.8 (5)
O1—Mn1—N1—C15141.9 (2)Mn1—N1—C11—C12174.2 (3)
N2—Mn1—N1—C154.7 (2)N1—C11—C12—C131.7 (6)
O7i—Mn1—N2—C209.9 (3)C11—C12—C13—C141.2 (6)
O3ii—Mn1—N2—C20102.0 (3)C12—C13—C14—C150.1 (6)
O1—Mn1—N2—C2093.1 (3)C11—N1—C15—C140.6 (4)
N1—Mn1—N2—C20177.0 (3)Mn1—N1—C15—C14173.3 (2)
O7i—Mn1—N2—C16172.2 (2)C11—N1—C15—C16178.5 (3)
O3ii—Mn1—N2—C1680.2 (2)Mn1—N1—C15—C167.6 (3)
O1—Mn1—N2—C1684.7 (2)C13—C14—C15—N11.1 (5)
N1—Mn1—N2—C160.9 (2)C13—C14—C15—C16178.0 (3)
C6—C1—C2—C33.2 (4)C20—N2—C16—C170.4 (4)
C7—C1—C2—C3172.6 (2)Mn1—N2—C16—C17178.3 (2)
C1—C2—C3—C40.7 (4)C20—N2—C16—C15179.4 (3)
C1—C2—C3—C8176.0 (2)Mn1—N2—C16—C152.7 (3)
C2—C3—C4—C51.3 (4)N1—C15—C16—N26.8 (4)
C8—C3—C4—C5178.1 (2)C14—C15—C16—N2174.1 (3)
C9—O5—C5—C42.6 (4)N1—C15—C16—C17174.2 (3)
C9—O5—C5—C6174.3 (2)C14—C15—C16—C174.9 (5)
C3—C4—C5—O5177.4 (3)N2—C16—C17—C180.3 (5)
C3—C4—C5—C60.7 (4)C15—C16—C17—C18178.6 (3)
C2—C1—C6—C53.8 (4)C16—C17—C18—C190.8 (5)
C7—C1—C6—C5172.1 (2)C17—C18—C19—C200.5 (5)
O5—C5—C6—C1175.2 (2)C16—N2—C20—C190.6 (5)
C4—C5—C6—C11.9 (4)Mn1—N2—C20—C19178.4 (3)
Mn1—O1—C7—O27.3 (3)C18—C19—C20—N20.2 (6)
Mn2—O1—C7—O2118.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z1; (v) x, y, z; (vi) x, y, z1; (vii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2iii0.85 (1)2.19 (2)3.015 (5)164 (6)
Symmetry code: (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mn3(C10H5O7)2(C10H8N2)2]·H2O
Mr969.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.5683 (1), 25.2280 (4), 9.7685 (1)
β (°) 114.633 (1)
V3)1919.41 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.37 × 0.19 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.786, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
16528, 3350, 3012
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.123, 1.10
No. of reflections3350
No. of parameters292
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.47

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), SHELXTL (Brandenburg, 2008).

Selected bond lengths (Å) top
Mn1—O7i2.100 (2)Mn1—N12.251 (3)
Mn1—O3ii2.148 (2)Mn2—O4iii2.108 (2)
Mn1—O12.175 (2)Mn2—O6iv2.159 (2)
Mn1—N22.228 (3)Mn2—O12.322 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2iii0.849 (2)2.190 (19)3.015 (5)164 (6)
Symmetry code: (iii) x, y, z1.
 

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). CrystEngComm. 6, 315–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, X.-Y., Zhang, J., Li, Z.-J., Cheng, J.-K. & Yao, Y.-G. (2007). CrystEngComm. 9, 806–814.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXing, X.-Y., Song, X.-Y., Yang, P.-P., Liu, R.-N., Li, L.-C. & Liao, D.-Z. (2010). J. Mol. Struct. 967, 196–200.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m259-m260
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds