organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o264-o265

3-Hy­dr­oxy-2-(4-hy­dr­oxy­phen­yl)-4H-chromen-4-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and bFaculty of Chemistry, Kyiv Taras Shevchenko National University, Volodymyrska 64, 01033 Kyiv, Ukraine
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 30 November 2010; accepted 20 December 2010; online 8 January 2011)

In the title compound, C15H10O4, the benzene ring is twisted at an angle of 20.7 (1)° relative to the 4H-chromene skeleton. In the crystal, adjacent mol­ecules are linked via a network of O—H⋯O and C—H⋯O hydrogen bonds. The mean planes of adjacent 4H-chromene moieties are parallel or oriented at an angle of 20.9 (1)° in the crystal structure.

Related literature

For general background to the properties of flavones (deriva­tives of 2-phenyl-4H-chromen-4-one) and fluorescence of flavonols (derivatives of 3-hy­droxy-2-phenyl-4H-chromen-4-one), see: Bader et al. (2003[Bader, A. N., Pivovarenko, V., Demchenko, A. P., Ariese, F. & Gooijer, C. (2003). Spectrochim. Acta Part A, 59, 1593-1603.]); Choulier et al. (2010[Choulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188-195.]); Demchenko (2009[Demchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV.]); Klymchenko & Demchenko (2003[Klymchenko, A. S. & Demchenko, A. P. (2003). Phys. Chem. Chem. Phys. 5, 461-468.]); Nijveldt et al. (2001[Nijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. M. (2001). Am. J. Clin. Nutr. 74, 418-425.]); Pivovarenko et al. (2004[Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2004). J. Mol. Struct. 708, 175-181.]); Roshal et al. (2003[Roshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860-5869.]); Sengupta & Kasha (1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]). For related structures, see: Etter et al. (1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]); Kumar et al. (1998[Kumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr. 28, 931-933.]); Waller et al. (2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]). For the synthesis, see: Bader et al. (2003[Bader, A. N., Pivovarenko, V., Demchenko, A. P., Ariese, F. & Gooijer, C. (2003). Spectrochim. Acta Part A, 59, 1593-1603.]); Sobottka et al. (2000[Sobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205-210.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10O4

  • Mr = 254.23

  • Monoclinic, P 21 /c

  • a = 3.7897 (3) Å

  • b = 17.6380 (15) Å

  • c = 16.7745 (16) Å

  • β = 90.968 (9)°

  • V = 1121.09 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.6 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.329, Tmax = 1.000

  • 9273 measured reflections

  • 1979 independent reflections

  • 920 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.155

  • S = 0.84

  • 1979 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O19i 0.83 (5) 2.10 (5) 2.832 (4) 148 (4)
O19—H19⋯O12ii 0.91 (5) 1.79 (5) 2.705 (4) 176 (5)
C7—H7⋯O11iii 0.93 2.47 3.267 (4) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flavones (derivatives of 2-phenyl-4H-chromen-4-one) appear in numerous natural systems and have been comprehensively investigated in view of their antioxidant features (Nijveldt et al., 2001). Related to flavones, 3-hydroxy-2-phenyl-4H-chromen-4-one (flavonols) exhibit dual fluorescence in the condensed phases resulting from the Excited State Intramolecular Proton Transfer (ESIPT) (Sengupta & Kasha, 1979). In flavonols this phenomenon is strongly affected by molecules from their environment, which makes the compounds interesting fluorescent sensors for analytical applications in chemistry, biology, biochemistry, ecology and medicine (Klymchenko & Demchenko, 2003; Demchenko, 2009; Choulier et al., 2010). Continuing our investigations into the physical chemistry of flavonols (Bader et al., 2003; Roshal et al., 2003; Pivovarenko et al., 2004), we present the crystal structure of 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one in the hope that its structural and fluorescent features will appear interesting and helpful in its practical applications.

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 2-phenyl-4H-chromen-4-one moiety are typical of this group of compounds (Etter et al., 1986; Kumar et al., 1998; Waller et al., 2003). With respective average deviations from planarity of 0.0187 (1)° and 0.0041 (1)°, the 4H-chromene and benzene ring systems are oriented at a dihedral angle of 20.7 (1)° (in the case of flavonol this angle is 5.5 (1)° (Etter et al., 1986)). The mean planes of the adjacent 4H-chromen-4-one moieties are either parallel (remain at an angle of 0.0 (1)°) or inclined at 20.9 (1)°.

The crystal structure of the title compound is stabilized by a network of O—H···O (Aakeröy et al., 1992) (Table 1, Fig. 2) and C—H···O (Novoa et al., 2006) (Table 1, Fig. 2) hydrogen bonds, and by non-specific dispersive interactions. Each of the two OH groups is involved in hydrogen bonds as H atom acceptor and donor. The O11—H11···O12 intramolecular hydrogen bond (Table 1, Figs. 1 and 2) is the one involved in the ESIPT phenomenon characteristic of flavonols (Sengupta & Kasha, 1979).

Related literature top

For general background to the properties of flavones (derivatives of 2-phenyl-4H-chromen-4-one) and fluorescence of flavonols (derivatives of 3-hydroxy-2-phenyl-4H-chromen-4-one), see: Bader et al. (2003); Choulier et al. (2010); Demchenko (2009); Klymchenko & Demchenko (2003); Nijveldt et al. (2001); Pivovarenko et al. (2004); Roshal et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Kumar et al. (1998); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Bader et al. (2003); Sobottka et al. (2000).

Experimental top

The title compound was synthesized in two steps. First, 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one was prepared by alkaline condensation of 4-methoxybenzaldehyde with 1-(2-hydroxyphenyl)ethanone and subsequent oxidative heterocyclization of the product with hydrogen peroxide (the light green-yellow precipitate of the product was recrystallized twice from a 1% solution of acetic acid in ethanol) (Bader et al., 2003). Next, the 3-hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one thus obtained was converted to 3-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one by maintaining a solution of the former compound in molten pyridinium chloride at 495 K for 20 minutes, then cooling the reactant mixture, and pouring it into 1% aqueous HCl. Pale brown crystals suitable for X-ray investigations were grown from DMF solutions of the filtered precipitate of the final product (m.p. = 557–558 K; lit. 555–558 K (Sobottka et al., 2000)).

Refinement top

H atoms of C—H bonds were positioned geometrically with H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). H atoms involved in O—H···O hydrogen bonds were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O—H···O hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x, –y + 1/2, z – 1/2; (ii) x – 1, –y + 1/2, z + 1/2; (iii) –x + 1, y + 1/2, –z + 3/2.]
3-Hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one top
Crystal data top
C15H10O4F(000) = 528
Mr = 254.23Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1979 reflections
a = 3.7897 (3) Åθ = 3.4–25.0°
b = 17.6380 (15) ŵ = 0.11 mm1
c = 16.7745 (16) ÅT = 295 K
β = 90.968 (9)°Needle, pale brown
V = 1121.09 (17) Å30.6 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1979 independent reflections
Radiation source: Enhance (Mo) X-ray Source920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 10.4002 pixels mm-1θmax = 25.0°, θmin = 3.4°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2020
Tmin = 0.329, Tmax = 1.000l = 1919
9273 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0893P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
1979 reflectionsΔρmax = 0.28 e Å3
179 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (3)
Crystal data top
C15H10O4V = 1121.09 (17) Å3
Mr = 254.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.7897 (3) ŵ = 0.11 mm1
b = 17.6380 (15) ÅT = 295 K
c = 16.7745 (16) Å0.6 × 0.2 × 0.2 mm
β = 90.968 (9)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
1979 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
920 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 1.000Rint = 0.075
9273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 0.84Δρmax = 0.28 e Å3
1979 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2942 (6)0.46752 (12)0.80136 (13)0.0490 (7)
C20.2180 (8)0.39182 (18)0.8026 (2)0.0416 (9)
C30.2703 (9)0.34891 (18)0.7361 (2)0.0430 (9)
C40.4184 (9)0.3797 (2)0.6655 (2)0.0470 (9)
C50.6344 (8)0.4972 (2)0.6004 (2)0.0507 (10)
H50.68850.47020.55460.061*
C60.6924 (9)0.5739 (2)0.6035 (2)0.0570 (10)
H60.78300.59900.55950.068*
C70.6161 (10)0.6139 (2)0.6719 (2)0.0602 (11)
H70.65400.66600.67320.072*
C80.4854 (9)0.5782 (2)0.7379 (2)0.0538 (10)
H80.43730.60540.78390.065*
C90.4944 (8)0.45958 (18)0.66600 (19)0.0423 (9)
C100.4267 (8)0.50063 (19)0.7343 (2)0.0431 (9)
O110.1984 (8)0.27345 (14)0.73772 (16)0.0663 (9)
H110.167 (12)0.257 (3)0.692 (3)0.099*
O120.4757 (7)0.33773 (14)0.60629 (15)0.0662 (8)
C130.0981 (8)0.36660 (19)0.8811 (2)0.0418 (9)
C140.1704 (9)0.4109 (2)0.9483 (2)0.0488 (9)
H140.28160.45750.94240.059*
C150.0792 (9)0.3865 (2)1.0232 (2)0.0514 (10)
H150.12910.41661.06750.062*
C160.0861 (9)0.3175 (2)1.0325 (2)0.0479 (9)
C170.1637 (9)0.2732 (2)0.9672 (2)0.0502 (10)
H170.27710.22690.97350.060*
C180.0727 (8)0.29790 (19)0.8922 (2)0.0463 (9)
H180.12700.26780.84810.056*
O190.1701 (7)0.29545 (15)1.10853 (15)0.0614 (8)
H190.285 (11)0.250 (3)1.110 (3)0.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0679 (16)0.0378 (15)0.0414 (16)0.0017 (11)0.0061 (12)0.0001 (11)
C20.053 (2)0.036 (2)0.036 (2)0.0001 (15)0.0006 (16)0.0032 (16)
C30.061 (2)0.033 (2)0.035 (2)0.0025 (16)0.0020 (17)0.0000 (16)
C40.057 (2)0.045 (2)0.039 (2)0.0033 (17)0.0027 (17)0.0001 (17)
C50.061 (2)0.051 (3)0.040 (2)0.0038 (18)0.0021 (18)0.0014 (17)
C60.067 (2)0.055 (3)0.049 (3)0.003 (2)0.0049 (19)0.0112 (19)
C70.080 (3)0.044 (2)0.057 (3)0.007 (2)0.002 (2)0.007 (2)
C80.068 (2)0.043 (2)0.051 (3)0.0048 (19)0.0036 (19)0.0028 (18)
C90.049 (2)0.040 (2)0.038 (2)0.0041 (16)0.0008 (17)0.0045 (16)
C100.048 (2)0.044 (2)0.036 (2)0.0011 (17)0.0008 (17)0.0049 (16)
O110.122 (2)0.0371 (16)0.0400 (17)0.0105 (14)0.0089 (16)0.0016 (12)
O120.111 (2)0.0486 (16)0.0399 (17)0.0058 (14)0.0140 (14)0.0030 (13)
C130.048 (2)0.037 (2)0.040 (2)0.0051 (16)0.0046 (16)0.0003 (15)
C140.061 (2)0.040 (2)0.045 (2)0.0006 (17)0.0034 (18)0.0014 (18)
C150.071 (3)0.044 (2)0.039 (2)0.0022 (18)0.0014 (18)0.0035 (17)
C160.057 (2)0.044 (2)0.043 (2)0.0084 (18)0.0049 (17)0.0009 (17)
C170.061 (2)0.042 (2)0.047 (3)0.0046 (17)0.0065 (18)0.0012 (17)
C180.056 (2)0.042 (2)0.042 (2)0.0007 (16)0.0041 (17)0.0033 (16)
O190.091 (2)0.0553 (18)0.0380 (17)0.0007 (14)0.0134 (14)0.0056 (13)
Geometric parameters (Å, º) top
O1—C21.366 (4)C8—H80.9300
O1—C101.370 (4)C9—C101.383 (5)
C2—C31.365 (4)O11—H110.82 (5)
C2—C131.469 (4)C13—C181.388 (4)
C3—O111.359 (4)C13—C141.394 (5)
C3—C41.427 (5)C14—C151.378 (5)
C4—O121.261 (4)C14—H140.9300
C4—C91.438 (5)C15—C161.379 (5)
C5—C61.372 (5)C15—H150.9300
C5—C91.397 (5)C16—C171.373 (5)
C5—H50.9300C16—O191.375 (4)
C6—C71.381 (5)C17—C181.381 (5)
C6—H60.9300C17—H170.9300
C7—C81.374 (5)C18—H180.9300
C7—H70.9300O19—H190.91 (4)
C8—C101.387 (5)
C2—O1—C10120.6 (3)C5—C9—C4122.7 (3)
O1—C2—C3119.7 (3)O1—C10—C9122.2 (3)
O1—C2—C13112.2 (3)O1—C10—C8116.5 (3)
C3—C2—C13128.0 (3)C9—C10—C8121.3 (3)
O11—C3—C2119.7 (3)C3—O11—H11110 (3)
O11—C3—C4118.1 (3)C18—C13—C14117.8 (3)
C2—C3—C4122.1 (3)C18—C13—C2122.4 (3)
O12—C4—C3120.4 (3)C14—C13—C2119.7 (3)
O12—C4—C9122.8 (3)C15—C14—C13120.9 (3)
C3—C4—C9116.7 (3)C15—C14—H14119.6
C6—C5—C9120.1 (3)C13—C14—H14119.6
C6—C5—H5119.9C14—C15—C16120.0 (3)
C9—C5—H5119.9C14—C15—H15120.0
C5—C6—C7119.9 (4)C16—C15—H15120.0
C5—C6—H6120.0C17—C16—O19122.0 (3)
C7—C6—H6120.0C17—C16—C15120.2 (3)
C8—C7—C6121.3 (4)O19—C16—C15117.8 (3)
C8—C7—H7119.4C16—C17—C18119.6 (3)
C6—C7—H7119.4C16—C17—H17120.2
C7—C8—C10118.5 (4)C18—C17—H17120.2
C7—C8—H8120.8C17—C18—C13121.4 (3)
C10—C8—H8120.8C17—C18—H18119.3
C10—C9—C5118.8 (3)C13—C18—H18119.3
C10—C9—C4118.5 (3)C16—O19—H19113 (3)
C10—O1—C2—C30.8 (4)C5—C9—C10—O1179.1 (3)
C10—O1—C2—C13176.8 (3)C4—C9—C10—O10.8 (5)
O1—C2—C3—O11179.2 (3)C5—C9—C10—C81.9 (5)
C13—C2—C3—O112.1 (5)C4—C9—C10—C8178.3 (3)
O1—C2—C3—C42.9 (5)C7—C8—C10—O1179.6 (3)
C13—C2—C3—C4174.2 (3)C7—C8—C10—C90.5 (5)
O11—C3—C4—O120.9 (5)O1—C2—C13—C18164.2 (3)
C2—C3—C4—O12177.2 (3)C3—C2—C13—C1818.5 (5)
O11—C3—C4—C9179.4 (3)O1—C2—C13—C1418.9 (4)
C2—C3—C4—C93.1 (5)C3—C2—C13—C14158.5 (3)
C9—C5—C6—C70.8 (5)C18—C13—C14—C150.9 (5)
C5—C6—C7—C80.6 (6)C2—C13—C14—C15176.2 (3)
C6—C7—C8—C100.8 (6)C13—C14—C15—C160.0 (5)
C6—C5—C9—C102.0 (5)C14—C15—C16—C170.7 (5)
C6—C5—C9—C4178.2 (3)C14—C15—C16—O19179.7 (3)
O12—C4—C9—C10179.1 (3)O19—C16—C17—C18179.8 (3)
C3—C4—C9—C101.2 (4)C15—C16—C17—C180.6 (5)
O12—C4—C9—C50.7 (5)C16—C17—C18—C130.3 (5)
C3—C4—C9—C5178.9 (3)C14—C13—C18—C171.0 (5)
C2—O1—C10—C91.1 (4)C2—C13—C18—C17176.0 (3)
C2—O1—C10—C8178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O120.83 (5)2.35 (5)2.707 (4)107 (4)
O11—H11···O19i0.83 (5)2.10 (5)2.832 (4)148 (4)
O19—H19···O12ii0.91 (5)1.79 (5)2.705 (4)176 (5)
C7—H7···O11iii0.932.473.267 (4)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H10O4
Mr254.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)3.7897 (3), 17.6380 (15), 16.7745 (16)
β (°) 90.968 (9)
V3)1121.09 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.6 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.329, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9273, 1979, 920
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.155, 0.84
No. of reflections1979
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O19i0.83 (5)2.10 (5)2.832 (4)148 (4)
O19—H19···O12ii0.91 (5)1.79 (5)2.705 (4)176 (5)
C7—H7···O11iii0.932.473.267 (4)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–0).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationBader, A. N., Pivovarenko, V., Demchenko, A. P., Ariese, F. & Gooijer, C. (2003). Spectrochim. Acta Part A, 59, 1593–1603.  CrossRef Google Scholar
First citationChoulier, L., Shvadchak, V. V., Naidoo, A., Klymchenko, A. S., Mély, Y. & Altschuh, D. (2010). Anal. Biochem. 401, 188–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDemchenko, A. P. (2009). Introduction to Fluorescence Sensing. The Netherlands: Springer Science and Business Media BV.  Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlymchenko, A. S. & Demchenko, A. P. (2003). Phys. Chem. Chem. Phys. 5, 461–468.  Web of Science CrossRef CAS Google Scholar
First citationKumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr. 28, 931–933.  Web of Science CSD CrossRef CAS Google Scholar
First citationNijveldt, R. J., van Nood, E., van Hoorn, D. E. C., Boelens, P. G., van Norren, K. & van Leeuwen, P. A. M. (2001). Am. J. Clin. Nutr. 74, 418–425.  Web of Science PubMed CAS Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2004). J. Mol. Struct. 708, 175–181.  CrossRef CAS Google Scholar
First citationRoshal, A. D., Moroz, V. I., Pivovarenko, V. G., Wróblewska, A. & Błażejowski, J. (2003). J. Org. Chem. 68, 5860–5869.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSobottka, A. M., Werner, W., Blaschke, G., Kiefer, W., Nowe, U., Dannhardt, G., Schapoval, E. E. S., Schenkel, E. P. & Scriba, G. K. E. (2000). Arch. Pharm. Pharm. Med. Chem. 333, 205–210.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o264-o265
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds